Connectionist and Statistical
Language Processing

Lecture 2: Learning and Training
g |
Matthew W Crocker

Computerlinguistik
Universitét des Saarlandes

Basic Structure of Nodes

— Node

Nod A
inguti . Wi: —, g outputs

Bl A node can be characterised as follows:

Q Input connections representing the flow of activation from other nodes or
some external source

U Each input connection has its own weight, which determines how much
influence that input has on the node

QO A node i has an output activation a; = f(net;) which is a function of the
weighted sum of its input activations, net.

B The net input is determined as follows: net = ZW” a
]

© Matthew W. Crocker Connectionist and Statistical Language Processing

Activation functions

B The activation function determines the activation a; for node i from the
net input (net) to the node: f(net;)

B Linear activation function
Q (McCulloch-Pitts neurode, perceptron)
U Identity: the a; = net;

activity

netinput

B Threshold activation function:
O IF net;> T THEN a,:= net;- T
Q ELSE g,:=0

activity

netinput

© Matthew W. Crocker Connectionist and Statistical Language Processing

More Activation Functions

B Binary threshold activation function:
Q IF net,>T THEN g, = 1
Q ELSE a,:=0

activity

netinput

B Non-linear activation function

Q It is often more useful to use the
“sigmoidal” logistic function:

_ _ 1
8= f(net) = —

© Matthew W. Crocker Connectionist and Statistical Language Processing

Calculating the activation: net;is 1.25

B Linear activation: f(net) = net,
f(1.25)=1.25

IFnet, >Tthenf(net)=net -T
ELSEf(net)=0
f(1.25)=1.25-0.5=0.75

B Linear threshold: T=0.5

M Binary threshold: T=0.5 [IF net >Tthenf (net;) =1
ELSEf(net)=0

f(L25)=1
B Non-linear activation: 1
. . f (net) - -
Q Sigmoid or T e
HJlogistic* function f(1.25) = 0.777
© Matthew W. Crocker Connectionist and Statistical Language Processing 5

About activation functions

B The activation function defines the relationship between the net input to
a node, and its activation level (which is also its output).

B Neurons in the brain have thresholds, only fire with sufficient net input.

B Non-linearity (i.e.where low input lead to zero activation) can be useful
to reduce the effects of spurious inputs, noise.

B Most common in connectionist modelling: sigmoid/logistic
4 Activation ranges between 0 and 1
Q Rate of activatation increase is highest for net inputs around 0

U Models neurons by implementing thresholding, a maximum activity, and
smooth transition between states.

B The sigmoid function also has nice mathematical properties

© Matthew W. Crocker Connectionist and Statistical Language Processing 6

Summary of network architecture

© Matthew W. Crocker

The ofaunitiis
represented by the symbol a;.

The extent to which unit j influences
unit i is determined by the w,

i
The from unit j to unit i is the
product: a;. w;

For a node i in the network:

netinput; = » w;a,
j

The output activation of node i is
determined by the activation
function, e.g. the logistic:

: 1
= f V==
a, = f(netinput,) Tro™

R

SRS

Integrate input
from previous
layer

netinput,

Transform
netinput to
activity level (a)

Transmit activity
level to units
in next layer

Connectionist and Statistical Language Processing

Learning in connectionist networks

B Supervised learning in connectionist networks involves successively
adjusting connection weights to reduce the discrepancy between the actual
output activation and the correct output activation

O Aninput is presented to the network

Q Activations are propagated through the network to its output
O Outputs are compared to “correct” outputs: difference is called error

O Weights are adjusted

Hl The Delta Rule:

Aw; =& (desired) - a (obtained)| a,e

© Matthew W. Crocker

0 [a/desired)-aobtained] is the difference between the desired output activation and
the actual activation produced by the network

+ What is the “error”?

Q g is the activity of the contributing unit j

+ How much activation is this unit responsible for?

Q ¢ is the learning rate parameter.

+ How rapidly do we want to make changes?

Connectionist and Statistical Language Processing

Training the Network

B Consider the AND function Input 1 | Input 2 | Output
O Present stimulus: 0 0
Q Compute output activation 0 0 0
Q Compared with desired output (0) 0 1 0
O Use Delta rule to change weights 1 0 0
U Present next stimulus: 0 1 1 1 1

Q..

B An Epoch, consists of a single presentation of all training examples
U Here there are 4 such examples

B A Sweep, is a presentation of a single training example
Q So, 250 epochs consists of 1000 sweeps

© Matthew W. Crocker Connectionist and Statistical Language Processing 9

Summary

B Connectionism is inspired by information processing in the brain

B Models typically contain several layers of processing units
Q Units correspond to a neuron (or group of neurons)
Q Units sum weighted inputs from previous layers, and compute activation
Q Output activation is passed to units of the next layer

B An input stimulus causes a “patter of activation” on the first layer
4 Activations are then propagated through the network
Q The influence of one unit upon another is determined by the weight
Q The output response is the “pattern of activation” on the final layer

B Learning aims to reduce the discrepancy between actual and desired
output patterns of activation
Q The Delta rule iteratively changes the weights of successive epochs
Q Training is complete when error is sufficiently reduced

© Matthew W. Crocker Connectionist and Statistical Language Processing 10

“Perceptrons” [Rosenblatt 1958]

B Perceptron: a simple, one-layer, feed-forward network:

netinput,,, = > Wi,

W Binary threshold activation function: |a,, =1if netinput,, > 6
=0 otherwise

B Learning: the perceptron convergence rule

O Two parameters can be adjusted: Theerror, 0= (t,, —a,,)
+ The threshold AO=-£5
+ The weights

Aw =¢eda,
© Matthew W. Crocker Connectionist and Statistical Language Processing 1
Learning OR
B Consider the following simple perceptron:
U Recall the convergence rule:
Theerror, 0= (t,, —a,,) Wag &
N6=-e5 (3) (a)
Aw =eda,,
’ Classification problem ‘
Bl We want to train this to learn boolean OR: a, a, a,
U Note: changes have opposite signs 0 0 0
+ E.g if activity is less than target, J is positive 0 1 1
A Threshold is decreased
A Weight is increased 1 0 1
Q If 9 is non-zero, threshold is always changed 1 1 1

+ Butif a;, is zero, the weight is not changed

Q The changes can be calculated straight-forwardly, but do they lead to

convergence on a solution to a problem?

© Matthew W. Crocker Connectionist and Statistical Language Processing

Learning OR continued ...

B Recall the convergence rule: And the net:
Theerror, 0=(t,, —a,,) =1
£O=-€d a 0.2 0.1
tw=eda, €205 (@ ()
In Way Wy, 6 a, t, 9 AB AWy, Awy,
00 2 A 1.0 0 0 0 0 0 0
10 2 A 1.0 0 1 1.0 -0.5 05 0
01 7 A 05 0 1 1.0 -0.5 0 05
11 7 6 0.0 1 1 0 0 0 0
00 7 6 0.0 0 0 0 0 0 0
01 7 6 0.0 1 1 0 0 0 0
10 7 6 0.0 1 1 0 0 0 0
11 7 6 0.0 1 1 0 0 0 0
© Matthew W. Crocker Connectionist and Statistical Language Processing

Gradient descent

B Let's define the error on the outputs
as. Ep:(tout'aout)2
Q Recall: a,,=Yw a,,
U This means E, is always positive
B For a single layer net, if we consider one
weight, holding the others constant:
U Plot Error versus varying the weight
B The lowest point on the curve, represents — |

P,

Error (E

the minimum error possible for:
4 For pattern p
4 By varying a given weight w
B Learning: the network is always at some point on the error curve
Q Use the slope of the curve to change the weights in the right direction
Q If slope is positive, then decrease the weight
Q If slope is negative, increase the weight

© Matthew W. Crocker Connectionist and Statistical Language Processing

Visualising the error ,surface”

Error

A Aggregate
Error

Weight y

Initial Weight
. Vector
eight x
“Ideal” New “Delta”
Weight - Vector
Weight
vector Vector
© Matthew W. Crocker Cor ionist and isti L Pr il 15

Gradient descent continued

B We need calculus to allow us to determine how the error varies when a
particular weight is varied:

éE /H Slope: Rate of change of E, with w |

Aw=-g—

ow
AW =-¢€ —d(tou’(- aout)2 /I | Error = (tog - 8ou)? |

ow
2 . .
puy = o T =F Q. WIB)
dN respect to w, i.e. its slope
Aw=2et, ~F(Y W) F'(Q wh,) i,
— *

Aw =220 " a, (5= (tye ~)

C
0
[F* = dope of the activation function J

© Matthew W. Crocker Cor ionist and istical L

)

Gradient descent and the delta rule

B The perceptron convergence rule: Aw = gdam
B Our revised learning rule, based on gradient descent is:

Aw =2ed0F * a,,
Q where F* is the slope of the activation function
B If the activation function is linear, the slope is constant:

Aw =Kkda,,
U where kis a constant representing the learning rate and slope
B This corresponds to the original Delta rule:
Q It is straight-forward to calculate
Q Performs gradient descent to the bottom of an the error curve

O Aw is proportional to (t,-a,,), SO changes get smaller as error is reduced

4 In 2-layer networks, there is a single minimum which gradient descent
learning is guaranteed to find a solution, it one exists.

© Matthew W. Crocker Connectionist and Statistical Language Processing 17

Learning with the Sigmoid activation function

B Networks with linear activation functions:

Q have mathematically well-defined learning capacities

Q they are known to be limited in the kinds of problems they can solve
B The logistic, or sigmoid, function is:

Q Non-linear, more powerful

U More neurologically plausible

Q Less well-understood, more difficult to analyse mathematically

B Recall:

_ _ 1
a=f(net) =

© Matthew W. Crocker Connectionist and Statistical Language Processing 18

Behaviour of the logistic function

B Deriving the slope of the logistic
function:
1 3
.= f(net) = —— T |0z
a=fnet)=— !
o
— — ©
F*=f'(net) = aout(l_aout)
ufz } 054 : uje : ufa } ™
B The Delta rule, assuming the Gout
logistic function:
_ % 023
Aw =2e0F * a,, 8)]
or Euu
— _ _ 5
AW_Z‘E‘(tout aout)aout (l aout)ain L o
Eooa-
ol T T
AC -8 B 4 2 0 2 4 F B N
Mel nput
© Matthew W. Crocker Connectionist and Statistical Language Processing 19

Training a network

B The training phase involves
Q Presenting an input pattern, and computing the output for the network
using the current connection weights: a,, (3 ;, Wy n X @)
Q Calculating the error between the desired and the actual output (¢, -a,,,)
Q Using the Delta rule (appropriate for the activation function):

AW = n(tout - aout)aout (1 _aout)ain

B One such cycle is called a sweep
B A sweep through each patter is called an epoch
B We can define the global error of the network, as the average error

across all input patterns, k: — — _ 2
@ One common measure is the Z (tk - Ok)
square root of mean error rmserror =/ X
k

Q Squaring avoids positive and negative error cancelling each other out

© Matthew W. Crocker Connectionist and Statistical Language Processing 20

10

Training: an example

B Consider the simple feedforward network: e
U Assume an input pattern: 1 1
Q Assume a learning rate of 0.1 0.7 0.5
Q Assume a sigmoid activation @ e

U Desired output is: 1

B Determine the weight changes for 1 sweep:

a, = f (1x0.75+1x0.5) =0.77 (a,)
5, =(t—a,) f'(0.77) =0.23x0.16 =0.037 07597 05037
Aw,, =nd,0, =0.1x0.037 x1 =0.0037 G (@)

Aw,, =nd,0, =0.1x0.037 x1 =0.0037

© Matthew W. Crocker Connectionist and Statistical Language Processing 21

The dynamics of weight changes

B Learning rate: predetermined constant

B The error: large error = large weight change

B The slope of the activation function:

Q The derivative of the logistic is largest for netinputs around 0, and for
activations around .5

Q Small netinputs co-occur with small weights
Q Small weights tend to occur early in training
Q The result: bigger changes during early stages of learning
+ More resilience in older network: harder to teach new tricks!
B The momentum:

Q This parameter determines how much of the previous weight change
affects the current weight change

© Matthew W. Crocker Connectionist and Statistical Language Processing 22

11

Calculating Error

B Consider a simple network for learning the AND operation

B After training (1000 sweeps, 250 epochs), we can calculate the global

(RMS) error as follows:

Input Target Output (t-0)~2

00 0 0,147 0,022

01 0 0,297 0,088

10 0 0,334 0,112

11 1 0,552 0,201
RMS: 0,325

B Observe how error steadily falls during training

© Matthew W. Crocker Connectionist and Statistical Language Processing

23

Summary

B Learning rules:
4 Perceptron convergence rule
U Delta rule
+ Depends on the (slope of the) activation function
4 For 2-layer networks using these rules:
+ A solution will be found, if it exists
Q How do we know if network has learned successfully?
B Error:
Q For learning, we use (t,,-a,,,) to change weights
Q To characterise the performance of the network as a whole, we need a
measure of global error:
+ Across all outputs
+ Across all training patterns
Q One possible measure is RMS

+ Another is entropy: doesn’t really matter, since we only need to know if
performance is improving or deteriorating on a relative basis

© Matthew W. Crocker Connectionist and Statistical Language Processing

24

