
1

Connectionist and Statistical
 Language Processing

Lecture 4: Pattern Associators and
Competitive Networks

Matthew W Crocker

Computerlinguistik

Universität des Saarlandes

© Matthew W. Crocker Connectionist and Statistical Language Processing 2

Overview

n Learning:
q The delta rule

: The perceptron convergence rule

: Gradient descent learning

q Back-propagation of error with hidden-layers
: The Generalized Delta Rule

: Not generally views as biologically plausible

n Pattern Associators:
q 2-layer networks

q Networks as matrices

q Associating distributed representations

q Hebbian learning

q Generalisation in learning

q Biological plausibility

n Competitive networks and unsupervised learning

2

© Matthew W. Crocker Connectionist and Statistical Language Processing 3

Pattern Associators

n Learn to associate one stimulus with another, e.g.:
q Sight of chocolate associates with taste of chocolate

q The string “yacht” associates with the pronunciation /y/ /o/ /t/

q Etc.

© Matthew W. Crocker Connectionist and Statistical Language Processing 4

Learning: Hebb’s rule

n The idea behind Hebbian learning
is simple:

n The two patterns to be associated
are presented simultaneously

n If there is activity on input axon j, when neuron i is active, then the
connection weight wij (between axon j and dendrite i)is increased

n The Hebb rule:

q ai is the activity of element i in P1

q aj is the activity of element j in P2

q ε is the learning rate parameter

€

∆wij =εaiaj

3

© Matthew W. Crocker Connectionist and Statistical Language Processing 5

An example

n Assume binary neuron activations (0 or 1)

n Suppose the sight of chocolate is represented as: (1 0 1 0 1 0)
n The taste of chocolate is represented as (1 1 0 0)

n We can represent the weights as a 6x4 matrix of “synapses”

Weights before learning: Weights after learning:

Assume that ε=1

000000→0

000000→0

000000→1

000000→1

↓↓↓↓↓↓

010101

000000→0

000000→0

010101→1

010101→1

↓↓↓↓↓↓

010101

© Matthew W. Crocker Connectionist and Statistical Language Processing 6

Recall from a Trained Matrix

n Netinputi = ∑jajwij

n This is just the dot product of 2 vectors, i.e.:

n Thus for the recall cue (1 0 1 0 1 0), the output pattern is:

n If we assume a threshold of 2, where values <2 are 0 and others are 1:
q Then the output pattern of activity is (1 1 0 0)

0

0

3

3

→

→

→

→

0

0

0

0

↓

0

00000

00000

10101

10101

↓↓↓↓↓

10101

€

(1 0 1 0 1 0)• (1 0 1 0 1 0)
= (1×1+ 0 × 0 +1×1+ 0 × 0 +1×1+ 0 × 0) = 3

4

© Matthew W. Crocker Connectionist and Statistical Language Processing 7

Learning Multiple Associations

n It is not very “computationally” surprising that an array of 24 can store
the relationship between two vectors of size 6 and 4 respectively

n What happens if we try to store different associations with the same
weight matrix?
q Appearance of apricots: (1 1 0 0 0 1)

q Taste of apricots: (0 1 0 1)

Change in weights for apricots: The combined weight matrix:

100011→1

000000→0

100011→1

000000→0

↓↓↓↓↓↓

100011

100011

000000

110112

010101

© Matthew W. Crocker Connectionist and Statistical Language Processing 8

Recall of multiple associations

n We can now see how well the
pattern associator can perform
recall for the 2 patterns

n Assume a threshold of 2

n Apricots:
q Netinput: (1 4 0 3)

q Output: (0 1 0 1)

n Chocolate:
q Netinput: (3 4 0 1)

q Output: (1 1 0 0)

n Both are correctly recalled
1

0

4

3

→

→

→

→

1

0

1

0

↓

0

00011

00000

10112

10101

↓↓↓↓↓

10101

3

0

4

1

→

→

→

→

1

0

1

0

↓

1

00011

00000

10112

10101

↓↓↓↓↓

00011

5

© Matthew W. Crocker Connectionist and Statistical Language Processing 9

Recall, Similarity and Linear Algebra

n We have seen so far how network behaviour can be understood in
terms of vectors, matrices, and operations thereon.
q If an input pattern a, and the weights w leading from the inputs to some

node are represented as vectors. Netinput to that node is the dot product.

netinputi = ∑jajwij = a• w
q If the current weights are represented by a matrix m1, and the change in

weights by a matrix m2, then the new weight matrix is simply: m1 + m2

n Observe: the dot product is highest when two vectors are similar:
q Numbers in vector 1 are similar to those in the corresponding positions in

vector 2

q Thus netinput is highest for similar input/weights

q Each dissimilarity reduces the netinput

q Vectors with a dot product of 0 are said to be orthogonal

© Matthew W. Crocker Connectionist and Statistical Language Processing 10

Properties of Pattern Associators

n Similarity in vectors
q p: 1 0 0 0 0 1 1 1
q w1: 1 0 0 0 0 1 1 1 = 4
q w2: 1 0 0 0 1 0 1 1 = 3
q w3: 0 0 1 1 1 0 1 1 = 2
q w4: 0 1 1 1 1 0 0 0 = 0

n Operation of pattern associators using the Hebb rule:
q Learning: if a neuron i is activated by P1, an increment ∆wi that has the same

pattern as P2, is added to the weight vector of neuron i .
q Recall:since patterns presented during learning are directly reflected in the weight

vector for neuron i , the output at neuron i reflects the similarity of the recall cue to
patterns presented during learning

n Properties
q Generalisation
q Fault tolerance
q Prototype extraction
q Speed

6

© Matthew W. Crocker Connectionist and Statistical Language Processing 11

Generalisation

n If a presented cue is similar to one that is learned, a pattern associator
will often produce a similar response for the new as for the old pattern
q This means networks can associate “imperfect/noisy” stimuli

n I.e. Insensitive to relatively small differences in input stimuli:
q E.g. (1 1 0 1 0 0) is slightly different from (1 1 0 0 0 1)

q Or, (1 0 1 0 0 0) is slightly different from (1 0 1 0 1 0)

2

0

3

1

→

→

→

→

1

0

1

0

↓

0

00011

00000

10112

10101

↓↓↓↓↓

01011

1

0

3

2

→

→

→

→

1

0

1

0

↓

0

00011

00000

10112

10101

↓↓↓↓↓

00101

© Matthew W. Crocker Connectionist and Statistical Language Processing 12

Fault tolerance

n Just as pattern associators can often deal with imperfect stimuli, they
are often robust to damaged connections (synapses)

n This is because PAs compute a correlation of the pattern with the
weights via a relatively large number of axons

n This can help explain continued (sometime partial) function in the event
of normal cell loss, or certain kind of (distributed) brain damage.

2

0

4

1

→

→

→

→

1

0

1

0

↓

1

000X1

0X000

X0112

10101

↓↓↓↓↓

00011

7

© Matthew W. Crocker Connectionist and Statistical Language Processing 13

More Properties

n Prototype Extraction & Noise Reduction
q If the network is exposed to similar (but slightly different) P2s for a given P1 during

training, the (scaled) weight vectors becomes the average
q When tested, the best response is to the average patter vector
q Thus, even if trained on noisy instances, the network will have learned to respond to

a prototype (which is has never explicitly seen).

n Interference
q Not such a problem in distributed (non-local/symbolic) systems
q Permits noise reduction, fault tolerance, generalisation, etc
q Explains certain aspects of human memory and cognitive function
q Robustness versus 100% accuracy

n Speed
q Because computation is distributed, across multiple neurons and synapses, the

response to a stimulus can be determined in 1-2 steps

n Distributed Representations are Important
q Information about the stimulus is distributed over the population of elements, rather

than encoded by a single element
q Generalisation and graceful degradation rely on a continuous range of dot products

© Matthew W. Crocker Connectionist and Statistical Language Processing 14

Summary of Pattern Associators

n Associate multiple stimulus-response patterns in a single network
q Networks can be represented as a weight matrix

n Weights are sensitive to similarity
q The more similar, the higher the netinput; the dot product of P and W

n Important properties
q Generalisation: robust to noisy input
q Fault tolerance: robust to loss/damage
q Prototype extraction & noise reduction

n Biologically Plausible:
q Learning is strictly local
q Reinforcement based

n Auto Association
q We can also train a network to associate a given pattern with itself
q Why?

: Noise reduction, prototype extraction
: = category formation (unsupervised)

8

© Matthew W. Crocker Connectionist and Statistical Language Processing 15

Competitive Networks: Overview

n Operation:
q Given a particular input, output units compete with each other for activation

q The winning output unit is the one with the greatest response

n During training:
q Connections to the winning unit from the active input units are

strengthened

q Connections from inactive units are weakened

n Training is unsupervised
q The is no external teacher

q The network will categorise inputs, based on similarity

© Matthew W. Crocker Connectionist and Statistical Language Processing 16

Architecture of Competitive Networks

n A simple network:
q Inputs are fully connected to outputs

by feed-forword connections
q Outputs may be connected to each other

by inhibitory connections

n Outputs compete until only one remains active
q Or, simply the unit with highest activation wins

n Excitation of outputs:

q Dot product of input activations and the weight vector the the output

n Competition:
q Output activations are compared, unit with highest activation wins
q Or, direct competition among outputs, via inhibitory connections:

: Active units force other units to become inactive

€

netinput i = a jwijj∑

9

© Matthew W. Crocker Connectionist and Statistical Language Processing 17

Adjusting Weights

n Weights are only adjusted on connections feeding into the winning
output node:

∆wij = 0 if unit i loses
 = ε (aj-wij) if unit i wins

q Where,
ε is the learning rate parameter

aj is the activity of input unit j for pattern p

wij is the weight of the connection from j to i before the trial

n Behaviour
q The strengths of connections to the winning unit are adjusted until each

weight is the same as the activity of its input

n Result
q The winning unit’s weight vector is changed to make is more similar to the

input vector for which it is the winner

© Matthew W. Crocker Connectionist and Statistical Language Processing 18

An example

Consider the following network:

n Input pattern: (0 1 1)
netinput3 = (0x0.3+1x0.2+1x0.5)

 = 0.7

netinput4 = (0x0.2+1x0.3+1x0.5)

 = 0.8

n Since, unit4 wins:
q No changes in connections to unit3

n For connections to unit4:
q ∆wij = ε (aj-wij)

q ∆wij = 0.5 (0−0.2 1−0.3 1−0.5)

q ∆wij = 0.5 (−0.2 0.7 0.5)

q ∆wij = (−0.1 0.35 0.25)

0 1 2

3 4

0.5
0.50.30.20.2

0.3

0 1 2

3 4

0.75
0.50.650.20.1

0.3

10

© Matthew W. Crocker Connectionist and Statistical Language Processing 19

Overall behaviour

n Netinput to an output unit is greatest when it’s weight vector is most
similar to the input vector

n Training makes the weight vector for a particular winning unit more
similar to the input pattern

n It is therefore also likely to be the “winning unit” for similar patterns,
and therefore learn to respond to those patterns as well

n The weight vector for a particular output unit learns to respond to
similar input patterns
q Because these patterns are all slightly different, the learned weights cannot

exactly mimic the associated inputs

q Rather, the learned weights will be an average of the patterns, based on
the frequency of presentation during training

n The competitive network can therefore learn to categorise similar
inputs without any “teacher”: unsupervised learning

© Matthew W. Crocker Connectionist and Statistical Language Processing 20

Visualising competitive learning

n Represent input patterns & weight vectors in multi-dimensional space
q weight vectors for the output units have a random relation to the input

patterns

q Competitive learning changes the weight vector for a particular output so
that it becomes the average for a subset of inputs

q More outputs enable the network to more finely categorise the inputs

X

X

X

X
X

X

X

X

X

11

© Matthew W. Crocker Connectionist and Statistical Language Processing 21

More on competitive networks

n Weight growth:

q Depending on how training occurs, if many similar patterns are associated with one
output, it may be impossible to other outputs to ever gain more activation, even for
quite different input patterns

q We could limit weight growth, by insisting that the sum of a weight vector equal
some constant, and learning could only redistribute weight among connections to
the winning unit

n As with Hebbian networks, learning is local:

q Winner is found by competition of output: inhibitory connections leave only one
neuron firing

q Hebbian learning means that only connection weights to this node are changed

q Information is available at the axon and dendrite of a connection

q Also: no explicit teacher is required

n Remove redundancy: set of inputs associated with a single output

q Sparsification: convert pattern stimuli to a localist representation

n Outputs are less correlated (possibly orthogonal) than inputs:

q Useful as input to pattern associators (easier to learn less correlated patterns)

© Matthew W. Crocker Connectionist and Statistical Language Processing 22

An example: Pattern classification

n We can use an unsupervised network to classify patterns of letters

n Input is a 7 x14 “retina”, connected to 2 outputs each with a 98 element
weight vector, which is trained on pairs of letters:

n First the network is trained on pairs of letters: AA, AB, BA, BB

n The resulting weights to the outputs are as follows:
q Unit 1: AA, AB

q Unit 2: BA, BB

n Why? What else could it learn?

n What would happen if the
network had 4 output units?

12

© Matthew W. Crocker Connectionist and Statistical Language Processing 23

Pattern classification continued

n Consider the case where we train the network on individual letters,
instead of pairs: A, B, E, S

n Cluster using 2 output units
n The result will be to cluster A & E and B & S, since they are the most

similar: thus the classifier acts as a feature detector within letters

n What if the network is trained to classify AA, BA, SB, EB
q As we would expect, the network learns a letter specific classification

q But, we have forced A & B and S & E to be grouped together

q In this way, we force the network to find whatever features do correlate for
the letters in the 1 position

q The 2nd letter acts as a teacher, since
it forces the network into a specific
solution

