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B Machine learning of natural language:
Q Cognitive models of language learning/development
Q Data-intensive learning of linguistic knowledge
Q Machine learning for applications
B Kinds of learning:
Q Supervised
O Unsupervised
B Kinds of algorithms/techniques:
Q Connectionist modelling
Q Statistical learning methods
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B Date/Time: 12 February, 14:15-15:45 (90 minutes)
B Location: Konferenzraum (2.11)

B Format: Answer 5 of 6 questions
Q 1 obligatory question (connectionism)
Q 2 further questions (connectionism)
Q 1 obligatory question (machine learning)
Q 2 further questions (machine learning)

B Each question will consist of 3-5 sub-parts

B Each question has equal value (20%)
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B Introduction: Stochastic Language Learning
Q Connectionism and the brain
Q The appeal of connectionism
Q Overview of connectionism in language processing
O Basic connectionist models: nodes and activations
B Foundations of Connectionist Models
Q Simple connectionist models and their properties: The perceptron

Q Multi-layer perceptrons: feed-forward networks and internal
representations

4 The encoding problem: Localist and distributed representations
O Generalisation, association, and auto-association

B Connectionist Models of Language
O Modelling acquisition of the English past-tense and reading aloud
Q Processing sequences: Simple recurrent networks
O Modelling acquisition of hierarchical syntactic knowledge
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B The of a unitiis
represented by the symbol a;.

B The extent to which unit j influences
unit i is determined by the w;

B The from unit j to unit i is the
product: a;.w;

B For a node iin the network:

netinput, = E wa;
i

B The output activation of node i is
determined by the activation
function, e.g. the logistic:

net;
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B Supervised learning in connectionist networks involves successively
adjusting connection weights to reduce the discrepancy between the actual

output activation and the correct output activation

O Aninputis presented to the network

Q Activations are propagated through the network to its output
Q Outputs are compared to “correct” outputs: difference is called error

O Weights are adjusted

Bl The Delta Rule:

Aw, =[a,(desired) - a,(obtained)]a e

O [a/desired)-a(obtained] is the difference between the desired output activation and
the actual activation produced by the network

+ What is the “error”?

Q g is the activity of the contributing unit

+ How much activation is this unit responsible for?

Q ¢ is the learning rate parameter.

+ How rapidly do we want to make changes?
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B The perceptron convergence rule: Ay = gaain
B Our revised learning rule, based on gradient descent is:

Aw =2¢6F * a,,

Q where F*is the slope of the activation function

B If the activation function is linear, the slope is constant:
Aw = koa,,

U where kis a constant representing the learning rate and slope
B This corresponds to the original Delta rule:

Q It is straight-forward to calculate

Q Performs gradient descent to the bottom of an the error curve

QO Aw is proportional to (t,,a,,,), S0 changes get smaller as error is reduced

Q In 2-layer networks, there is a single minimum which gradient descent
learning is guaranteed to find a solution, it one exists.
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B Learning rate: predetermined constant

B The error: large error = large weight change

B The momentum: how much of the previous weight change affects the
current weight change

B The slope of the activation function:

Q Is largest for netinputs = 0,
and for activations = .5

Q Small netinputs co-occur
with small weights

Q Small weights tend to occur a T ——
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B The result: bigger changes during early stages of learning
O More resilience in older network: harder to teach new tricks!
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B The training phase involves
Q Presenting an input pattern, and computing the output for the network
using the current connection weights: a,,=f(3 ;, W, X 8;,)
Q Calculating the error between the desired and the actual output (t,; -a,,,)
Q Using the Delta rule (appropriate for the activation function):

AW = n(tout - aout )aout(l - aout )ain

B One such cycle is called a sweep
B A sweep through each patter is called an epoch

B We can define the global error of the network, as the average error
across all input patterns, k:

-~ .2
@ One common measure is the 2 (tk _Ok)
square root of mean error rms error = Y| *+—
k

O Squaring avoids positive and negative error cancelling each other out

© Matthew W. Crocker Connectionist and Statistical Language Processing 10




0 G (a) Forward propagation of activity :

netlnpl'Itout = E w: ahidden

@ a,, = F(netinput )
- —

(b) Backward propagation of error:
netinputhidden = E w: 6out e

Oidaen = I (netinput,,...)
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B The generalised Delta rule: |Aw; =nd,a,

For output nodes : For hidden nodes :
6,.!7 =f‘(netl.p)(t,.p—aip) 61.17 =f'(netip)25kpwk,.
k

where, f'(net,,) =a,,(1-a,)

B Multi-layer networks can, in principle, learn any mapping function:
U Not constrained to problems which are linearly separable
B While there exists a solution for any mapping problem,
backpropagation is not guaranteed to find it
O Unlike the perceptron convergence rule
B Why? Local minima:
4 Backprop can get trapped here

Q Global minimum (solution) is here \

f
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(a) 3 pattern 2
dendrite/ 1 o 1 0 1 axon j
B slo s ls lo s
B The idea behind Hebbian learning 2 |
. . A 1— ~
is simple: Lriay NN
. 0—<
B The two patterns to be associated P o lp[r[r]
are presented simultaneously I '
[ENCEH I B | o b b

B If there is activity on input axon j, when neuron i is active, then the
connection weight w; (between axon j and dendrite i)is increased

B The Hebb rule: Awlj = gal,aj

Q a;is the activity of elementjin P,
Q a;is the activity of element jin P,
U4 ¢ is the learning rate parameter
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B Associate multiple stimulus-response patterns in a single network
4 Networks can be represented as a weight matrix
B Weights are sensitive to similarity
Q The more similar, the higher the netinput; the dot product of P and W
B Important properties
Q Generalisation: robust to noisy input
O Fault tolerance: robust to loss/damage
Q Prototype extraction & noise reduction
B Biologically Plausible:
4 Learning is strictly local
Q Reinforcement based
B Auto Association
O We can also train a network to associate a given pattern with itself

+ Noise reduction, prototype extraction
+ = category formation (unsupervised)
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B A simple network:

Q Inputs are fully connected to outputs
by feed-forword connections

Q Outputs may be connected to each other
by inhibitory connections

B Outputs compete until only one remains active
Q Or, simply the unit with highest activation wins

B Excitation of outputs: netinput, = E aw,
j oJu
Q Dot product of input activations and the weight vector the the output
Bl Competition:
Q Output activations are compared, unit with highest activation wins

Q Or, direct competition among outputs, via inhibitory connections:
+ Active units force other units to become inactive
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B Netinput to an output unit is greatest when it's weight vector is most
similar to the input vector

B Training makes the weight vector for a particular winning unit more
similar to the input pattern

B It is therefore also likely to be the “winning unit” for similar patterns,
and therefore learn to respond to those patterns as well

B The weight vector for a particular output unit learns to respond to
similar input patterns

QO Because these patterns are all slightly different, the learned weights cannot
exactly mimic the associated inputs

Q Rather, the learned weights will be an average of the patterns, based on
the frequency of presentation during training

B The competitive network can therefore learn to categorise similar
inputs without any “teacher”: unsupervised learning
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B Represent input patterns & weight vectors in multi-dimensional space
Q weight vectors for the output units have a random relation to the input

patterns

Q Competitive learning changes the weight vector for a particular output so
that it becomes the average for a subset of inputs

Q More outputs enable the network to more finely categorise the inputs
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B The standard model of reading
posits two independent routes
leading to pronunciation of
a word, because ...

Q People can effortless pronounce
words they have never seen:
+ SLINT or MAVE
4 People can pronounce words
which break the “rules”:
+ PINT or HAVE

B One mechanism uses general
rules for pronunciation

B The other mechanism stores
pronunciation information with
specific words
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B Common words are pronounced more quickly than uncommon words
Q This is true for most almost all aspects of human information processing

B Conventional (localist) explanation:

Q Frequent words require a lower threshold of activity for “the word
recognition device” to “fire”

Q Infrequent words require a higher threshold of activity

B In the Seidenberg & McClelland model, naming latency is modelled by
the error:
Q Word frequency is reflected in the training procedure

Q Phonological error is reduced by training, and therefore lower for high
frequency words

B The explanation of latencies in terms of error follows directly from the
network’s architecture and the training regime
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B In addition to faster naming of frequent words, human subjects exhibit:

Q Faster pronunciation of regular words (e.g GAVE or MUST) than irregular
words(e.g. HAVE or PINT)

Q But, this effect interacts with frequency: it is only observed with low
frequency words

B For regulars (filled circle) we observe a small effect of frequency

Q It takes slightly longer to pronounce the low frequency regulars
B For irregulars (open square) we observe a large effect of frequency
B The model precisely

mimics this pattern of 590 3
behavior in the error
Mean .. Mean .
B 2-route: the confusion of naming 510 squared
the lexical and rule outcome | o ermer
requires resolution
Q Lexical route wins faster S Tow T ow
for high frequency words Frequency Frequency
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B What has the model achieved
4 The model is a single mechanism with no lexical entries or explicit rules
QO Response to an input is a function of the networks entire experience
+ Reflects previous experience on a particular word
+ Experience with words resembling that string

Q E.g. specific experience with HAVE is sufficient to overcome the general
information that _AVE is usually a long vowel

Q The network can produce a plausible pronunciation for MAVE, but error is
introduced by experience with inconsistent words like HAVE

B Performance

Q 97% accuracy on pronouncing learned words

O Models: frequency & interaction with regularity, neighborhood, consistency
B Limitations: It is not as good as humans at

0 Reading non-words (model get 60%, humans 90%)

Q Lexical decision (FRAME is a word, but FRANE is not)

© Matthew W. Crocker Connectionist and Statistical Language Processing 21

B The architecture of the Plaut et al network: [ 61 phoneme units ]

O The are a total 105 possible orthographic
onsets, vowels, and codas

O The are 61 possible phonological
onsets, vowels and codas [

B What is the performance on non-words?
Q For consistent words (HEAN/DEAN): model (98%) versus human (94%)
Q For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)
B Representations:
Q The right encoding scheme is essential for modelling the findings
U They assume this knowledge could be partially acquired prior to reading
Q Doesn’t scale to polysyllabic words
B Doesn’t not explain the double dissociation:
v Surface dyslexics (can read exceptions, but not non-words)
X Phonological (can pronounce non-words, but not irregulars)

100 hidden units

105 grapheme units ]
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B Recurrent networks are powerful for executing and learning complex
sequences, but difficult to design

B Simple recurrent networks can learn any sequence given as input
B We can tell they’'ve learned by training them to predict the next item
B Hidden units are connected to “context” units:

These correspond to “state” units: they remember the state of the network on
the previous time step Output Units

The hidden units are able . . . .
= —

to recycle information

over multiple time steps
Dynamic memory:

Identical inputs can

be treated differently

depending on context

Input Units

Context Units
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B We often take for granted the existence of words, and yet for the child
language learner, input is largely in the form of an unsegmented
acoustic stream.

B How do children learn to identify word boundaries in such a signal?

B Example: Predicting the next sound
4 Problem: discovering word boundaries in continuous speech
+ Approximated by a corpus of continuous phonemes

4 Task: network is presented with one phoneme and attempts to predict the
next one

4 Manyyearsagoaboyandgirllivedbytheseatheyplayedhappily

B Attime t: the network knows both the current input (phoneme at time f)
and the results of processing at time -1 (context units)
Problem: discovering word boundaries in continuous speech
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B \We can examine the error:

Q High error at the onset of words

U Decreases during a word, as the sequence
is increasingly predictable

U High error at word onset demonstrates the
network has discovered word boundaries
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B Categories of lexical items

Category Examples
NOUN-HUM man,woman
NOUN-ANIM cat,mouse
NOUN-INANIM book,rock
NOUN-AGRESS dragon,monster
NOUN-FRAG glass,plate
NOUN-FOOD cookie,sandwich
VERB-INTRAN think,sleep
VERB-TRAN see,chase
VERB-AGPAT move,break
VERB-PERCEPT smell,see

VERB-DESTROY
VERB-EAT

break,smash

eat

© Matthew W. Crocker

B Template for sentence generator

WORD 1 WORD 2 WORD 3
NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-DESTROY NOUN-FRAG
NOUN-HUM VERB-INTRAN

NOUN-HUM VERB-TRAN NOUN-HUM
NOUN-HUM VERB-AGPAT NOUN-ANIM
NOUN-HUM VERB-AGPAT

NOUN-ANIM VERB-EAT NOUN-FOOD
NOUN-ANIM VERB-TRAN NOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INANIM
NOUN-ANIM VERB-AGPAT

NOUN-INANIM VERB-AGPAT

NOUN-AGRESS ~ VERB-DESTROY NOUN-FRAG
NOUN-AGRESS ~ VERB-EAT NOUN-HUM
NOUN-AGRESS ~ VERB-EAT NOUN-ANIM
NOUN-AGRESS  VERB-EAT NOUN-FOOD

Connectionist and Statistical Language Processing
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INPUT OUTPUT

Localist representation [ 5moo000m6000000000000870 (wormar] _00000000000000000000C0000GT00C0._ (srmah)|

of each word (31 bitS) | suomco000000000000000010000  (smasn)  00000000000000000000010000000¢0  (plate)
Q Nothing of the word (plate) (cat)
class is reflected

00000 10000006000000000000000000 (cat) 0000000000000000000100000000000 {mova]
10000 random 2-3 (ove)  000000DOI0000DD1000000000000C0  (mn)
word sentences (men) (break)
Q 27,354 sequence of (break)  0D0G10DO0I00D0DOOOCODOC0ODON0C0 (car)
31 bit vectors 00001 10000000000000000000000000 (car) 0100000000000000000000002000000 (boy)
Architecture: 01000(0000000000000000000000000  (boy) (move)
- 0000C00D0000D000001 00000000000 [move)  DODOODO0OO00TDOD0DLD0DH00000000 (g}
1 ‘[” 1000DCOO0O001D000DO0I00000000 (girl) 0000000000 10000000000000000000 (eal)
(0000000001 0000C000000000000000 (eat) (bread)
(bread) (dog)
(HODODU001000000C000000000000000 (dog) 0000000000000000000100000000000 (mowve)
H000DE0O000DID0000N1 HODODIDI0D (move]  000000D00000001000000000000 (mousa]
(mouse) {mouse]
. H000000000000000001 DACO00ODN00N (mouse)  0000000000000000000100000000000 (move)
B Trained on 6 complete BT e s
passes through the st e —
sequence 1000000000000000000000000000000 (book) ion
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Training yields an RMS error of 0.88

RMS error rapid drops from 15.5 to 1, by simply learning to turn all
outputs off (due to sparse, localist representations)

Prediction is non-deterministic: next input cannot be predicted with
absolute certainty, but neither is it random

U Word order and selectional restrictions partially constrain what words are
likely to appear next, and which cannot appear.

O We would expect the network to learn the frequency of occurrence of each
possible successor, for a given input sequence

Output bit should be activated for all possible following words
O These output activations should be proportional to frequency
Evaluation procedure:

Q Compare network output to the vector of probabilities for each possible
next word, given the current word and context ...
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B The network has discovered:
A Nouns vs. Verbs
Q Verb subcategorization

0 Animates/inanimates E—m il
. og
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—glass
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B The network learns hierarchical categories and classes
[ Such classes are determined from word order/co-occurrence

Q Learning takes place purely on the basis of observable data
+ No pre-specified localist representations, etc.

B Predicts “context” effects in processing:
Q Consistent with findings that human lexical access is sensitive to context

+ Controversial: there is evidence both for (Tabossi) and against (Swinney)
immediate context effects in lexical access

U And that it is word classes that are predicted, not individual words

© Matthew W. Crocker Connectionist and Statistical Language Processing 30
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B So far, we have seen how SRNs can
find structure in sequences

. . 26 uni

B How can complex structural relationships :
such as constituency be represented? T0uni

B The Stimuli: :

Q Lexicon of 23 items
O Encoded orthogonally, in 26 bit vector

B Grammar:

S=>NPVP*“

NP = PropN | N | N RC

VP =V (NP)

RC = who NP VP |who VP (NP)

N => boy | girl | cat | dog | boys | girls | cats | dogs
PropN =» John | Mary

o0 0 0 0 0 o0 o

U Number agreement, verb argument patterns

© Matthew W. Crocker Connectionist and Statistical Language Processing

V = chase | feed | see | hear | walk |live | chases | feeds | sees | hears | walks | lives

31

B Verb subcategorization
O Transitives: hit, feed
Q Optional transitives: see, hear
A Intransitives: walk, live
B Interaction with relative clauses:
+ Dog who chases cat sees girl
+ Dog who cat chases sees girl
4 Agreement can span arbitrary distance
O Subcategorization doesn’t always hold (superficially)
B Recursion: Boys who girls who dogs chase see hear
B Viable sentences: where should end of sentence occur?
QO Boys see (.) dogs (.) who see (.) girls (.) who hear (.) .

B Words are not explicitly encoded for number, subcat, or category

© Matthew W. Crocker Connectionist and Statistical Language Processing
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B At any given point, the training set contained 10000 sentences, which
were presented to the network 5 times

B The composition of sentences varied over time:
Q Phase 1: Only simple sentence (no relative clauses)
Q Phase 2: 25% complex and 75% simple
Q Phase 3: 50/50, mean sentence length 4.38
Q Phase 4: 75% complex, 25% simple, max: 16, mean: 6

B WHY?: Pilot simulations showed the network was unable to learn the
task when given the full range of complex data from the beginning.

B Focussing on simpler data first, the network learned quickly, and was
then able to learn the more complex patterns.

B Earlier simple learning, usefully constrained later learning

© Matthew W. Crocker Connectionist and Statistical Language Processing 33

B “Boys who mary chases feed cats”
Q Long distance
+ Agreement: Boys ... feed
+ Subcategorization: chases is transitive but in a relative clause
+ Sentence end:all outstanding “expectations” must be resolved
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B Learning was only possible when the network was forced to begin with
simpler input
Q This effectively restricted the range of data to which the networks were
exposed during initial learning

Q Contrasts with other results showing the entire dataset is necessary to
avoid getting stuck in local minima (e.g. XOR)

B This behaviour partially resembles that of children:

Q Children do not begin by mastering language in all its complexity

Q They begin with simplest structures, incrementally building their “grammar”
B But the simulation achieves this by manipulation the environment:

@ This does not seem an accurate model of the situation in which children
learn language

Q While adults do modify their speech, it is not clear they make such
grammatical modifications

A Children hear all exemplars of language from the beginning
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B While it's not the case that the environment changes, it true that the
child changes during the language acquisition period
B Solution: keep the environment constant, but allow the network to
undergo change during learning
U Phase 1:

+ Recurrent feedback was eliminated after every 3 or 4 words, by setting all
context units to 0.5

4 Phase 2:
+ Memory window increased to 4-5 words
U Phase 3: 5-6 word window
U Phase 4: 6-7 word window
O Phase 5: no explicit memory limitation implemented

B Performance: as good as on the previous simulation
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B The representation of experience:

U Exemplar-based learning models store all prior experience, and such early
data can then be re-accessed to subsequently help form new hypotheses

O SRNs do not do this: each input has it’s relatively minor effect on changing
the weights (towards a solution), and then disappears.
B Constraints on new hypotheses, and continuity of search:
Q Changes in a symbolic systems may lead to suddenly different solutions
+ This is often ok, if it can be checked against the prior experience
Q Gradient descent learning makes it difficult for a network to make dramatic
changes in its solution: search is continuous, along the error surface
+ Once in a local minima, the network might not recover
B Network are most sensitive during the early period of learning:
Q Thus most learning occurs when information is least reliable

QO Non-linearity (the logistic activation function) means that weight
modifications are less likely as learning progresses
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B Learning language is difficult because:
Q Learning linguistic primitives is obscured by the full complexity of
grammatical structure
Q Learning complex structure is difficult because the network lacks
knowledge of the basic primitive representations
B Incremental learning shows how a system can learn a complex system
by having better initial data:
Q Initially impoverished memory provides a natural filter for complex

structures early in learning so the network can learn the basic forms of
linguistic regularities

4 As the memory is expanded, the network can use what it knows to handle
increasingly complex inputs

QO Noise, present in the early data, tends to keep the network in a state of
flux, helping it to avoid committing to false generalisations

© Matthew W. Crocker Connectionist and Statistical Language Processing 38
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B Finding structure in time/sequences:
U Learns dependencies spanning more than a single transition
Q Learns dependencies of variable length
Q Learns to make partial predictions from structure input
+ Prediction of consonants, or particular lexical classes
B Learning from various input encodings:
Q Localist encoding: XOR and 1 bit per word
Q Distributed:
+ Structured: letter sequences where consonants have a distinguished feature
+ Random: words mapped to random 5 bit sequence
B Learns both general categories (types) and specific behaviours
(tokens) based purely on distributional evidence
B What are the limitations of SRNs
Q Do they simply learn co-occurrences and contingent probabilities?
Q Can they learn more complex aspects of linguistic structure?

© Matthew W. Crocker Connectionist and Statistical Language Processing 39

B Learning
Q There is usually no predetermined (innate) knowledge of language, but ...
+ Input/output representation are often specified
+ The architecture of the network may be “suited” to a particular task
+ The learning mechanism and parameters provide degrees of freedom
4 Learning takes place in direct response to experience

+ Structure of the training environment is often important
(e.g order and frequency of inputs)

B Generalisation
U Networks are able to learn generalisations not just by rote
Q More efficient representation of information
U Novel inputs can be processed

B Representation
U Learned automatically, and typically distributed
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B Rules versus exceptions
Q Single mechanism to explain both general rules and also exceptions

B Graded:
Q Can often give a useful output to new, partial, noisy input
Q Can yield non-deterministic outputs
Q Damage is distributed, and some performance is still possible:
+ Modelling of brain damage and neurological disorders in possible

B Frequency effects

O Model response time behaviours where high frequency inputs are
recognised faster than low frequency ones
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