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Connectionist Sentence Processing in
Perspective

MARK STEEDMAN
University of Pennsylvania and University of Edinburgh

The emphasis in the connectionist sentence-processing literature on distrib-
uted representation and emergence of grammar from such systems can
easily obscure the often close relations between connectionist and symbolist
systems. This paper argues that the Simple Recurrent Network (SRN) models
proposed by Jordan (1989) and Elman (1990) are more directly related to
stochastic Part-of-Speech (POS) Taggers than to parsers or grammars as
such, while auto-associative memory models of the kind pioneered by
Longuet—Higgins, Willshaw, Pollack and others may be useful for grammar
induction from a network-based conceptual structure as well as for structure-
building. These observations suggest some interesting new directions for
specifically connectionist sentence processing research, including more ef-
ficient representations for finite state machines, and acquisition devices
based on a distinctively connectionist basis for grounded symbolist concep-
tual structure.

I. INTRODUCTION

As many papers in this special issue attest, an active and constructive dialogue about
processing at the level of spoken and written words, and about the acquisition of related
systems such as phonology, morphology and the lexicon, is going on between symbolic
or rule-oriented theorists and connectionist or neurally-oriented theorists (see) Chris-
tiansen and Chater, this issue, for an overview). There seems to be much less dialogue
between symbolic and rule-based approaches to syntactic analysis, despite genuine efforts
to reconcile these positions on the connectionist side, for example by Hinton (1990c),
Smolensky (1990) and this issue, and others collected in Hinton (1990a). This paper is a
reciprocal attempt from the symbolist side to get such a dialogue going on the basis of the
contributions collected here.

The traditional rule-based view of syntactic processing divides the problem among
various modules. One fairly generally applicable way of doing this is to distinguish a
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grammar characterized by syntactic and semantic rules of certain classes and a related
characteristic automaton, afgorithmcharacterized by properties like the order in which

rules are applied to the string, whether bottom-up or top-down, and by certain memory
resources, such as those used in building structure and the charts or tables used in parsers
based on dynamic programming, anda@acle or decision criterion for deciding which

rule to apply the algorithm to in cases where there is more than one possibility.

In any given theoretical presentation or implementation, these modules may be com-
bined, but in rule-based theories they can usually be distinguished in functional terms. The
fact that they are in that sense distinct modules does not of course imply that the
corresponding computations must be carried out in a series of chronologically distinct
phases: for example it is quite possible to construct systems in which the oracle can call
on the results of semantic interpretation in mid-parse, while grammatical analysis and the
algorithm are still under way.

Connectionism is no more intrinsically non-modular than any other approach, and
many connectionists including some represented here have explicitly endorsed modular
architectures of various kinds. Nevertheless, the emphasis in the connectionist literature
on distributed representation and “emergence” of rule-like behavior from such systems
has sometimes made it hard for connectionists and symbolists alike to recognize the often
close relations between their respective systems.

Part of the difficulty in reconciling the two stems from the involvement of two rather
different views of the role of grammar in processing. The “performance” grammar used
by the three-module processor described above can in theory be quite different from the
grammar that linguists identify as the “competence” grammar. The linguists’ grammar is
usually one whose derivation structures are closely related to their intuitions about the
interpretation of sentences. (Since we have no direct access to interpretations, the practical
criteria for choosing one linguistic analysis over another are usually described in rather
different terms by linguists like Chomsky, but in fact this is what it comes down to.)

Interpretations, and hence the linguistic competence grammars that (how ever imper-
fectly) reflect them, have a number of important properties. Most importantly, interpre-
tations arecompositiongl which means that they are recursively defined solely in terms
of the interpretations of their parts. This means that to know the meaning/grammatical
category of a predicate likealksis to know the meaning/grammaticality of the propo-
sition that results from applying that predicate to any argument of the appropriate type.
Similarly, to know the meaning/grammatical category of a verb dlkayis to know the
meaning/grammaticality of denying any proposition in the language including those
involving the verbdeny Compositionality entails a property that Fodor and Pylyshyn
(1988) proposed as a test for grammar-induction or emergence which they sysled
maticity, which means that a system cannot be claimed to embody a grammar unless it can
recognise the grammaticality and ultimately the interpretation of any sentence of the
language, whether or not it has been encountered before—see Hadley (1994a,b) on
definitions of this property of increasing levels of strictness up to “semantic” systematic-

ity.
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If a grammar accepts all and only the strings that some other grammar accepts, then the
two are said to be weakly equivalent. Some early parsing programs used algorithms
requiring grammars in a normal form that was not particularly congenial to linguists. They
therefore used a weakly equivalent normalform “covering grammar” to build structures
that could be transduced into the structural representation required by the linguists.
Modern parsers often compile large grammars into finite-state covering grammars (whose
coverage must of course necessarily be incomplete) for reasons of efficiency—see Black
(1989).

For reasons of evolutionary simplicity that will be elaborated below, it would actually
be rather surprising to find that human processors used a covering grammar. Nevertheless
it is possible in theory, and there are some properties of human processors that might
appear to suggest that they do. In particular, there are well-known (if poorly understood)
limitations on human abilities to process sentences involving center embedding. Since
center-embedding is one of the properties of natural grammars that led Chomsky (1957)
to claim that context-free grammars represented a lower bound on expressive power, it has
sometimes been claimed that these limitations are evidence that human processors work
with an incomplete finite-state covering grammar. (Of course, other explanations are
possible. It might be the algorithm that is incomplete, perhaps because of memory
limitations, or even that there is something about these constructions that irrevocably
misleads the oracle.)

However, if a covering grammar is involved, it must be one that is capable of
specifying the interpretation. That is not the same as saying that the derivations themselves
must correspond to traditional syntactic structure. Linguists tend to think of syntactic
derivation as surface structure-building, but it is equally possible to think of such
structures (as computational linguists tend to) as implicit in the flow of control in a parser
that incrementally builds the interpretation directly (the early Augmented Transition
Network [ATN] parser of Woods 1970 had this character). Such derivations can be
structurally quite unlike traditional grammarians’ analyses.

Linguists (especially computational linguists) also usually think of interpretations as
structures or logical forms, but as a matter of fact this is not strictly necessary either. As
in the work of Montague (1970, 1974), it is possible in principle to regard logical form as
no more than the flow of control in computing models, in the sense of that term used in
model-theoretic semantics. However, it is important not to get carried away by this
possibility. Model theory is really only good for proving very general properties of formal
systems, such as soundness and completeness. In Al and natural language understanding
we are usually interested in tlerm of a constructive proof that we can get to New York
City, rather than the mere truth of that proposition, because such a proof téitsaus
actually get there. This means that practical knowledge representation systems are almost
always proof-theoretic, involving manipulation of formulae, rather than model-theoretic.
The significance of this point is that, when faced with a connectionist processor, one must
not only ask what grammar is implicit in it, but how it can be made to deliver logical forms
of a kind that can be manipulated by the equivalent of rulesNikelus Ponens
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Figure 1. Architecture of the simple recurrent network (SRN).

A second source of difficulty in comparing connectionist and rule-based systems lies
in the tendency of certain kinds of connectionist architecture to combine the roles of
grammar and oracle or ambiguity-resolution device in a single representation distributed
over a single set of hidden units. This can make it hard to know whether one should
compare the systems as a whole, or regard the connectionist system as merely a disam-
biguating device—for example, as the analog of a Markovian part-of-speech (POS) filter
in a standard parsing architecture. | shall argue below that some devices that have
presented as sentence processors should be thought of in this more restricted sense, and
that (if the problems of reliability and scalability inherent in mechanisms based on
back-propagation can be overcome), this view offers a way forward to a kind of system
that embodies both rules and sub-symbolic representations in a principled way.

. RECURRENT NETWORKS AND FINITE STATE DISAMBIGUATORS

The recurrent networks proposed by Jordan (1989) and Elman (1990) use an auxiliary
bank of “state” or “context” units to store information about the previous state of an
otherwise standard three-level feed-forward network using back-propagation to adjust a
hidden layer of units. The recurrence consists of copying either the output units or the
hidden units to the context units. The context units then provide some of the inputs to the
hidden units. Jordan applies such a device to the coarticulation problem in speech, and
uses context units to represent the preceding items directly by copying the output units
from the previous cycle. Copying the hidden units, as in Elman’s Simple Recurrent
Network (SRN) shown in Figure 1, can represent more abstract properties of the preceding
sequence.

Interestingly, the context units can come to carry “echoes” of earlier states of the
computation, and can thereby be used to represent quite distant dependencies between
string elements. ElIman applies SRNs to the problem of supervised grammar induction, in
a rather indirect sense in which the device (since it does not build structure or exhibit
internal states) can only reveal the implicit grammar indirectly, by predicting the next
word or word category. This of course is a test related to weak equivalence of the implicit
grammar.
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Elman’s early work was criticized by Hadley (1994a) for non-systematicity in the
selection of test materials with respect to the claimed implicit grammar, so that in some
cases the implicit grammar was not even proved weakly equivalent to the one that was
initially claimed. However Christiansen and Chater (1994), Niklasson and van Gelder
(1994), and the work by Allen (1997) discussed by Seidenberg and MacDonald, in this
issue, show that SRNs can achieve systematicity in acquiring implicit grammars weakly
equivalent to phrase structure fragments. Elman’s work is also extended by Cleeremans
(1993) and by Christiansen and Chater (in press), among many others. In particular,
Christiansen has shown that SRNs can cover (finitely bounded sub-languages of) small
context-free grammars with center embedding, and (similarly bounded sub-languages of)
small trans-context free grammars including crossing dependencies of the kind notori-
ously characteristic of Germanic verb raising constructions (Bresnan, Kaplan, Peters, &
Zaenen, 1982; Huybregts, 1984, Shieber, 1985). There is no doubt that SRNs and other
recurrent nets can approximate covering finite-state machines of this kind. (See Cleer-
emans, 1993; Cleeremans, Servan—Schreiber, & McClelland 1995; Casey, 1996.) The only
obvious limitation on the approximation is that it appears to rapidly become less reliable
for a given number of hidden units as the distance of the dependency increases. For this
reason the precise place of such “graded state” automata in the automata-theoretic
hierarchy is not entirely clear, but in practice they seem to be limited to finite state
machines.)

It is important to recall that the sole task that the SRN is required to do is to predict the
next word or word category at each point in the string. We know from work on symbolic
finite-state models such as Hidden Markov Models (HMM) and part-of-speech (POS)
taggers (Jelinek, 1976; Church, 1988; Merialdo, 1994; Brill, 1992) that such approxima-
tions can achieve very high accuracy—better than 95% precision—without having any
claim whatsoever to embody the grammar itself. (To put this number in perspective, one
should however recall that prediction of category on the basis of simple unigram
frequency alone yields around 91% accuracy.) One of the surprising things about the
recurrent network literature is that there is very little link to statistical computational
linguistics, despite some early identifications of an equivalence relation by Williams and
Hinton (1990) and Bridle (1992). Nevertheless, the comparison with POS taggers seems
to be a relevant one.

The resemblance of SRNs to POS taggers is even closer among versions like that
presented by Tabor and Tanenhaus (this issue) in which a principal components analysis
of the hidden units is used to reveal implicit grammatical categories. It has even been
suggested that the trajectory that a sequence of such categories defines through the
high-dimensional space defined by the hidden units and/or principal components can be
thought of as defining a meaning (Elman, 1995), a claim that would begin to address the
issue of semantic systematicity.

Although we shall see below that hidden units can legitimately be viewed as encoding
certain kinds of semantic information, this last claim seems too strong. A mere sequence
of words, even a sequence that is successfully disambiguated as to syntactic category and
even word sense (as is reasonable to expect from a stochastic tagger), is not a sentence
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meaning, as is evident from the fact that the following string remains structurally and
semantically globally ambiguous even when the lexical categories are unambiguously
identified:

1. Put the block in the box on the table.

We will defer until later the discussion of whether the further information that is needed

to resolve the ambiguity is probabilistic or inferential, and whether the special graded
nature of SRNs can capture the probabilistic alternative. The relevant point is that a
significant component of the grammar induction and parsing problems as they are usually
understood remains to be dealt with once n-gram based POS taggers have done their work,
and the same appears to be true for the SRN as it is used in these experiments.

This observation should not be taken to deny that SRNs are useful as a component of
sentence processors. SRNs and related devices may be a very good way of building
stochastic part-of-speech disambiguators as an input to parsing proper. This seems to be
the role that the SRN plays in the modular architectures of St. John and McClelland
(1990), Berg (1992), Sharkey and Sharkey (1992), and Mikkulainen (1993, 1995) dis-
cussed below. Interestingly, Srinivas (1997) and Srinivas and Joshi (1994) have shown
that increasing the set of POS tags to include the sub-categorization or domain of
government information implicit in the lexicalist grammars discussed in section 5 in-
creases the effectiveness of such devices, and Kim, Srinivas, and Trueswell (1998) show
that SRNs can induce a tagger for such extended category sets. We shall also see below
that SRNs can in principle be used to look at string contexts that extend beyond the
sentential boundary. But none of these undoubted virtues suggest that it is correct to regard
grammar itself as in any sense an emergent property of these devices as presently used.

It is also worth noting that distributed representations potentially allow exponentially
greater efficiency in representation of stochastic finite state machines over those induced
by HMMs (Williams & Hinton, 1990) (although to the extent that SRNs seriously exploit
the potential of hidden units for efficiently distributing the representation of the FSM they
approximate, it becomes correspondingly harder to see how to associate structure building
operations of any kind with them directly.) It is not likely that the SRN itself will achieve
such efficiency because of the trade-off that it makes between full back-propagation
through time and on-line computation—see Pearlmutter (1995) for relevant discussion.
But if POS tagging is what SRN is actually doing, then we may not want to interpret
hidden unit states, but may rather prefer to exploit the efficient way in which they and
some of the other devices discussed by Williams and Hinton can exploit information
theoretic redundancy in text quite independently of grammar. For example, the Latent
Semantic Analysis (LSA) program of Landauer and Dumais (1997) when trained on large
volumes of text and tested on similarity judgements between words and passages showed
very high correlations with human similarity judgements. More recent work in the
framework using similarity measures between student essays (which LSA treats as
unordered bags of words) and instructional text for the relevant domain yielded correla-
tions with grades assigned to the essays by human assessors comparable to the correlation
across human graders themselves (Landauer, Laham, Rehder, & Schreiner, 1997). How-
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ever, despite its name and its very interesting performance, this result cannot be equated
with the delivery of a meaning, as anyone who does the thought experiment of running the
theory in the opposite direction to generate the student essays will agree.

. PSYCHOLOGICAL RELEVANCE OF SRN

A number of studies have investigated the fit of SRNs to human parsing performance. The
studies by Dell, Chang, and Giriffin (this issue) and Tabor and Tanenhaus (this issue) are
examples of this kind of work. Tabor and Tanenhaus advance the theoretical model via an
elaboration of the copying mechanism which the SRN uses to approximate Back-
propagation Through Time (BTT, Rumelhart, Hinton, & Williams, 1986; Pearlmutter
1995), and by a “gravitational” analysis using attractors obtained from a principal
components analysis of the patterns of activation on the hidden units to interpret them as
FSM states. The authors point out that these can be viewed as parse hypotheses which can
be mapped onto more traditional symbolic models (although as we have seen, the close
relation between POS tagging and SRNs makes it likely that such a translation will in
general be non-trivial, and that it may be seriously incomplete).

Tabor and Tanenhaus also provide a detailed comparison with the experimental
findings of McRae, Spivey—Knowlton, and Tanenhaus (1997) concerning the influence of
“thematic fit” of verbs and arguments in on-line sentence comprehension for minimal
pairs of sentences like (2a, b), in which the misleadingly better thematicddpds agent
than as patient in an indicative reading afrestedin comparison tocrook causes a
temporary increase in processing load later in sentence (a), when that reading leads to no
grammatical analysis.

2. a. The cop arrested by the detective was guilty.
b. The crook arrested by the detective was guilty.

The fit of the model in terms of predicting word by word processing effort as revealed by
increased reading times is impressive. The authors are justified in their claim that the SRN
can cover the same phenomenon as the structure-invoking “garden path” model (whose
most recent incarnation is Frazier & Clifton 1996), without building any structure at all.

However, the claim that this amounts to the “emergence” of grammar from the SRN
model seems premature. It remains the case that the only thing the SRN is doing is
predicting the next category in the sentence. It is actually not in the least surprising that
the SRN can do at least as well as the structural model. It is learning a finite state machine,
and we have seen that FSMs can do very well at category prediction for homogeneous
corpora. Earlier work by Tanenhaus’ own group has shown that structural properties of
sentences are confounded with frequency effects, and that when frequency is properly
controlled, there is no evidence for any residual purely structural preference. (See
Trueswell & Tanenhaus 1992; Trueswell, Tanenhaus, & Kello, 1993; Trueswell, Tanen-
haus, & Garnsey, 1994; Spivey—Knowlton, Trueswell, Tanenhaus, 1993; Spivey—Knowl-
ton et al. 1993).
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Nor does the success of the SRN in predicting processing difficulty on the basis of
frequency information alone justify any claim that the human processor works on the same
basis. Frequency is even more strongly confounded with semantic and pragmatic plausi-
bility, since word transition probabilities are compiled from coherent text corpora. As
Tanenhaus and colleague’s earlier papers are careful to point out, their results therefore do
not distinguish between a model of the processor like SRN that resolves ambiguity
entirely probabilistically and one where ambiguity is resolved on the basis of active
computation of semantic and/or pragmatic plausibility via inference.

There is evidence which favors the latter interpretation. First, the performance of
low-level Markovian POS taggers is actually not very good by the standards of human
sentence processing. The average length of the sentences in the Wall Street Journal corpus
is around 23.5 words. 97% precision means an error in over half the sentences of average
length in this type of written text, and Ratnaparkhi (1998) shows that in practice this is
about the proportion for all sentences in the corpus. (Using a 96.3% accurate tagger, he
finds only 47.7% of sentences in the Wall Street Journal corpus are error-free). This means
something other than n-gram frequency must be doing some of the work in humans. If
something else is doing some of the work, then it may be doing all of it.

There is also experimental evidence in work by Crain, Altmann, and Steedman, which
shows that parsing decisions are sensitive to the relative plausibility of the semantic
interpretations of rival analyses, which may depend on quite transient and rapidly-
changing properties of the referential context. This fact has implications even for sen-
tences presented in isolation (see Crain, 1980; Crain & Steedman, 1985; Altmann 1988;
Altmann & Steedman, 1988, and Steedman & Altmann 1989, for discussion).

They showed for example that the mention of a single policeman or a set of policemen
in the discourse immediately preceding examples like (2a) can effect the tendency to
assume that the verb is indicative rather than participial. The authors argued that this was
because the presence of multiple individuals or tokens of a given type in a hearer’s mental
model of the situation under discussion makes the use of a restrictive relative clause or
other modifier pragmatically felicitous, whereas the presence of a single individual of a
given type makes it redundant and infelicitous. Moreover, they argued that in the null
context where no policeman at all has been mentioned, so that a referent and attendant
presuppositions must be “accommodated” or added to the contextual model, the accom-
modation of one individual is less effortful than the accommodation of several together
with further distinguishing properties presupposed by the modifier.

If preferences for parsing decisions can be reversed by a few preceding context-setting
sentences, then it becomes implausible to argue that the human parser’s decision is made
on the basis of global frequencies collected over large volumes of input. While finite state
approximation techniques can be quite immediately generalized to sequences of words
and categories that cross sentence boundaries, as Seidenberg and MacDonald propose in
this issue, it is dangerous to assume that this will capture transient referential effects of the
kind established by these experiments. Since definite expressions can refer to entities that
are merely inferable from the things that have actually been mentioned, there seem to be
simply too many ways of getting sets of policemen into the context for it to be possible
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to collect appropriate statistics based on words and word senses alone. The only alterna-
tive seems to be to assume that interpretations are incrementally computed for rival
analyses, which are then compared, leading to rapid elimination of less plausible alter-
natives. But it is hard to believe that this can be done without a fuller grammatical analysis
than that implicit in the SRN.

The study of syntactic priming (Bock, 1986) in the paper by Dell et al. (in this issue)
might appear at first glance to encourage a more optimistic view. It uses a variant of the
simply recurrent architecture linking the context units of an SRN trained to associate
words in sequence with content vectors (or rather, a simulation using a transition network
of the successive states of such context units) to those of a production network producing
sequences from content. Crucially, pairs of sequences corresponding to active versus
passive surface forms are associated with the same content. Having trained the network,
the authors are able to show that a further presentation of a string in (say) active voice
biases immediately subsequent productions towards that pattern, even for different con-
tent, with results comparable to Bock’s subjects. As the authors claim, this shows that
apparently syntactic priming effects can emerge from implicit learning rather than from
rule-activation or structures in short-term memory.

However, this observation is entirely compatible with the idea that the nature of this
implicit learning lies in a change to the probabilities in an implicit finite state machine. As
we have seen, it does not follow that the rules themselves are implicit, or that interpre-
tation can be done on the basis of the probabilities alone. It merely shows that “syntactic
priming” is not necessarily syntactic at all. Nor does it follow that the analogous priming
effects in humans are mediated by actual probabilities, because of the confounding of
probability with actively computed semantics and pragmatic inference discussed in
connection with experiments by Tabor and Tanenhaus, Crain, and Altmann.

The relation of recurrent networks to finite state machines of a more traditional sort
such as POS taggers and HMMs (which is of course evident in Jordan’s elegant appli-
cation of recurrent networks to model coarticulation in speech and other motor control
problems) suggests a further direction in which connectionist models of syntactic pro-
cessing might evolve. The trend in symbolic stochastic language processing is away from
grammar-independent POS tagging, and towards a greater integration of probabilistic
information with the grammar and recursive parsing algorithms, and in particular with the
lexicon. This requires a rather different kind of mechanism.

IV. RECURSIVE AUTO-ASSOCIATIVE MEMORY AND GRAMMAR

A number of connectionist processors have used nets as distributed representations of
structure, and such networks can be viewed as encoding the thematic roles of propositions.
Early versions of the idea such as McClelland and Kawamoto (1986) were non-recursive,
but Pollack (1990) showed how recursively embedded structure could be built in such
rule-like nets, in an architecture called the Recursive Auto-Associative Memory (RAAM).
This was a more efficient version of an even simpler device called the Associative Net
(Willshaw, Buneman, & Longuet—Higgins, 1969; Willshaw, 1981). An associative net
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Figure 2. An associative net storing a single pointer.

acts as a distributed memory associating pairs of input and output vectors, as in Figure 2,
which represents a grid of horizontal input lines and vertical output lines with binary
switches (triangles) at the intersections.

To store an association between the input vector on the left and the output vector along
the top, switches are turned on (black triangles) at the intersection of lines which
correspondd a 1 inboth input and output patterns. To retrieve the associate of the input,

a signal is sent down each horizontal line corresponding 1 in theinput. When such

an input signal encounters an “on” switch, it increments the signal on the corresponding
output line by one unit. These lines are then thresholded at a level corresponding to the
number of on-bits in the input. With such thresholding, an associative memory can store
a number of associations in a distributed fashion, with interesting properties of noise- and
damage-resistance. The point of the device for present purposes is that the association of
an input vector with an output vector can be regarded as analogous to storing one or more
pointers between addresses. Since the output can in turn be used as an input and associated
with a further output, an associative memory can be used to store recursive structures of
any depth, subject only to information-theoretic limits dependent upon size. Smolensky’s
1990 tensor product representation is a generalization of the same idea.

The RAAM mainly differs from the primitive associative net in using hidden units
rather than observable switches to encode the association more efficiently. This is
achieved by realizing the device as a three-level feed-forward network with the input and
output units structured inta sectors each large enough to copy the hidden units into,
wheren is the maximum branching factor of the nodes in the structure. (Alternatively, as
in the case of the associative net, we could regard each pointer as the responsihility of
separate associative devices. We shall see that we do not actually need the ordering
information implicit in the standard RAAM). A binary version of the device is sketched
in Figure 3.
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Figure 3. Architecture of a binary recursive auto-associative memory (RAAM).

A recursive structure can be stored bottom-up in the RAAM starting with the leaf
elements by recursively auto-associating vectors comprising mjhiiden unit activation
patterns that resulted from encoding their daughters. The activation pattern that results
from each auto-association of the sets of daughters can then be treated as the address of
the parent. Since by including finitely many further units on the input and output layers
we can associate node-label or content information with the nodes (a variant that is
sometimes referred to as a “Labelling” RAAM, or LRAAM), this device can store
recursive parse structures, thematic representations, or other varieties of logical form of
sentences.

The device should not be confused with a parser: it is trained with fully articulated
structures which it merely efficiently stores. However, the hidden units can be regarded as
encoding to some approximation the context-free productions that defined those struc-
tures, in a fashion similar to the way Hinton (1990b) encoded part-whole relations. In that
sense the device can be held to be capable of inducing the corresponding grammar from
the trees (Pollack, 1990, p. 88—89). It is also the basis for a very limited degree of
generalization (p. 94, also of a corresponding tendency to decode novel trees as members
of the training set). In theory this generalization could be recursively productive, but in
practice this does not seem to have been achieved, possibly because of sever practical
limitations on RAAM, which is slow to train, and inherits poor scaling properties from its
use of back-propagation. Associative devices more closely related to Willshaw nets, such
as the Holographic Reduced Representations (HRR) proposed by Plate (1991, 1994, 1997)
are a promising alternative for both recursive structure building and grammar represen-
tation.

Pollack proposed to augment the trained RAAM with a variant of the recursive network
parsers discussed in the last section to make a parser-interpreter, along lines suggested by
St. John and McClelland (1990) for its non-recursive predecessor, and there have been
many related proposals since, including Berg (1992); Sharkey and Sharkey (1992); and
Mikkulainen (1993, 1995). The earlier remarks about limitations on the sense in which
SRNs can be said to represent grammars, as opposed to more primitive notions like current
state of the FSM or corresponding part-of-speech, show up in the extent to which such
devices generalize to truly novel sentence structures. Some of the above authors augment



626 STEEDMAN

the SRN/RAAM with further modules, but to the extent that these duplicate the standard
finite state control and stack architecture of the symbolic approach, they lack both the
simple virtues of the RAAM and the wild romance of the pure SRN.

This suggests that it might be better to reserve associative devices like RAAM and
HRR for inducing the grammar, in the following sense. Linguists and other symbolists
often think of grammar induction as the problem of inducing structure from strings, a
problem to which without some external source of information an exact solution is
impossible for all interesting cases (Gold, 1967). While for interesting classes of grammar
the task can technically be approximated to any degree of exactness, as is shown by the
work considered here, the amounts of data and the computational resources that are
required for realistically sized cases are psychologically quite daunting. This has led to
symbolist claims of innate linguistic knowledge which any red-blooded empiricist is
bound to bridle at. However, the only plausible source for such pre-grammatical knowl-
edge has always been semantics, under the assumption that the child comes to language
learning equipped with universal conceptual structures on which language-specific gram-
mar is rather directly hung by pairing words and sentences with conceptual structures
describing the situation of utterance. (See Chomsky, 1965, although Chomsky has always
insisted that our access to the detailed nature of conceptual structures, other than via
syntax itself, is so inadequate as to make the observation empirically useless).

Gleitman (1990) and Fisher, Hall, Rakowitz, and Gleitman (1994) have rightly pointed
to the dangers of identifying “situation of utterance” with “instantaneous state of the
physical world,” and warned against the assumption that the situation uniquely identifies
the relevant conceptual structure or proposition. But Siskind (1996) has shown that under
more reasonable assumptions about the nature of the mental representations and the nature
of the ambiguity, the information needed for verb learning is available.

The relevance of this point for the present discussion is that conceptual structures can
reasonably be regarded as the structural input to a device such as the RAAM for purposes
of induction of the underlying grammar. Of course, this is not the whole of language
acquisition, because conceptual structure represents universal grammar rather than any
specific language—indeed, conceptual structures should properly be regarded as unor-
dered. However, if we regard the RAAM or related device as storing word-meanings as
logical forms, rather than sentences, then we can pair those logical forms with language-
specific categories. In any of the lexicalist frameworks discussed in the next section, such
categories amount to a specification of most if not all of the language-specific grammar.

Such categories could provide the input to a standard-architecture modular symbolist
parser using RAAM, HRR, or some other associative device to build interpretable
structure, the distinctively connectionist contribution lying in the distributed lexical entries
and logical form. The interesting point of such a representation is that we might assume
that during training conceptual structures are available prelinguistically, and result rela-
tively directly from the structure of connections to the sensorium, short term memory, and
the like. Much of this structure is undoubtedly the result of biological evolution over a
very long period, as Wilkins and Wakefield (1995) have pointed out. At higher levels,
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such structure may arise from non-linguistic network concept-learning of the kind dis-
cussed by Hinton (1990b), without mediating symbolic forms.

V. NETWORKS AND THE LEXICON

The representations that would be built by the RAAM or related distributed associative
memory under these assumptions would embody the traditional local domain defined by
lexical entities like verbs and their arguments including the subject. There is a growing
consensus across linguistic theories that the lexicon is the main locus of language-specific
grammatical information, and that what we might loosely call “heads” are lexically
specified as controlling such a local domain, as in Lexical-Functional Grammar (LFG, see
Bresnan, 1982), Combinatory Categorial Grammar (CCG, see Steedman, 1985, 1996),
Head-Driven Phrase—Structure Grammar (HPSG, see Pollard & Sag, 1987, 1994), Lexical
Tree—Adjoining Grammar (LTAG, see Joshi & Schabes, 1992), and certain versions of the
Government-Binding theory (GB, see e.g., Hale & Keyser, 1993 and Grimshaw, 1997).

The advantage of such theories lies in a closer integration of the lexicon, syntax,
semantics, and phonology including intonation, as called for by Kelly (1992); Kelly and
Martin (1994), and by Christiansen, Allen, and Seidenberg (1998). For example, in CCG,
each word and constituent is associated with a directional syntactic type, a logical form,
and a phonological type. “Combinatory” syntactic rules combine such entities to produce
not only standard constituents associated with the same three components, such as
predicates or VPs, but also non-standard constituents corresponding to substrings such as
I have found The latter are involved in phenomena such as coordination and intonational
phrasing, as in (3) and (4) (in which % marks an intonational phrase boundary marked by
a rise and/or lengthening, and capitals indicate pitch accent or stress).

3. You have lost, and | have found, a quarter.
4. Q: 1know you lost epive, but what have yowounp?
A: | have Founb% a QUARTER.

The intonational phrasing in the latter example is related in Steedman (1991) to discourse-
information structural notions like theme/topic, rheme/comment, and focus/new informa-
tion. Such non-standard constituents are also claimed by Crain and Steedman (1985) and
Altmann and Steedman (1988) to provide direct grammatical support for the fine-grain
incremental interpretation by the processor that is implicated by Crain’s and Altmann’s
experimental results.

Within such frameworks, grammar acquisition reduces to decisions such as whether the
syntactic type corresponding to (say) thalking concept looks for its subject to the left
or to the right in the particular language that the child is faced with—in CCG terms,
whether it isSSINP or S'NP. Since directionality can be represented as a value on an input
unit, and since the categories themselves can be defined as finite state machines, this can
be handled by network lexicon learning using devices like RAAM, SRN, and the like. Part
of the interest of this proposal lies in the possibility that such learning might capture
word-order generalizations over the lexical categories, a point that is made by Christiansen
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and Devlin (1997). It is also important to note once more that any assumption of a

covering grammar, not transparent to semantics in this way, such as the Finite State
Machine implicit in the SRN, complicates the task of associating meanings with categories
very greatly, and appears to pose equivalent difficulties for any attempt to explain the

evolution of the language faculty.

These observations suggest that there might be a closer relation between the connec-
tionist and symbolist theories than is usually assumed. Grimshaw in particular relates the
forms that categories can take to a constraint-satisfaction problem that can be elegantly
solved within Optimality Theory (Prince & Smolensky, 1997) a branch of the Neural
Network literature discussed by Smolensky in this issue. Since this process of ordered
constraint satisfaction is best seen as a definition of the notion “possible human lexicon,”
rather than as a process that the parser goes through, the connection is likely to be at the
level of language acquisition and machine learning, rather than processing as such, as in
the work discussed by Seidenberg 1997 and Seidenberg and MacDonald here and
elsewhere. Constraints such as that semantically related categories (such as tensed
transitive verbs) tend to have the same directionality in a given language (such as the
English SVO order) are “soft” constraints, which can have exceptions (such as English
auxiliary verbs)—one of the main motivations behind Optimality Theory. Since Opti-
mality-Theoretic constraint systems can be regarded (under some assumptions at least) as
defining Finite State Transducers (Eisner, 1997), it seems likely that the associative
memory -based lexical acquisition device sketched above might be suited to acquiring
such soft-constraint-based lexicons, as an interesting alternative to the learning mecha-
nisms proposed by Tesar (1997). If so, then the claim that the form of possible lexicons
was “emergent” from the neural mechanism would have some force.

A similar tendency towards lexical involvement is evident in current statistical com-
putational linguistic research as well. Recent proposals by Collins (1997) and Charniak
(1997) move away from autonomous Markovian POS tagging and prefiltering, and
towards a greater integration of probabilities with grammar. Collins in particular uses a
standard dynamic-programming-based parsing algorithm under the guidance of probabil-
ities based on dependencies between heads—such as those between main verbs and the
nouns that head their arguments. This architecture is quite directly compatible with
lexicalized grammars such as CCG, HPSG, and TAG. It would be interesting to investi-
gate the relation between Collins’ procedure for inducing these probabilities and the
neural mechanisms discussed here, which again seem well-suited to capture such depen-
dencies.

IV. SEMANTICS AND NEURAL NETWORKS

To observe that both resolution of syntactic non-determinism by human parsers and
language acquisition appear to depend upon a structurally explicit semantics manipulated
by stack automata might appear to be a sort of underhand appeal for capitulation to the
symbolist view. Instead, | want to argue that the most important contribution of sub-
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symbolic theories to the problem of language understanding may be at the level of the
semantics, rather than syntax, for the following reason.

The conclusion that the decisions of the human sentence processor depend on seman-
tics is quite depressing for those of us who need to build practical computational parsers,
because we know that the semantics in question is very poorly understood, and that there
are no knowledge representation systems that can support it affordably for other than
small restricted domains. For that reason we can expect applied computational linguists to
keep on using statistics instead, despite the fact that we can be pretty sure that this tactic
will never be entirely successful.

However, there is no reason for connectionists to be inhibited in this way, and there is
a good reason for them to concentrate their attention elsewhere. The reason our grasp of
semantics is so inadequate is undoubtedly that the conceptual primitives that underlie
language are grounded in very obscure ways in our physical, social, and intellectual
interactions with the real world. It is likely that in many cases the forms they take are
directly related to the physical structure of the sensory-motor apparatus. In most cases it
seems likely that, as Fodor (1975) has claimed, there really is very little decomposition of
meaning below the level of the morpheme. That is, even if one beligya Fodor,
whose arguments to the contrary do not really apply to lexicalized grammars of the kind
assumed here) that the logical form of the vkitbinvolves the composition of a CAUSE
predicate and a DIE predicate, that is about as far as it goes. The CAUSE primitive doesn’t
seem to want to decompose any further, and in fact shows signs of being distinct from the
translation of the wordcause In fact all one seems to be able to do is to define the
inference system directly in terms of meaning postulates relating these morpheme- or
near-morpheme- level primitives directly, as Fodor proposed. This non-decomposability
of lexical meaning shows itself in may ways, from the nonexistence of a concept that
means exactly the same thing waterproofbut applies to non-physical entities such as
integers, to the fuzziness of the verb classification schemata of Levin (1993) discussed by
Dang, Rosenzweig, and Palmer (1997). The latter looks more like the result of a principal
components or factor analysis than a semantically interpretable set of features, despite its
strong syntactic foundation.

This again seems to be exactly the kind of system that the sub-symbolic approach is
best-suited to analyze. If the above remarks are correct then we would not expect a
principal components analysis to be interpretable in the way that we expect the results of
parsing to be, and would be happy to tolerate a high degree of cognitive impenetrability
in return for the efficiency and learnability of distributed representation. This again would
really be emergence worthy of the name.

VII. CONCLUSION: PROJECT FOR A SCIENTIFIC
PSYCHOLINGUISTICS

A project of the kind outlined above for the development of a grounded semantics will
require starting at a much earlier stage than the onset of language learning. It is likely that
it will have to recapitulate in neural computational terms the kind of program of
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sensory-motor development outlined in Piaget (1952, though much theoretical baggage
can be dispensed with, particularly in the light of more recent research on the status of
“preoperational” and “formal operational” components). Work along these lines has
already been sketched in more symbolic computational terms by Drescher (1991) and
Siskind (1995).

It is likely that such a research program would proceed by first conceptualizing primary
bodily actions and sensations, then coordinating perception and primary actions like
reaching, then conceptualizing identity, permanence and location of objects, first inde-
pendent of their percepts, then of the particular actions they are involved in, amounting to
the internalization of the components of a stable world independent of the child’s actions.
Later stages would have to include the conceptualization of more complex events
including intrinsic actions of objects themselves (such as falling), translations and events
involving multiple participants, intermediate participants including tools, and goals. At
this final stage of purely sensory-motor development most of the prerequisites for
language learning would be established, perhaps embedded in RAAM or some other
associative memory, and could be used to support a program of inducing a similarly
layered sequence of linguistic categories such as: deictic terms based on a proximal/distal
dimension (whose central place in language development with respect to reference and
definiteness is discussed by Lyons, 1977—cf. Freud, 1920, pp. 11-16 for a revealing case
study), markers of topic, comment and contrast, common nouns, spatial and path terms,
causal verbs, modal and propositional attitude verbs, and temporal terms. It is likely that
the semantic theory that would emerge from this work would be rather unlike anything
proposed so far within standard logicist frameworks. Such a semantics would be likely to
make us view phenomena like quantification, modality, negation, and variable-binding in
new ways, within a unified theory combining symbolic and neurally-grounded levels.

It is probably too soon to tell whether the distributed computational devices of the
connectionist approach make such an ambitious research program any more feasible than
it was at the time of Freud’s (195%®roject for a Scientific Psychologsgrguably the first
manifesto for a cognitive neuroscience (albeit a localist one), which he abandoned forever
in 1895 in favor of the symbolic approach. The success of the present project is likely to
depend crucially on the involvement of more reliable and biologically plausible network
models than the three simple types of feed-forward networks considered above. (In
particular, in order to concentrate on the general relation of this class of models to
symbolist alternatives, | have only referred in passing to some well-known problems with
techniques specifically based on back-propagation, which include poor scaling of data-set
size and learning times as the number of connections increases. Hinton and Gharamani
1997 presents an interesting recent alternative.) Nevertheless, the papers collected here
make a convincing case that the attempt must be made, and has already begun.
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