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‘
S  →  NP VP  "." 
NP  → PropN   |  N  |  N  RC
VP  →  V  ( NP )
RC  →  who  NP  VP  |  who  VP  ( NP )
N  →  boy  |  girl  |  cat  |  dog  |  boys  |  girls  |  cats  |  dogs
PropN    →  John  |  Mary
V  →  chase  |  feed  |  see  |  hear  |  walk  |  live  |  chases  |  

feeds |   sees  |  hears  |  walks  |   lives

Additional restrictions:
     • number agreement between N & V within   clause, and   
       (where appropriate) between head N & subordinate V

     • verb arguments:
            hit, feed  →  require a direct object
            see, hear   →  optionally allow a direct object
            walk, live  →  preclude a direct object

        (observed also for head/verb relations in relative 
clauses) 

                                        
                                             

Table 1
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(d)

(f)

(e)

boys who mary chases ...

boys who mary chases feed ...

boys who mary chases feed cats.

(c)

boys who mary ...
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(a)

(b)

boys ...

boys who ...
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boy sees ...

boy lives ...

boy chases ...
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boy ...

(a)

boys ...

(b)
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FIGURE LEGENDS

1.  Network architecture.  Hidden unit activations are copied  along fixed weights (of 1.0) into
linear Context units on a one-to-one basis; on the next time step the Context units feed into Hidden
units on a distributed basis.  Additional hidden units between input and main hidden layer, and
between main hidden layer and output, provide compress basis vectors into more compact form.

2.  (a)  Graph of network predictions following presentation of the word boy.  Predictions
are shown as activations for words grouped by category.  S stands for end-of-sentence
(".");  W stands for who; N and V represent nouns and verbs; 1 and 2 indicate singular or
plural; and type of verb is indicated by N, R, O (direct object no possible, required, or
optional).           (b) Graph of network predictions following presentation of the word boys.

3.  Graph of network predictions following the sequences boy lives ... ;  boy sees ... ; and
boy chases ... (the first precludes a direct object, the second optional permits a direct
object, and the third requires a direct object).

4.  Graph of network predictions after each word in the sentence  boys who mary chases
feed dogs .  is input.

5.   Graph of eigenvalues of the 70 ordered eigenvectors extracted in Simulation 2.

6.  Trajectories through state space for sentences (8a) and (8b).  Each point marks the
position along the second principle component of hidden units space, after the indicated
word has been input.  Magnitude of the second principle component is measured along
the ordinate; time (i.e., order of word in sentence) is measured along the abscissa.  In this
and subsequent graphs the sentence-final word is marked with a ]S .

7.  Trajectories through state space during processing of  (8c) and (8d).

8.  Trajectories through state space for sentences (9a), (9b), and (9c).  Principle component
1 is plotted along the abscissa;  principal component 3 is plotted along the ordinate.

9.  Trajectories through state space for sentences (10a-d).  Principle component 1 is
displayed along the abscissa;  principal component 11 is plotted along the ordinate.
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causal properties. 

A metaphor which captures some of the characteristics of this approach is the com-
bination lock.  In this metaphor, the role of words is analogous to the role played by the
numbers in the combination.  The numbers have causal properties; they advance the lock
into different states.  The effect of a number is  dependent on its context.  Entered in the
correct sequence, the numbers move the lock into an open state.  The open state may be
said to be functionally compositional (van Gelder, in press) in the sense that it reflects a par-
ticular sequence of events.  The numbers are "present"  insofar as they are responsible for
the final state, but not because they are still physically present.

The limitation of the combination lock is of course that there is only one correct
combination.  The networks studied here are  more complex.  The causal properties of the
words are highly structure-dependent and  the networks allow many “open” (i.e., gram-
matical) states.  

This view of  language comprehension emphasizes the functional importance of
representations and is similar in spirit to the approach described in Bates & MacWhinney,
1982; McClelland, St. John, & Taraban, 1989;  and many others who have stressed the
functional nature of language.  Representations of language are constructed  in order to
accomplish some behavior (where, obviously, that behavior may range from  day-dream-
ing to verbal duels, and from to asking directions to composing poetry).  The representa-
tions are not propositional, and their information content changes constantly over time in
accord with the demands of the current task.  Words serve as  guideposts which help es-
tablish mental states that support this behavior;  representations are snapshots of those
mental states.
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insensitive.  Rather, they learned to respond to contexts which are more abstractly de-
fined.  Recall  that even when these networks’ behavior seems to ignore context (e.g., Fig-
ure 9d; and Servan-Schreiber, Cleeremans, & McClelland, in press), the internal represen-
tations reveal that contextual information is still retained.

This behavior is in striking contrast to that of traditional symbolic models.  Repre-
sentations in these systems are naturally context-insensitive.  This insensitivity makes it
possible to express generalizations which are fully regular at the highest possible level of
representation (e.g., purely syntactic), but they require additional apparatus to account
for regularities which reflect the interaction of meaning with form and which are more
contextually defined.  Connectionist models on the other hand begin the task of abstrac-
tion at the other end of the continuum.  They emphasize the importance of context and
the interaction of form with meaning.  As the current work demonstrates, these charac-
teristics lead quite naturally to generalizations at high level of abstraction where appro-
priate, but the behavior remains ever-rooted in representations which are contextually
grounded.  The simulations reported here do not capitalize on subtle distinctions in con-
text, but there are ample demonstrations of models which do (e.g., Kawamoto, 1988;
McClelland & Kawamoto, 1986;  Miikkulainen & Dyer, 1989;  St. John & McClelland, in
press).  

Finally, I wish to point out that the current approach suggests a novel way of think-
ing about how mental representations are constructed from language input.

Conventional wisdom holds that as words are heard, listeners retrieve lexical rep-
resentations.  Although these representations may indicate the contexts in which the
words  acceptably occur,  the representations are themselves context-free.  They exist in
some canonical form which is constant across all occurrences.  These lexical forms are
then used to assist in constructing a complex representation into which the forms are in-
serted.  One can imagine that when complete, the result is an elaborate structure in which
not only are the words visible, but which also depicts the abstract grammatical structure
which binds those words.   

In this account, the process of building mental structures is not unlike the process
of building any other physical structure, such as bridges or houses.  Words (and whatever
other representational elements are involved) play the role of building blocks.  As is true
of bridges and houses, the building blocks are themselves unaffected by the process of
construction.

A  different image is suggested in the approach taken here.  As words are pro-
cessed  there is no separate stage of lexical retrieval.  There are no representations of
words in isolation.  The representations of words (the internal states following input of a
word)  always reflect the input taken together with the prior state.   In this scenario, words
are not building blocks as much as they are cues which guide the network through differ-
ent grammatical states.  Words are distinct from each other by virtue of having different
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of additional tests that could be performed to test the representational capacity of the sim-
ple recurrent network.  The memory capacity remains unprobed  (but see Servan-
Schreiber, Cleeremans, & McClelland, in press).  Generalization has been tested in a lim-
ited way (many of the tests involved novels sentences), but one would like to know
whether the network can inferentially extend what it knows about the types of noun
phrases encountered in the second simulation (simple nouns and relative clauses) to noun
phrases with different structures.

 Second, while  it is true that the agreement and verb argument structure facts con-
tained in the present grammar are important and challenging, we have barely scratched
the surface in terms of the richness of linguistic phenomena which characterize natural
languages.  

 Third, natural languages not only contain far more complexity with regard to their
syntactic structure, they also have a semantic aspect.  Indeed,  Langacker (1987) and oth-
ers have argued persuasively that it is  not  fruitful to consider syntax and semantics as
autonomous aspects of language.  Rather, the form and meaning of language are closely
entwined.  Although there may be things which can be learned by  studying artificial lan-
guages such as the present one which are purely syntactic,  natural language processing
is crucially an attempt to retrieve meaning from linguistic form. The present work does
not address this issue at all, but there are other PDP models which have made progress
on this problem (e.g.,  St. John & McClelland, in press). 

What the current work does contribute is some notion of the representational ca-
pacity of connectionist models.  Various writers (e.g., Fodor & Pylyshyn, 1988) have ex-
pressed concern regarding the ability of connectionist representations to encode compo-
sitional structure and to provide for open-ended generative capacity.  The networks used
in the simulations reported here have  two important properties which are relevant to
these concerns.  

First, the networks  make possible  the development of internal representations
that are distributed (Hinton, 1988; Hinton, McClelland, Rumelhart, 1986). While not un-
bounded, distributed representations are less rigidly coupled with resources than localist
representations, in which there is a strict mapping between concept and individual
nodes..  There is also greater flexibility in determining the dimensions of importance for
the model.  

Second, the networks studied here build in a sensitivity to context.  The important
result of the current work is to suggest that the sensitivity to context which is characteris-
tic of many connectionist models, and which is built-in to the architecture of the networks
used here, does not preclude the ability to capture generalizations which are at a high lev-
el of abstraction.  Nor is this a paradox.  Sensitivity to context is precisely the mechanism
which underlies the ability to abstract and generalize.  The fact that the networks here ex-
hibited behavior which was highly regular was not because they learned to be context-
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sort of computational power?

The first question can be answered affirmatively with an important qualification.
It can be shown that multilayer feedforward networks with as few as one hidden layer,
with no squashing at the output and an arbitrary nonlinear activation function at the hid-
den layer, are capable of arbitrarily accurate approximation of arbitrary mappings.  They
thus belong to a class of universal approximators (Hornik, Stinchcombe, & White, in
press; Stinchcombe & White, 1989).  Pollack (1988) has also proven the Turing equivalence
of neural networks.  In principle, then, such networks are capable of implementing any
function that the Classical system can implement.

The important qualification to the above results is that sufficiently many hidden
units be provided (or in the case of Pollack’s proof, that weights be infinite precision).
What is not currently known is effect of limited resources on computational power.  Since
human cognition is carried out in a system with relatively fixed and limited resources,
this question is of paramount interest.  These limitations provide critical constraints on
the nature of the functions which can be mapped; it is an important empirical question
whether these constraints explain the specific form of human cognition.

It is in this context that the question of the appropriateness of the computational
power becomes interesting.  Given limited resources, it is relevant to ask whether the
kinds of operations and representations which are naturally made available are  those
which are likely to figure in human cognition.  If one has a theory of cognition which re-
quires sorting of randomly ordered information, e.g., word frequency lists in Forster’s
(1979) model of lexical access, then it becomes extremely important that the computation-
al framework provide efficient support for the sort operation.  On the other hand, if one
believes that information is stored associatively, then the ability of the system to do a fast
sort is irrelevant.  Instead, it is important that the model provide for associative storage

and retrieval1.  Of course, things work in both directions.  The availability of certain types
of operations may encourage one to build models of a type which are impractical in other
frameworks.  And the need to work with an inappropriate computational mechanism
may blind us from seeing things as they really are.

*          *          *          *

Let us return now to the current work.  I would like to discuss first some of the
ways in which the work is preliminary and limited.  Then I will discuss what I see as the
positive contributions of the work.  Finally, I would like to relate this work to other con-
nectionist research and to the general question raised at the outset of this discussion:
How viable are connectionist models for understanding cognition?

The results are preliminary in a number of ways.  First, one can imagine a number
1
This example was suggested to me by Don Norman. 
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an unfortunate ambiguity in what is meant by implicit or explicit.  

One sense of explicit is that a rule is physically present in the system in its form as
a rule; and furthermore, that that physical presence is important to the correct functioning
of the system.  However, Kirsh (1989) points out that our intuitions as to what counts as
physical presence are highly unreliable and sometimes contradictory.  What seems to re-
ally be at stake is the speed with which information can be made available.  If this is true,
and Kirsh argues the point persuasively, then the quality of explicitness does not belong
to data structures alone.  One  must also take into account the nature of the processing
system involved, since information in the same form may be easily accessible in one pro-
cessing system and inaccessible in another.  

Unfortunately, our understanding of the information processing capacity of neural
networks is quite preliminary.  There is  a strong tendency in analyzing such networks to
view them through traditional lenses.  We suppose that if information is not contained in
the same form as more familiar computational systems, that information is somehow bur-
ied, inaccessible, and implicit. Consider, for instance, a network which successfully learns
some complicated mapping — say, from text to pronunciation (Sejnowski & Rosenberg,
1987.  On inspecting the resulting network, it is not immediately obvious how to explain
how the mapping works or even to characterize what the mapping is in any precise way.
In such cases, it is tempting to say that the network has learned an implicit set of rules.
But what we really mean is just that the mapping is “complicated”, or “difficult to formu-
late”, or even “unknown”.   This is rather a description of our own failure to understand
the mechanism rather than a description of the mechanism itself.  What is needed are new
techniques for network analysis, such as the principal component analysis used in the
present work, contribution analysis (Sanger, 1989), weight matrix decomposition (Mc-
Millan & Smolensky, 1988), or skeletonization (Mozer & Smolensky, 1989). 

If successful, these analyses of connectionist networks may provide us with a new
vocabulary for understanding information processing.   We may learn new ways in which
information can be explicit or implicit, and we may learn new  notations for expressing
the rules that underlie cognition.  The notation of these new connectionist rules may look
very different than that used in, for example, production rules.  And we may expect that
the notation will not lend itself to describing all types of regularity with equal facility.  

 Thus, the potential important difference between connectionist models and Clas-
sical models will not be in whether one or the other systems contains rules, or whether
one system encodes information explicitly and the other encodes it implicitly;  the differ-
ence will lie in the nature of the rules, and in what kinds of information count as explicitly
present.

This potential difference brings us to the second issue:  computational power.  The
issue divides into two considerations.  Do connectionist models provide sufficient compu-
tational power (to account for cognitive phenomena);  and do they provide the appropriate
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es the syntactic structures in principle involve recursion, but in practice the level of em-
bedding is not relevant for the task (i.e., does not affect agreement or verb argument struc-
ture in any way).

Figure 9d is interesting in another respect.   Given the nature of the prediction task,
it is actually not necessary for the network to carry forward any information from prior
clauses.  It would be sufficient for the network to represent each successive relative clause
as an iteration of the previous pattern.  Yet the two relative clauses are differentiated.
Similarly,  Servan-Schreiber, Cleeremans, & McClelland (in press) found that when a sim-
ple recurrent network was taught to predict inputs that had been generated by a finite
state automaton, the network developed internal representations which corresponded to
the FSA states; however, it also redundantly made finer-grained distinctions which en-
coded the path by which the state had been achieved, even though this information was
not used for the task.  It thus seems to be a property of these networks that while they are
able to encode state in a way which minimizes context as far as behavior is concerned,
their nonlinear nature allows them to remain sensitive to context at the level of internal
representation.

Discussion
The basic question addressed  in this paper is whether or not connectionist models

are capable of complex representations which possess internal structure and which are
productively estensible.  This question is particularly of interest with regards to a more
general issue:  How useful is the connectionist paradigm as a framework for cognitive
models?   In this context, the nature of  representations interacts with a number of other
closely related issues.  So in order to understand the significance of the present results, it
may be useful first to consider briefly  two of these other issues.   The first is the status of
rules (whether they exist, whether they are explicit or implicit); the second is the notion of
computational power (whether it is sufficient, whether it is appropriate).  

It is sometimes suggested that connectionist models differ from Classical models
in that the latter rely on rules  whereas connectionist models are typically not rule sys-
tems.  Although at first glance this appears to be a reasonable distinction, it is not actually
clear that the distinction gets us very far.  

The basic problem is that it is not obvious what is meant by a rule.  In the most gen-
eral sense, a rule is a mapping which takes an input and yields an output.  Clearly, since
many (although not all) neural networks function as input/output systems in which the
bulk of the machinery implements some transformation, it is difficult to see how they
could not be thought of as rule-systems.  

But perhaps what is meant is that the form of the rules differs in Classical models
and connectionist networks?  One suggestion has been that rules are stated explicitly in the
former, whereas they are only implicit in networks.  This is a slippery issue, and there is
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It would be useful for the network to have some way to represent the constituent struc-
ture of sentences.  

The trained network was given the following sentences.

(10a)   boy chases boy .
(10b)  boy chases boy who chases boy .
(10c)  boy who chases boy chases boy .
(10d)  boy chases boy who chases boy who chases boy .

The first sentence is simple; the other three are instances of embedded sentences.
Sentence10a was contained in the training data; sentences 10c, 10d, and 10e were novel
and had not been presented to the network during the learning phase.

The trajectories through state space for these four sentences (principal components
1 and 11) are shown in Figure 9.   Panel (9a) shows the basic pattern associated with what
is in fact the matrix sentences for all four sentences.  Comparison of this figure with panels
(9b) and (9c) shows that the trajectory for the matrix sentence appears to follow the same
for; the matrix subject noun is in the lower left region of state space, the matrix verb ap-
pears above it and to the left, and the matrix object noun is near the upper middle region.
(Recall that we are looking at only 2 of the 70 dimensions; along other dimensions the
noun/verb distinction is preserved categorically.)   The relative clause appears involve a
replication of this basic pattern, but displaced toward the left and moved slightly down-
ward, relative to the matrix constituents.  Moreover, the exact position of the relative
clause elements indicates which of the matrix nouns are modified  Thus, the relative
clause modifying the subject noun is closer to it, and the relative clause modifying the ob-
ject noun are closer to it.  This trajectory pattern was found for all sentences with the same
grammatical form;  the pattern is thus systematic.

— Insert Figure 9 about here —

Figure (9d) shows what happens when there are multiple levels of embedding.
Successive embeddings are represented in a manner which is similar to the way that the
first embedded clause is distinguished from the main clause;  the basic patter for the
clause is replicated in region of state space which is displaced from the matrix material.
This displacement provides a systematic way for the network to encode the depth of em-
bedding in the current state.  However, the reliability of the encoding is limited by the
precision with which states are represented, which in turn depends on factors such as the
number of hidden units and the precision of the numerical values.  In the current simula-
tion, the representation degraded after about three levels of embedding.  The consequenc-
es of this degradation on performance (in the prediction task) are different for different
types of sentences.  Sentences involving center embedding (e.g., 9c and 9d), in which the
level of embedding is crucial for maintaining correct agreement, are more adversely af-
fected than sentences involving so-called tail-recursion (e.g., 10d).  In these latter sentenc-
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and diverge only during the first word, indicating the difference in the number of the ini-
tial noun.  The difference is slight and is eliminated after the main (i.e., second chase)
verb has been input.  This is apparently  because, for these two sentences (and for the
grammar),  number information does not have any relevance for this task  once the main
verb has been received.

— Insert Figure 6 about here —

It is not difficult to imagine sentences in which number information may have to
be retained over an intervening constituent; sentences (8c) and (8d) are such examples.
In both these sentences there is an identical relative clause which follows the  initial noun
(which differs with regard to number in the two sentences).   This material, who boys
chase, is irrelevant as far as the agreement requirements for the main clause verb. The
trajectories through state space for these two sentences have been overlaid and are shown
in Figure 7; as can be seen, the differences in the two trajectories are maintained until the
main clause verb is reached, at which point the states converge.

— Insert Figure 7 about here —

Verb argument structure

The representation of verb argument structure was examined by probing with sen-
tences containing instances of the three different classes of verbs.  Sample sentences are
shown in (9). 

(9a)  boy walks .
(9b)  boy sees boy .
(9c)  boy chases boy .

The first of these contains a verb which may not take a direct object; the second
takes an option direct object;  and the third requires a direct object.  The movement
through state space as these three sentences are processed are shown in Figure 8. 

— Insert Figure 8 about here —

This figure illustrates how the network encodes several aspects of grammatical
structure.  Nouns are distinguished by role; subject nouns for all three sentences appear
in the upper right portion of the space, and object nouns appear below them. (Principal
component 4, not shown here, encodes the distinction between verbs and nouns, collaps-
ing across case.)  Verbs are differentiated with regard to their argument structure.  Chas-
es requires a direct object,  sees takes an optional direct object, and walks precludes an
object.  The difference is reflected in a systematic displacement in the  plane of principal
components 1 and 3.

Relative clauses

The presence of relative clauses introduces a complication into the grammar, in
that the representations of number and verb argument structure must be clause-specific.
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curs1.  (It may additionally reduce the number of variables by effectively removing the
linearly dependent set of axes).  These new axes permit us to visualize the state space in
a way which hopefully allows us to see how the network solves the task.   (A shortcoming
of PCA is that it is linear; however, the combination of the PCA factors at the next level
may be non-linear, and so this representation of information may give an incomplete pic-
ture of the actual computation.)  Each dimension (eigenvector) has an associated eigen-
value, the magnitude of which indicates the amount of variance accounted for by that di-
mension.  This allows one to focus on dimensions which may be of particular significance;
it also allows a post hoc estimate of the number of hidden units which might actually be
required for the task.  Figure 5 shows a graph of the eigenvalues of the 70 eigenvectors
which were extracted.

— Insert Figure 5 about here —

Agreement

The sentences in (8) were presented to the network, and the hidden unit patterns
captured after each word was processed in sequence.  

(8a)  boys hear boys .
(8b)  boy hears boys .
(8c)  boy who boys chase chases boy .
(8d)  boys who boys chase chase boy .

(These sentences were chosen to minimize differences due to lexical content and to make
it possible to focus on differences to grammatical structure.  (8a) and (8b) were contained
in the training data; (8c) and (8d) were novel and had never been presented to the net-
work during learning.)

By examining the trajectories through state space along various dimensions, it was
apparent that the second principal component played an important role in marking num-
ber of the main clause subject.  Figure 6 shows the trajectories for (8a) and (8b);  the tra-
jectories are overlaid so that the differences are more readily seen. The paths are similar

1In practical terms, this anaylsis  involves passing the training set through the trained network (with
weights frozen) and saving the hidden unit patterns that are  produced in response to each  input.  The cova-
riance matrix of the resulting set of hidden unit vectors is calculated, and then the eigenvectors of the covari-
ance matrix are found.  The eigenvectors are ordered by the magnitude of their eigenvalues, and are used as
the  basis for describing the original hidden unit vectors.  This new set of dimensions has the effect of giving
a somewhat more localized description to the hidden unit patterns, because the new dimensions now corre-
spond to the location of meaningful activity (defined in terms of variance) in the hyperspace.  Since the di-
mensions are ordered in terms of variance accounted for, we may wish to  look at  selected dimensions, start-
ing with those with largest eigenvalues.   See Flury (1988) for a detailed explanation of PCA; or Gonzalez &
Wintz (1977) for a detailed description of the algorithm.
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ence of internal representations which possessed abstract structure.  That is, it seemed
reasonable to believe that in order to handle agreement and argument structure facts in
the presence of relative clauses, the network would be required to develop representa-
tions which reflected constituent structure, argument structure, grammatical category,
grammatical relations, and number.  (At the very least, this is the same sort of inference
which is made in the case of human language users, based on behavioral data.)

One advantage of working with an artificial system is that we can take the addi-
tional step of directly inspecting the internal mechanism which generates the behavior.
Of course, the mechanism we find is is not necessarily that which is used by human lis-
teners; but we may nonetheless be surprised to find solutions to the problems which we
might not have guessed on our own.    

Hierarchical clustering has been a useful analytic tool for helping to understand
how the internatl representations which are learned by a network contribute to solving a
problem.  Clustering diagrams of hidden unit activation patterns is very good for repre-
senting the similarity structure of the representational space.  However, it has certain lim-
itations.  One weakness is that it provides only an indirect picture of the representational
space.  Another shortcoming is that it tends to deemphasize the dynamics involved in
processing. Some states may have significance not simply in terms of their similarity to
other states, but with regard to the ways in which they constrain movement into subse-
quent state space (recall the examples in (1)).  An important part of what the network has
learned lies in the dynamics involved in processing word sequences.  Indeed, one might
think of the network dynamics as encoding grammatical knowledge;  certain sequences
of words move the network through well-defined and permissible internal states.  Other
sequences move the network through other permissible states.  Some sequences are not
permitted; these are ungrammatical.

What we might therefore wish to be able to do is directly inspect the internal states
(represented by the hidden unit activation vectors) the network is in as it processes words
in sequence, in order to see how the states and the trajectories encode the network’s gram-
matical knowledge.

Unfortunately, the high dimensionality of the hidden unit activation vectors (in
the simulation here, 70 dimensions) makes it impractical to view the state space directly.
Furthermore, there is no guarantee that the dimensions which will be of interest to us—
in the sense that they pick out regions of importance in network’s solution to the task—
will be correlated with any of the dimensions coded by the hidden units.  Indeed, this is
what it means for the representations to be distributed: the dimensions of variation cut
across, to some degree, the dimensions picked out by the hidden units.

However, it is reasonable to assume that such dimensions of variation do exist, we
can try to identify them using principal component analysis (PCA).  PCA allows us to find
another set of dimensions (a rotation of the axes) along which maximum variation oc-
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(c)  Interactions with relative clauses

The examples so far have all involved simple sentences.  The agreement and verb
argument facts are more complicated in complex sentences.  Figure 4 shows the network
predictions for each word in the sentence boys who mary chases feed cats.   If the net-
work were generalizing the pattern for agreement found in the simple sentences, we
might expect the network to predict a singular verb following ...mary chases...   (insofar
as it predicts a verb in this position at all; conversely, it might be confused by the pattern
N1 N2 V1).  But in fact, the prediction (4d) is correctly that the next verb should be in the
singular in order to agree with the first noun.  In so doing, it has found some mechanism
for representing the long-distance dependency between the main clause noun and main
clause verb, despite the presence of an intervening noun and verb (with their own agree-
ment relations) in the relative clause.

— Insert Figure 4 about here —

Note that this sentence also illustrates the sensitivity to an interaction between
verb argument structure and relative clause structure.  The verb chases  takes an oblig-
atory direct object.  In simple sentences the direct object follows the verb immediately;
this is also true in many complex  sentences (e.g., boys who chase mary feed cats).  In
the sentence displayed, however, the direct object (boys) is the head of the relative clause
and appears before the verb.  This requires that the network learn (a) that there are items
which function as nouns, verbs, etc.; (b) which items fall into which classes; (c) that there
are subclasses of verbs which have different cooccurrence relations  with nouns, corre-
sponding to verb-direct object restrictions; (d) which verbs fall into which classes;  and (e)
when to expect that the direct object will follow the verb, and when to know that it has
already appeared.  The network appears to have learned this, because in panel (d) we see
that it expects that chases will be followed by a verb (the main clause verb, in this case)
rather than a noun. 

An even subtler point  is demonstrated in (4c).  The appearance of  boys fol-
lowed by a relative clause containing a different subject (who Mary...) primes the net-
work to expect that the verb which follows must be of the class that requires a direct
object, precisely because a direct object filler has already appeared.  In other words,
the network correctly responds to the presence of a filler (boys) not only by knowing
where to expect a gap (following chases); it also learns that when this filler corre-
sponds to the object position in the relative clause,  a verb is required which has the
appropriate argument structure.

Network analysis

The natural question to ask at this point is how the network has learned to accom-
plish the task. Success on this task seems to constitute prima facie evidence for the exist-
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this case will be to activate the output units (i.e., predict potential next words) to some ex-
tent proportional to their statistical likelihood of occurrence.  Therefore, rather than as-
sessing the network’s global performance by looking at root mean squared error, we
should ask how closely the network approximated these probabilities.  The technique de-
scribed in Elman (in press) was used to accomplish this. Context-dependent likelihood
vectors were generated for each word in every sentences;  these vectors  represented the
empirically derived probabilities of occurrence for all possible predictions, given the sen-
tence context up to that point.   The network’s actual outputs were then compared against
these likelihood vectors, and this error was used to measure performance.  The error was
quite low:  0.177 (initial error: 12.45; minimal error through equal activation of all units
would be 1.92).  This error can also be normalized by computing the mean cosine of the
angle between the vectors, which is 0.852  (sd: 0.259).   Both measures  indicate that the
network achieved a high level of performance in prediction.

These gross measures of performance, however, do not tell us how well the net-
work has done in each of the specific problem areas posed by the task.  Let us look at  each
area in turn.

(a) Agreement in simple sentences
Agreement in simple sentences is shown in Figures 2a and 2b.

— Insert FIgure 2 about here —

The network’s predictions following the word boy are that either a singular verb
will follow (words in all three singular verb categories are activated, since it has no basis
for predicting the type of verb), or else that the next word may be  the relative pronoun
who.  Conversely, when the input is the word boys, the expectation is that a verb in the
plural will follow, or else the relative pronoun.  (Similar expectations hold for the other
nouns in the lexicon.  In this and the results that follow,  the performance of the sentences
which are shown is representative over other sentences with similar structure.)

(b) Verb argument structure in simple sentences

Figure 3 shows network predictions following an initial noun and then a verb from
each of the three different verb types.

— Insert Figure 3 about here —

When the verb is lives, the network’s expectation is that the following item will be
"." (which is in fact the only successor permitted by the grammar in this context).  The verb
sees, on the other hand, may either be followed by a ".", or optionally by a direct object
(which may be a singular or plural noun, or proper noun).  Finally, the verb chases re-
quires a direct object, and the network learns to expect a noun following this and other
verbs in the same class.
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*          *          *

The data in (4-7) are examples of the sorts of phenomena which linguists argue
cannot be accounted for without abstract representations.  More precisely, it has been
claimed that such abstract representations offer a more perspicacious account of
grammtical phenomena than one which, for example, simply lists the surface strings
(Chomsky, 1957).

The training data were generated from the grammar summarized in Table 1.   At
any given point during training, the training set consisted of 10,000 sentences which were
presented to the network 5 times.  (As before, sentences were concatenated so that the in-
put stream proceeded  smoothly without breaks between sentences.)  However, the com-
position of these sentences varied over time.  The following training regimen was used in
order to provide for incremental training.  The network was trained on 5 passes through
each of the following 4 corpora.

Phase 1:  The first training set consisted exclusively of simple sentences.  This was
accomplished by eliminating all relative clauses.  The result was a corpus of 34,605 words
forming 10,000 sentences (each sentence includes the terminal ".").

  Phase 2:  The network was then exposed to a second corpus of 10,000 sentences
which consisted of 25% complex sentences and 75% simple sentences (complex sentences
were obtained by permitting relative clauses).  Mean sentence length was 3.92 (minimum
3 words, maximum 13 words).

Phase 3:  The third corpus increased the percentage of complex sentences to 50%,
with mean sentence length of 4.38 (minimum: 3 words, maximum: 13 words).  

Phase 4:  The fourth consisted of 10,000 sentences, 75% complex, 25% simple.
Mean sentence length was 6.02 (minimum: 3 words, maximum: 16 words).

This staged learning strategy was developed in response to  results of earlier pilot
work.  In this work, it was found that the network was unable to learn the task when given
the full range of complex data from the beginning of training.  However, when the net-
work was permitted to focus on the simpler data first, it was able to learn the task quickly
and then move on successfully to more complex patterns.  The important aspect to this
was that the earlier training constrained later learning in a useful way;  the early training
forced the network to focus  on canonical versions of the problems which apparently cre-
ated a good basis for then solving the more difficult forms of the same problems.

Results

At the conclusion  of the fourth phase of training, the weights were frozen at their
final values and network performance was tested on a novel set of data, generated in the
same way as the last training corpus.  Because the task is non-deterministic, the network
will (unless it memorizes the sequence) always produce errors.  The optimal strategy in
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(4b)  Dog who cat chases sees girl. 

On the other hand, sentence (4c), which seems to conform to the pattern established in (3)
and (4a), is ungrammatical.

(4c)  *Dog who cat chases dog sees girl.

Similar complications arise for the agreements facts.  In simple declarative sentenc-
es agreement involves N1 - V 1.   In complex sentences, such as (5a), that regularity is vio-
lated, and any straightforward attempt to generalize it to sentences with multiple clauses
would lead to the ungrammatical (5b).

(5a)  Dog who boys feed sees girl.

(5b)  *Dog who boys feeds see girl.

(d) Recursion

The grammar permits recursion through the presence of relative clause (which ex-
pand to noun phrases which may introduce yet other relative clauses, etc.).  This leads to
sentences such as (6) in which the grammatical phenomena noted in (a-c) may be extend-
ed over a considerable distance.

(6) Boys who girls who dogs chase see hear.

(e) Viable sentences

One of the literals inserted by the grammar is ".", which occurs at the end of sen-
tences.  This end-of-sentence marker can potentially occur anywhere in a string where a
grammatical sentence might be terminated.   Thus in sentence (7), the carets indicate po-
sitions where a "." might legally occur.

(7)  Boys see ^ dogs ^ who see ^  girls ^ who hear ^ .
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(a)  Agreement 

Subject nouns agree with their verbs.  Thus, for example,  (2a) is grammatical
but not (2b).  (The training corpus consisted of positive examples only;   starred exam-
ples below did not actually occur).

(2a)  John feeds dogs.
(2b) *Boys sees Mary.

Words are not marked for number (singular/plural), form class (verb/noun, etc.),
or grammatical role (subject/object, etc.).   The network must learn first that there are
items which function as what we would call nouns, verbs, etc.;  then it must learn which
items are examples of singular and plural; and then it must learn which nouns are subjects
and which are objects (since agreement only holds between subject nouns and their
verbs).

(b) Verb argument structure

Verbs fall into three classes: those that require direct objects, those that permit an
optional direct object, and those that preclude direct objects.  As a result, sentences (3a-d)
are grammatical, whereas sentences (3e, 3f) are ungrammatical.

(3a)  Girls feed dogs.  (D.O. required)
(3b)  Girls see boys.   (D.O. optional)
(3c)  Girls see.  (D.O. optional)
(3d)  Girls live.  (D.O. precluded)
(3e) *Girls feed.
(3f)  *Girls live dogs.

Because all words are represented with orthogonal vectors, the type of verb is not overtly
marked in the input and so the class membership needs to be inferred at the same time as
the cooccurrence facts are learned.

(c)   Interactions with relative clauses

The agreement and the verb argument facts become more complicated in relative
clauses.  Although direct objects normally follow the verb in simple sentences, some rel-
ative clauses have the subordinate clause direct object as the head of the clause.  In these
cases, the network must  recognize that there is a gap following the subordinate clause
verb (because the direct object role has already been filled.  Thus, the normal pattern in
simple sentences (3a-d) appears also in (4a), but  contrasts with (4b),

(4a)  Dog who chases cat  sees girl.
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retical analysis (lexical items are orthogonal and arbitrarily assigned). The role of an ex-
ternal teacher is minimized, since the target outputs are supplied by the environment at
the next moment in time. The task involves what might be called “self-supervised learn-
ing.” 

Second, although language processing obviously involves a great deal more than
prediction, prediction does seem to play a role in processing.  Listeners can indeed predict
(Grosjean, 1980), and sequences of words which violate expectations—i.e., which are un-
predictable—result in distinctive electrical activity in the brain (Kutas, 1988; Kutas & Hill-
yard, 1980; Tanenhaus et al, in press). 

Third, if we accept that prediction or anticipation plays a role in language learning,
then this provides a partial solution to what has been called Baker’s paradox (Baker, 1979;
Pinker, 1989). The paradox is that children apparently do not receive (or ignore, when
they do) negative evidence in the process of language learning.  Given their frequent ten-
dency initially to over-generalize from positive data, it is not clear how children are able
to retract the faulty over-generalizations (Gold, 1967).  However, if we suppose that chil-
dren make covert predictions about the speech they will hear from others, then failed pre-
dictions constitute an indirect source of negative evidence which could be used to refine
and retract the scope of generalization. 

Fourth, the task requires that the network discover the regularities which underlie
the temporal order of the words in the sentences. In the simulation reported in Elman
(1990) these regularities resulted in the network’s constructing internal representations of
inputs which marked words for form class (noun/verb) as well as lexico-semantic char-
acteristics (animate/inanimate, human/animal, large/small, etc.) 

The results of that simulation, however, bore more on the representation of lexical
category structure, and the relevance to grammatical structure is unclear.  Only mono-
clausal sentences were used, all all shared the same basic structure. Thus the question re-
mains open whether the internal representations that can be learned in such an architec-
ture are able to encode the hierarchical relationships which are necessary to mark constit-
uent structure.   

Stimuli.  The stimuli in this simulation were sequences of words which were
formed into sentences.  In addition to monoclausal sentences, there were a large number
of complex multi-clausal sentences.

Sentences were formed from a lexicon of  23 items.  These included 8 nouns, 12
verbs, the relative pronoun who, and an end-of-sentence indicator (a period).  Each item
was represented by a randomly assigned 26-bit vector in which a single bit was set to 1 (3
bits were reserved for another purpose).  A phrase structure grammar, shown in Table 1,
was used to generate sentences.  The resulting sentences possessed certain important
properties.   These include the following.

— Insert Table 1 about here —
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simple dynamical system in which previous states are made available as an additional in-
put (Jordan, 1986).  In Jordan’s work, the network state at anyh point in time was a func-
tion of the input on the current time step, plus the state of the output units on the previous
time step.  In the work here, the network’s state depends on current input, plus its own
internal state (represented by the hidden units) on the previous cycle.  Because the hidden
units are not taught to assume specific values, this means that they can develop represen-
tations, in the course of learning a task, which encode the temporal structure of the task.
In other words, the hidden units  learn to become a kind of memory which is very task-
specific.

— Insert Figure 1 about here —

The type of  network used in the current work is shown in Figure 1. This network
has the typical connections from input units to hidden units, and from hidden units to
output units. (Additional hidden layers between input and main hidden, and between
main hidden and output, may be used to serve as transducers which compress the input
and output vectors.) There are an additional set of units, called context units, which pro-
vide for  limited recurrence (and so this may be called a simple recurrent network).
These context units are activated on a one-for-one basis by the hidden units, with a fixed
weight of 1.0, and have linear activation functions. 

The result is that at each time cycle the hidden unit activations are copied into the
context units; on the next time cycle, the context combines with the new input to activate
the hidden units.  The hidden units therefore take on the job of mapping new inputs and
prior states to the output.  Because they themselves constitute the prior state, they must
develop representations which facilitate this input/output mapping.  The simple recur-
rent network has been studied in a number of  tasks (Elman, 1990; Gasser, 1989; Hare,
Corina, & Cottrell, 1988;  Servan-Schreiber, Cleeremans, & McClelland, in press). 

Task and Stimuli 

The prediction task.  In Elman (1990) a network similar to that in Figure 1 was
trained to predict the order of words in simple (2- and 3-word) sentences.  At each point
in time, a word was presented to the network.  The network’s target output was simply
the next word in sequence.  The lexical items (inputs and outputs) were represented in a
localist form using basis vectors; i.e., each word was randomly assigned a vector in which
a single bit was turned on.  Lexical items were thus orthogonal to one another, and the
form of each item did not encode any information about the item’s category membership.
The prediction was made on the basis of the current input word, together with the prior
hidden unit state (saved in the context units). 

This task was chosen for several reasons.  First, the task meets the desideratum that
the inputs and target outputs be limited to observables in the environment.  The net-
work’s inputs and outputs are immediately available and require minimal a priori theo-
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Grammar) designate the context in an explicit manner through so-called “slash-catego-
ries”.  Other approaches use additional category labels (e.g., Cognitive Grammar, Rela-
tional Grammar, Government & Binding) to designate elements as subject, theme, argu-
ment, trajectory, path, etc.  In addition, theories may make use of trees, bracketing, co-in-
dexing,  spatial organization, tiers, arcs, circles, and diacritics  in order to convey more
complex relationships and mappings.  Processing or implementation versions exist for
some of these theories; nearly all require a working buffer or stack in order to account for
the apparently recursive nature of utterances.  All in all, a rather formidable armamentar-
ium is required.  

Returning to the three questions posed at the outset, although  distributed repre-
sentations have characteristics which plausibly may address the need for representational
richness, flexibility, and may provide soft (rather than hard) limits on processing; but we
now must ask whether such an approach can capture structural relationships of the sort
required for language. That is the question which motivated the work to be reported here. 

There is preliminary evidence which is encouraging in this regard. Hinton (1988)
has described a scheme which involve "reduced descriptions" of complex structures, and
which represent part-whole hierarchies.  Pollack (1988, in press) has developed a training
regimen called Recursive Auto-Associative Memory (RAAM) which appears to have
compositional properties and which supports structure-sensitive operations (see also
Chalmers, 1989).  As discussed earlier, Elman’s (1990) use of Simple Recurrent Networks
(SRN; Servan-Schreiber, Cleeremans, & McClelland, in press) provides yet another ap-
proach for encoding structural relationships in a distributed form. 

The work described here extends this latter approach.  An SRN was taught a task
involving stimuli in which there were underlying hierarchical (and recursive) relation-
ships.  This structure was abstract in the sense that it was implicit in the stimuli, and the
goal was to see if the network could (a) infer this abstract structure; and (b) represent the
compositional relationships in such a manner as to support structure-sensitive opera-
tions. 

The remainder of this paper is organized as follows.  First, the network architec-
ture will be briefly introduced.  Second, the stimulus set and task will be presented, and
the properties of the task which make it particularly relevant for the question at hand will
be described.  Next, the results of the simulation will be presented.  In the final discussion,
differences and similarities between this approach and more traditional symbolic ap-
proaches to language processing will be discussed. 

Network Architecture

Time is an important element in language, and so the question of how to represent
serially ordered inputs is crucial.  Various proposal have been advanced (for reviews, see
Elman, 1990; Mozer, 1988).  The approach taken here involves treating the network as a
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bution analysis,Sanger, 1989), the results of such studies have been limited. These analy-
ses have demonstrated that distributed representations may posses internal structure
which can encode relationships such as kinship (Hinton, 1987) or lexical category struc-
ture (Elman, 1990).  But such relationships are static.  Thus, for instance, in Elman (1990)
a network was trained to predict the order of words in sentences.  The network  learned
to represent words by categorizing them as  nouns or verbs, with further subcategoriza-
tion of nouns as animate/inanimate, human/non-human, etc.  These representations
were developed by the network and were not explicitly taught.  

While lexical categories are surely important for language processing, it is easy to
think of other sorts of categorization which seem to have a different nature.  Consider the
following sentences.

(1) a. The boy broke the window.
b. The rock broke the window.
c. The window broke.  

The underlined words in all the sentences are nouns, and their representations
should reflect this.  Nounhood is a category property which belongs inalienably to these
words, and is true of them regardless of where they appear (as nouns; derivational pro-
cesses may result in nouns being used as verbs, and viceversa).  At a different level of de-
scription, the underlined words are also similar in that they are categorizable as the sub-
jects of their sentences.  This property, however, is context-dependent.  The word “win-
dow” is a subject only in sentence (1c).  In the other two sentences it is an object.  At still
another level of description, the three underlined words differ.   In (1a) the subject is also
the agent of the event;  in (1b) the subject is the instrument; and in (1c) the subject is the
patient (or theme) of the sentence.  This too is a context-dependent property.

These examples are simple demonstrations of the effect of grammatical structure;
that is, structure which is manifest at the level of utterance.  In addition to their context-
free categorization, words inherit properties by virtue of their linguistic environment.
Although distributed representations seem potentially able to respond to the first and last
of the problems posed at the outset, it is not clear how they address the question,  H ow
can complex structural relationships such as constituency  be represented? As Fodor &
Pylyshyn (1988) have phrased it, 

You need two degrees of freedom to specify the thoughts that an intentional system is
entertaining at a time; one parameter (active vs inactive) picks out the nodes that ex-
press concepts that the system has in mind; the other (in construction vs not) deter-
mines how the concepts that the system has in mind are distributed in the propostions
that it entertains.  (pp. 25-26)

At this point, it is worth reminding ourselves of the ways in which complex struc-
tural relationships are dealt with in symbolic systems.  Context-free properties are typi-
cally represented with abstract symbols such as S, NP, V, etc.  Context-sensitive proper-
ties are dealt with in various ways.  Some theories (e.g., Generalized Phrase Structure
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 Thus, while the localist approach has certain positive aspects, it has definite short-
comings as well.  It provides no good solution to the problem of how to account for the
open-ended nature of language, and the commitment to discrete and well-defined repre-
sentations may make it difficult to capture the richness and high dimensionality required
for language  representations.

Another major approach involves the use of distributed representations (Hinton,
1988; Hinton, McClelland, & Rumelhart, 1986; van Gelder, in press), together with a learn-
ing algorithm, in order to infer the linguistic representations.  Models which have used
the localist approach have typically made an a priori commitment to linguistic represen-
tations (such as agent, patient, etc.); networks are then explicitly trained to identify these
representations in the input by activating nodes which correspond to them.   This presup-
poses that the target representations are theoretically valid;  it also begs the question of
where (in the real world) the corresponding teaching information might come from.  In
the alternative approach, tasks must be devised in which the abstract linguistic represen-
tations do not play an explicit role.  The model’s inputs and output targets are limited to
variables which are directly observable in the environment.  This is a more naturalistic ap-
proach in the sense that the model learns to use surface linguistic forms for communica-
tive purposes rather than to do linguistic analysis.  Whatever linguistic analysis is done
(and whatever representations are developed) is internal to the network and is in the ser-
vice of a task.  The value of this approach is that it need not depend on pre-existing pre-
conceptions about what the abstract linguistic representations are.  Instead, the connec-
tionist model can be seen as a mechanism for gaining new theoretical insight.  Thus, this
approach offers a potentially more satisfying answer to the first question, What are the
nature of linguistic representations?

There is a second advantage to this approach.  Because the abstract representations
are formed at the hidden layer, they also tend to be distributed  across the high-dimen-
sional (and continuous) space which is described by analog hidden unit activation vec-
tors.  This means there is a larger and much finer-grained representational space to work
with than is usually possible with localist representations.  This space is not infinite, but
for practical purposes it may be very, very large.  And so this approach may also provide
a better response  to the third question,  How can the apparently open-ended nature of
language be accommodated by a fixed-resource system?

But all is not rosy.  We are still left with the second question:  How to represent
complex structural relationships such as constituency.  Distributed representations are far
more complex and difficult to understand than localist representations.  There has been
some tendency to feel that their murkiness is intractable and that “distributed” entails
“unanalyzable.”  Although, in fact, there exist various techniques for analyzing distribut-
ed representations (including cluster analysis, Elman, 1990; Hinton, 1988; Sejnowski &
Rosenberg, 1987; Servan-Schreiber, Cleeremans, & McClelland, in press; direct inspec-
tion, Pollack, 1988; principal component & phase state analysis, Elman, 1989; and contri-
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 One approach which addresses the first two problems is to use localist represen-
tations.  In localist networks, nodes are assigned discrete interpretations.  In such models
(e.g. Kawamoto & McClelland, 1986;  St. John & McClelland, 1988) nodes may represent
grammatical roles (e.g., agent,  theme,  modifier) or relations (e.g., subject, daughter-of).
These may be then bound to other nodes which represent the word-tokens which instan-
tiate them either by spatial assignment (Kawamoto & McClelland, 1986; Miikkulainen &
Dyer, 1989b), concurrent activation (St. John & McClelland, 1989), or various other tech-
niques (e.g., Smolensky, in press). 

Although the localist approach has many attractions, it has a number of important
drawbacks as well.

First, the localist dictum, “one node/one concept”, when taken together with the
fact that networks typically have fixed resources, seems to be at variance with the open-
ended nature of language.  If nodes are pre-allocated to defined roles such as subject or
agent, then in order to process sentences with multiple subjects or agents (as is the case
with complex sentences) there must be the appropriate number and type of nodes.  But
how is one to know just which types will be needed, or how many to provide?  The situ-
ation becomes even more troublesome if one is interested in discourse phenomena. Gen-
erative theories of language (Chomsky, 1965), have made much of the unbounded gener-
ativity of natural language; it has been pointed out (Rumelhart & McClelland, 1986a) that
in reality, language productions in practice are in fact of finite length and number.   Still,
even if one accepts these the practical limitations, it is noteworthy that they are soft (or
context-sensitive), rather than hard (or absolute) in the way that the localist approach
would predict.(For instance, consider the difficulty of understanding "the cat the dog the
mouse saw chased ran away" compared with, "the planet the astronomer the university
hired saw exploded".  Clearly, semantic and pragmatic considerations can facilitate pars-
ing structures which are otherwise hard to process (see also Labov, 1973; Reich & Dell,
1977; Schlesinger, 1968; Stolz, 1967, for experimental demonstrations of this point).  Thus,
although one might anticipate the most  commonly occurring structural relations one
would like the limits on processing to be soft rather than hard, in the way the localist ap-
proach would be.

A second shortcoming to the use of localist representations is that they often  un-
derestimate the actual richness of linguistic structure.  Even the basic notion “word”,
which one might assume to be a straightforward linguistic primitive, turns out to be more
difficult to define than one might have thought.  There are dramatic differences in terms
of what counts as a word across languages; and even within English, there are morpho-
logical and syntactic processes which yield entities which are word-like in some but not
all respects  (e.g., apple pie,  man-in-the-street, man for all seasons).  In fact, much of  lin-
guistic theory is today concerned with the nature and role of representation, with less fo-
cus on the nature of operations.  
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INTRODUCTION

In recent years there has been considerable progress  in developing connectionist
models of language.  This work has demonstrated the ability of network models to ac-
count for a variety of phenomena in phonology (e.g., Gasser & Lee, 1990; Hare, 1990;
Touretzky, 1989; Touretzky & Wheeler, 1989), morphology (e.g., Hare, Corina, Cottrell,
1989; MacWhinney et al, 1989; Plunkett & Marchman, 1989; Rumelhart & McClelland,
1986b; Ryder, 1989), spoken word recognition (McClelland & Elman, 1986), written word
recognition (Rumelhart & McClelland, 1986; Seidenberg & McClelland, 1989), speech pro-
duction (Dell, 1986; Stemberger, 1985), and role assignment (Kawamoto & McClelland,
1986; Miikkulainen & Dyer, 1989a; St. John & McClelland, 1989).  It is clear that connec-
tionist networks have many properties which make them attractive for language process-
ing.  

At the same time, there remain significant shortcomings to current work.  This is
hardly surprising: natural language is a very difficult domain.  It poses difficult challeng-
es for any paradigm.  These challenges should  be seen a positive light.  They test the pow-
er of the framework and can also motivate the development of new connectionist ap-
proaches.

In this paper I would like to focus on what I see as three of the principal challenges
to a successful connectionist account of language.  They are:

(1)   W hat is the nature of the linguistic  representations?  
(2)  H ow can complex structural relationships such as constituency  be

represented?
(3)  H ow can the apparently open-ended nature of language be accommo-

dated by a fixed-resource system?
Interestingly, these problems are closely intertwined, and all have to do with repre-
sentation.

(In press, Machine Learning)


