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Course Overview

n Machine learning of natural language:
q Cognitive models of language learning/development

q Data-intensive learning of linguistic knowledge

q Machine learning for applications

n Kinds of learning:
q Supervised

q Unsupervised

n Kinds of algorithms/techniques:
q Connectionist modelling

q Statistical learning methods
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Exam details

n Date/Time: 12 February, 14:15-15:45 (90 minutes)

n Location: Konferenzraum (2.11)

n Format: Answer 5 of 6 questions
q 1 obligatory question (connectionism)

q 2 further questions (connectionism)

q 1 obligatory question (machine learning)

q 2 further questions (machine learning)

n Each question will consist of 3-5 sub-parts

n Each question has equal value (20%)
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Course contents: connectionism

n Introduction: Stochastic Language Learning
q Connectionism and the brain

q The appeal of connectionism

q Overview of connectionism in language processing

q Basic connectionist models: nodes and activations

n Foundations of Connectionist Models
q Simple connectionist models and their properties: The perceptron

q Multi-layer perceptrons: feed-forward networks and internal
representations

q The encoding problem: Localist and distributed representations

q Generalisation, association, and auto-association

n Connectionist Models of Language
q Modelling acquisition of the English past-tense and reading aloud

q Processing sequences: Simple recurrent networks

q Modelling acquisition of hierarchical syntactic knowledge
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Summary of network architecture

n The activation of a unit i is
represented by the symbol ai.

n The extent to which unit j influences
unit i is determined by the weight wij

n The input from unit j to unit i is the
product: aj * wij

n For a node i in the network:

n The output activation of node i is
determined by the activation
function, e.g. the logistic:

† 

netinputi = wija j
j

Â

† 

ai = f (netinputi) =
1

1+ eneti
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Learning in connectionist networks

n Supervised learning in connectionist networks involves successively
adjusting connection weights to reduce the discrepancy between the actual
output activation and the correct output activation

q An input is presented to the network
q Activations are propagated through the network to its output
q Outputs are compared to “correct” outputs: difference is called error
q Weights are adjusted

n The Delta Rule:

q [ai(desired)-ai(obtained] is the difference between the desired output activation and
the actual activation produced by the network

: What is the “error”?

q aj is the activity of the contributing unit j
: How much activation is this unit responsible for?

q e is the learning rate parameter.
: How rapidly do we want to make changes?

† 

Dwij = ai(desired)- ai(obtained)[ ]aje
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Visualising the error „surface“
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Gradient descent and the delta rule

n The perceptron convergence rule:

n Our revised learning rule, based on gradient descent is:

q where F* is the slope of the activation function

n If the activation function is linear, the slope is constant:

q where k is a constant representing the learning rate and slope

n This corresponds to the original Delta rule:
q It is straight-forward to calculate

q Performs gradient descent to the bottom of an the error curve

q ∆w is proportional to (tout-aout), so changes get smaller as error is reduced

q In 2-layer networks, there is a single minimum which gradient descent
learning is guaranteed to find a solution, it one exists.

† 

Dw = edain

† 

Dw = 2edF * ain

† 

Dw = kdain
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The dynamics of weight changes

n Learning rate: predetermined constant

n The error: large error = large weight change
n The momentum: how much of the previous weight change affects the

current weight change

n The slope of the activation function:
q Is largest for netinputs = 0,

and for activations = .5

q Small netinputs co-occur
with small weights

q Small weights tend to occur
early in training

n The result: bigger changes during early stages of learning
q More resilience in older network: harder to teach new tricks!
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Network Training & Performance

n The training phase involves
q Presenting an input pattern, and computing the output for the network

using the current connection weights: aout=f(∑in wout,in x ain)

q Calculating the error between the desired and the actual output (tout -aout)

q Using the Delta rule (appropriate for the activation function):

n One such cycle is called a sweep

n A sweep through each patter is called an epoch

n We can define the global error of the network, as the average error
across all input patterns, k:
q One common measure is the

square root of mean error

q Squaring avoids positive and negative error cancelling each other out

† 

Dw = h(tout - aout )aout(1- aout )ain

  

† 

rms error =

(
r 
t k -

r o k )
k

Â 2

k
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Backpropagation of Error

† 

(a) Forward propagation of activity :

netinputout = w ⋅ ahiddenÂ
aout = F(netinput out)

† 

(b) Backward propagation of error :

netinputhidden = w ⋅ doutÂ
dhidden = F (netinputhidden )

i1

i2

i3

h1

h2

h3

o1

o2

o3

i1

i2

i3

h1

h2

h3

o1

o2

o3
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Learning in Multi-layer Networks

n The generalised Delta rule:

n Multi-layer networks can, in principle, learn any mapping function:
q Not constrained to problems which are linearly separable

n While there exists a solution for any mapping problem,
backpropagation is not guaranteed to find it
q Unlike the perceptron convergence rule

n Why? Local minima:
q Backprop can get trapped here

q Global minimum (solution) is here

† 

Dwij =hd ipa j

For output nodes :                 For hidden nodes :
dip = f '(netip )(tip - aip )         dip = f '(netip ) dkp wki

k
Â

where, f '(netip ) = aip (1- aip)
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Learning: Hebb’s rule

n The idea behind Hebbian learning
is simple:

n The two patterns to be associated
are presented simultaneously

n If there is activity on input axon j, when neuron i is active, then the
connection weight wij (between axon j and dendrite i)is increased

n The Hebb rule:

q ai is the activity of element i in P1

q aj is the activity of element j in P2

q e is the learning rate parameter

† 

Dwij =eaiaj
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Summary of Pattern Associators

n Associate multiple stimulus-response patterns in a single network
q Networks can be represented as a weight matrix

n Weights are sensitive to similarity
q The more similar, the higher the netinput; the dot product of P and W

n Important properties
q Generalisation: robust to noisy input
q Fault tolerance: robust to loss/damage
q Prototype extraction & noise reduction

n Biologically Plausible:
q Learning is strictly local
q Reinforcement based

n Auto Association
q We can also train a network to associate a given pattern with itself

: Noise reduction, prototype extraction
: = category formation (unsupervised)
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Architecture of Competitive Networks

n A simple network:
q Inputs are fully connected to outputs

by feed-forword connections
q Outputs may be connected to each other

by inhibitory connections

n Outputs compete until only one remains active
q Or, simply the unit with highest activation wins

n Excitation of outputs:

q Dot product of input activations and the weight vector the the output

n Competition:
q Output activations are compared, unit with highest activation wins
q Or, direct competition among outputs, via inhibitory connections:

: Active units force other units to become inactive

† 

netinput i = a jwijjÂ
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Overall behaviour

n Netinput to an output unit is greatest when it’s weight vector is most
similar to the input vector

n Training makes the weight vector for a particular winning unit more
similar to the input pattern

n It is therefore also likely to be the “winning unit” for similar patterns,
and therefore learn to respond to those patterns as well

n The weight vector for a particular output unit learns to respond to
similar input patterns
q Because these patterns are all slightly different, the learned weights cannot

exactly mimic the associated inputs

q Rather, the learned weights will be an average of the patterns, based on
the frequency of presentation during training

n The competitive network can therefore learn to categorise similar
inputs without any “teacher”: unsupervised learning
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Visualising competitive learning

n Represent input patterns & weight vectors in multi-dimensional space
q weight vectors for the output units have a random relation to the input

patterns

q Competitive learning changes the weight vector for a particular output so
that it becomes the average for a subset of inputs

q More outputs enable the network to more finely categorise the inputs

X

X

X

X
X

X

X

X

X
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Reading Aloud: Dual Route Model

n The standard model of reading
posits two independent routes
leading to pronunciation of
a word, because …
q People can effortless pronounce

words they have never seen:
: SLINT or MAVE

q People can pronounce words
which break the “rules”:

: PINT or HAVE

n One mechanism uses general
rules for pronunciation

n The other mechanism stores
pronunciation information with
specific words
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Word Frequency Effects

n Common words are pronounced more quickly than uncommon words
q This is true for most almost all aspects of human information processing

n Conventional (localist) explanation:
q Frequent words require a lower threshold of activity for “the word

recognition device” to “fire”
q Infrequent words require a higher threshold of activity

n In the Seidenberg & McClelland model, naming latency is modelled by
the error:
q Word frequency is reflected in the training procedure
q Phonological error is reduced by training, and therefore lower for high

frequency words

n The explanation of latencies in terms of error follows directly from the
network’s architecture and the training regime
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Frequency x Regularity

n In addition to faster naming of frequent words, human subjects exhibit:
q Faster pronunciation of regular words (e.g GAVE or MUST) than irregular

words(e.g. HAVE or PINT)
q But, this effect interacts with frequency: it is only observed with low

frequency words
n For regulars (filled circle) we observe a small effect of frequency

q It takes slightly longer to pronounce the low frequency regulars
n For irregulars (open square) we observe a large effect of frequency
n The model precisely

mimics this pattern of
behavior in the error

n 2-route: the confusion of
the lexical and rule outcome
requires resolution
q Lexical route wins faster

for high frequency words
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Summary of Seidenberg & McClelland (1989)

n What has the model achieved
q The model is a single mechanism with no lexical entries or explicit rules

q Response to an input is a function of the networks entire experience
: Reflects previous experience on a particular word

: Experience with words resembling that string

q E.g. specific experience with HAVE is sufficient to overcome the general
information that _AVE is usually a long vowel

q The network can produce a plausible pronunciation for MAVE, but error is
introduced by experience with inconsistent words like HAVE

n Performance
q 97% accuracy on pronouncing learned words

q Models: frequency & interaction with regularity, neighborhood, consistency

n Limitations: It is not as good as humans at
q Reading non-words (model get 60%, humans 90%)

q Lexical decision (FRAME is a word, but FRANE is not)
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The Plaut et al (1996) architecture

n The architecture of the Plaut et al network:
q The are a total 105 possible orthographic

onsets, vowels, and codas

q The are 61 possible phonological
onsets, vowels and codas

n What is the performance on non-words?
q For consistent words (HEAN/DEAN): model (98%) versus human (94%)

q For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)

n Representations:
q The right encoding scheme is essential for modelling the findings

q They assume this knowledge could be partially acquired prior to reading

q Doesn’t scale to polysyllabic words

n Doesn’t not explain the double dissociation:
4 Surface dyslexics (can read exceptions, but not non-words)

8 Phonological (can pronounce non-words, but not irregulars)

61 phoneme units

100 hidden units

105 grapheme units
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Simple Recurrent Networks

n Recurrent networks are powerful for executing and learning complex
sequences, but difficult to design

n Simple recurrent networks can learn any sequence given as input
n We can tell they’ve learned by training them to predict the next item

n Hidden units are connected to “context” units:
These correspond to “state” units: they remember the state of the network on

the previous time step

The hidden units are able
to recycle information
over multiple time steps

Dynamic memory:
Identical inputs can
be treated differently
depending on context

Output Units

Input Units
Context Units

Hidden Units
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Discovering word boundaries

n We often take for granted the existence of words, and yet for the child
language learner, input is largely in the form of an unsegmented
acoustic stream.

n How do children learn to identify word boundaries in such a signal?

n Example: Predicting the next sound
q Problem: discovering word boundaries in continuous speech

: Approximated by a corpus of continuous phonemes

q Task: network is presented with one phoneme and attempts to predict the
next one

q Manyyearsagoaboyandgirllivedbytheseatheyplayedhappily

n At time t: the network knows both the current input (phoneme at time t)
and the results of processing at time t-1 (context units)
Problem: discovering word boundaries in continuous speech
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Predicting the next sound

n We can examine the error:
q High error at the onset of words

q Decreases during a word, as the sequence
is increasingly predictable

q High error at word onset demonstrates the
network has discovered word boundaries

5 units 20 units

5 units

20 units
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Structure of Training Environment

n Categories of lexical items n Template for sentence generator

eatVERB-EAT

break,smashVERB-DESTROY

smell,seeVERB-PERCEPT

move,breakVERB-AGPAT

see,chaseVERB-TRAN

think,sleepVERB-INTRAN

cookie,sandwichNOUN-FOOD

glass,plateNOUN-FRAG

dragon,monsterNOUN-AGRESS

book,rockNOUN-INANIM

cat,mouseNOUN-ANIM

man,womanNOUN-HUM

ExamplesCategory

NOUN-HUMVERB-EATNOUN-AGRESS

NOUN-FOODVERB-EATNOUN-AGRESS

NOUN-ANIMVERB-EATNOUN-AGRESS

NOUN-FRAGVERB-DESTROYNOUN-AGRESS

VERB-AGPATNOUN-INANIM

VERB-AGPATNOUN-ANIM

NOUN-INANIMVERB-AGPATNOUN-ANIM

NOUN-ANIMVERB-TRANNOUN-ANIM

NOUN-FOODVERB-EATNOUN-ANIM

VERB-AGPATNOUN-HUM

NOUN-ANIMVERB-AGPATNOUN-HUM

NOUN-HUMVERB-TRANNOUN-HUM

VERB-INTRANNOUN-HUM

NOUN-FRAGVERB-DESTROYNOUN-HUM

NOUN-INANIMVERB-PERCEPTNOUN-HUM

NOUN-FOODVERB-EATNOUN-HUM

WORD 3WORD 2WORD 1
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Input encoding & training

n Localist representation
of each word (31 bits)

q Nothing of the word
class is reflected

n 10000 random 2-3
word sentences

q 27,354 sequence of
31 bit vectors

n Architecture:

n Trained on 6 complete
passes through the
sequence

31 units 150 units

31 units

150 units

© Matthew W. Crocker Connectionist and Statistical Language Processing 28

Performance

n Training yields an RMS error of 0.88

n RMS error rapid drops from 15.5 to 1, by simply learning to turn all
outputs off (due to sparse, localist representations)

n Prediction is non-deterministic: next input cannot be predicted with
absolute certainty, but neither is it random
q Word order and selectional restrictions partially constrain what words are

likely to appear next, and which cannot appear.

q We would expect the network to learn the frequency of occurrence of each
possible successor, for a given input sequence

n Output bit should be activated for all possible following words
q These output activations should be proportional to frequency

n Evaluation procedure:
q Compare network output to the vector of probabilities for each possible

next word, given the current word and context …
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Cluster analysis:

n Lexical items with similar
properties are grouped
lower in the tree

n The network has discovered:
q Nouns vs. Verbs

q Verb subcategorization

q Animates/inanimates

q Humans/Animals

q Foods/Breakables/Objects

n The network discovers
ordering possibilities for
various work categories and
“subcategories”
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General discussion

n The network learns hierarchical categories and classes
q Such classes are determined from word order/co-occurrence

q Learning takes place purely on the basis of observable data
: No pre-specified localist representations, etc.

n Predicts “context” effects in processing:
q Consistent with findings that human lexical access is sensitive to context

: Controversial: there is evidence both for (Tabossi) and against (Swinney)
immediate context effects in lexical access

q And that it is word classes that are predicted, not individual words



16

© Matthew W. Crocker Connectionist and Statistical Language Processing 31

Learning Constituency: Elman (1991)

n So far, we have seen how SRNs can
find structure in sequences

n How can complex structural relationships
such as constituency be represented?

n The Stimuli:
q Lexicon of 23 items

q Encoded orthogonally, in 26 bit vector

n Grammar:
q S ‘ NP VP “.”

q NP ‘ PropN | N | N RC

q VP ‘ V (NP)

q RC ‘ who NP VP |who VP (NP)

q N ‘ boy | girl | cat | dog | boys | girls | cats | dogs

q PropN ‘ John | Mary

q V ‘ chase | feed | see | hear | walk |live | chases | feeds | sees | hears | walks | lives

q Number agreement, verb argument patterns

10 units 70 units

10 units

70 units

26 units

26 units
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Training

n Verb subcategorization
q Transitives: hit, feed

q Optional transitives: see, hear

q Intransitives: walk, live

n Interaction with relative clauses:
: Dog who chases cat sees girl

: Dog who cat chases sees girl

q Agreement can span arbitrary distance

q Subcategorization doesn’t always hold (superficially)

n Recursion: Boys who girls who dogs chase see hear

n Viable sentences: where should end of sentence occur?
q Boys see (.) dogs (.) who see (.) girls (.) who hear (.) .

n Words are not explicitly encoded for number, subcat, or category
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Training

n At any given point, the training set contained 10000 sentences, which
were presented to the network 5 times

n The composition of sentences varied over time:
q Phase 1: Only simple sentence (no relative clauses)

q Phase 2: 25% complex and 75% simple

q Phase 3: 50/50, mean sentence length 4.38

q Phase 4: 75% complex, 25% simple, max: 16, mean: 6

n WHY?: Pilot simulations showed the network was unable to learn the
task when given the full range of complex data from the beginning.

n Focussing on simpler data first, the network learned quickly, and was
then able to learn the more complex patterns.

n Earlier simple learning, usefully constrained later learning
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Processing complex sentences

n “Boys who mary chases feed cats”
q Long distance

: Agreement: Boys … feed

: Subcategorization: chases is transitive but in a relative clause

: Sentence end:all outstanding “expectations” must be resolved
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Results

n Learning was only possible when the network was forced to begin with
simpler input
q This effectively restricted the range of data to which the networks were

exposed during initial learning

q Contrasts with other results showing the entire dataset is necessary to
avoid getting stuck in local minima (e.g. XOR)

n This behaviour partially resembles that of children:
q Children do not begin by mastering language in all its complexity

q They begin with simplest structures, incrementally building their “grammar”

n But the simulation achieves this by manipulation the environment:
q This does not seem an accurate model of the situation in which children

learn language

q While adults do modify their speech, it is not clear they make such
grammatical modifications

q Children hear all exemplars of language from the beginning
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Training with Incremental Memory

n While it’s not the case that the environment changes, it true that the
child changes during the language acquisition period

n Solution:  keep the environment constant, but allow the network to
undergo change during learning
q Phase 1:

: Recurrent feedback was eliminated after every 3 or 4 words, by setting all
context units to 0.5

q Phase 2:
: Memory window increased to 4-5 words

q Phase 3: 5-6 word window

q Phase 4: 6-7 word window

q Phase 5: no explicit memory limitation implemented

n Performance: as good as on the previous simulation
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The importance of starting small

n The representation of experience:
q Exemplar-based learning models store all prior experience, and such early

data can then be re-accessed to subsequently help form new hypotheses

q SRNs do not do this: each input has it’s relatively minor effect on changing
the weights (towards a solution), and then disappears.

n Constraints on new hypotheses, and continuity of search:
q Changes in a symbolic systems may lead to suddenly different solutions

: This is often ok, if it can be checked against the prior experience

q Gradient descent learning makes it difficult for a network to make dramatic
changes in its solution: search is continuous, along the error surface

: Once in a local minima, the network might not recover

n Network are most sensitive during the early period of learning:
q Thus most learning occurs when information is least reliable

q Non-linearity (the logistic activation function) means that weight
modifications are less likely as learning progresses
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Conclusions

n Learning language is difficult because:
q Learning linguistic primitives is obscured by the full complexity of

grammatical structure

q Learning complex structure is difficult because the network lacks
knowledge of the basic primitive representations

n Incremental learning shows how a system can learn a complex system
by having better initial data:
q Initially impoverished memory provides a natural filter for complex

structures early in learning so the network can learn the basic forms of
linguistic regularities

q As the memory is expanded, the network can use what it knows to handle
increasingly complex inputs

q Noise, present in the early data, tends to keep the network in a state of
flux, helping it to avoid committing to false generalisations
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Summary of SRNs …

n Finding structure in time/sequences:
q Learns dependencies spanning more than a single transition

q Learns dependencies of variable length

q Learns to make partial predictions from structure input
: Prediction of consonants, or particular lexical classes

n Learning from various input encodings:
q Localist encoding: XOR and 1 bit per word

q Distributed:
: Structured: letter sequences where consonants have a distinguished feature

: Random: words mapped to random 5 bit sequence

n Learns both general categories (types) and specific behaviours
(tokens) based purely on distributional evidence

n What are the limitations of SRNs
q Do they simply learn co-occurrences and contingent probabilities?

q Can they learn more complex aspects of linguistic structure?
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Properties of Connectionist Networks

n Learning
q There is usually no predetermined (innate) knowledge of language, but ...

: Input/output representation are often specified
: The architecture of the network may be “suited” to a particular task
: The learning mechanism and parameters provide degrees of freedom

q Learning takes place in direct response to experience
: Structure of the training environment is often important

(e.g order and frequency of inputs)

n Generalisation
q Networks are able to learn generalisations not just by rote
q More efficient representation of information
q Novel inputs can be processed

n Representation
q Learned automatically, and typically distributed
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Properties continued

n Rules versus exceptions
q Single mechanism to explain both general rules and also exceptions

n Graded:
q Can often give a useful output to new, partial, noisy input

q Can yield non-deterministic outputs

q Damage is distributed, and some performance is still possible:
: Modelling of brain damage and neurological disorders in possible

n Frequency effects
q Model response time behaviours where high frequency inputs are

recognised faster than low frequency ones
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Resources

n Main texts:
q MacLeod, Rolls & Plunkett (1998). Introduction to Connectionist Modelling

of Cognitive Processes. Oxford University Press.

q Plunkett & Elman (1997). Exercises in rethinking innateness. MIT Press.

n Supplementary reading:
q Elman, Bates, Johnson, Karmiloff-Smith, Parisi & Plunkett (1996).

Rethinking innateness. MIT Press.

q Manning and Schütze (1999). Foundations of Statistical Natural Language
Processing. Cambridge, MA: MIT Press.

n Selected Articles:
q Elman (1990). Finding structure in time. Cognitive Science, 14, 179-211.

q Elman (1991). Distributed Representations, simple recurrent networks,
and grammatical structure. Machine Learning.

q Elman (1993). Learning and development in neural networks: the
importance of starting small. Cognition, 48:71-99.


