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This Special Issue on Connectionist Models of Human Language Processing
provides an opportunity for an appraisal both of specific connectionist
models and of the status and utility of connectionist models of language in
general. This introduction provides the background for the papers in the
Special Issue. The development of connectionist models of language is
traced, from their intellectual origins, to the state of current research. Key
themes that arise throughout different areas of connectionist psycholinguis-
tics are highlighted, and recent developments in speech processing, mor-
phology, sentence processing, language production, and reading are de-
scribed. We argue that connectionist psycholinguistics has already had a
significant impact on the psychology of language, and that connectionist
models are likely to have an important influence on future research.

I. INTRODUCTION

Connectionist modeling of language processing has been highly controversial. Some have
argued that language processing, from phonology to semantics, can be understood in
connectionist terms; others have argued tiwaspects of language can be fully captured

by connectionist methods. And the controversy is particularly heated because for many,
connectionism is not just an additional method for studying language processing, but an
alternativeto the traditional symbolic accounts. Indeed, the degree to which connection-
ism supplants, rather than complements, existing approaches to language is itself a matter
of debate (see the discussion papers in Part Il of this issue). Moreover, the debate over
connectionist approaches to language is important as a test of the viability of connectionist
models of cognition more generally (Pinker & Prince, 1988).
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This Special Issue aims to provide the basis for an appraisal of the current state of play.
In Part |, leading connectionists detail the most recent advances within key areas of
language research. Gaskell and Marslen—Wilson present statistical simulations exploring
the properties of a distributed connectionist model of speech processing. Plunkett and
Juola introduce a new model of English past tense and plural morphology. Tabor and
Tanenhaus describe their latest progress in using recurrent networks to model sentence
processing within a dynamic framework. Dell, Chang and Griffin report on three models
of language production, including a novel network model of syntactic priming. Finally,
Plaut presents a new connectionist model of sequential processing in word reading. Part
Il provides an evaluation of the status and prospects of connectionist psycholinguistics
from a range of viewpoints. Seidenberg and MacDonald argue for a radical connectionist
approach to language acquisition and processing; Smolensky argues for an integration of
connectionist and symbolic approaches; and Steedman assesses connectionist sentence
processing from the point of view of the symbolic cognitive science tradition.

In this introduction, we aim to set the scene for the Special Issue, providing a brief
historical and theoretical background as well as an update on current research in the
specific topic areas outlined below. Backgroundwe sketch the historical and intellec-
tual roots of connectionism and outline some of the key debates concerning connectionist
psycholinguistics. We then consider the five central topics considered in Part | below:
Speech Processinylorphology Sentence Processinganguage ProductionandRead-
ing. These topics illustrate the range of connectionist research on language discussed in
more depth in the papers in Part |I. They also provide an opportunity to assess the strengths
and weaknesses of connectionist methods across this range, setting the stage for the
general debate concerning the validity of connectionist methods in Part Il. Finally, we sum
up and consider the prospects for future connectionist research.

II. BACKGROUND

From the perspective of modern cognitive science, we tend to see theories of human
information processing as borrowing from theories of machine information processing.
Symbolic processing on general purpose digital computers has been the most successful
method of designing practical computers. It is therefore not surprising that cognitive
science, including the study of language processing, has aimed to model the mind as a
symbol processor.

Historically, however, theories of human thought inspired attempts to build computers,
rather than the reverse. Mainstream computer science arises from the view that cognition
is symbol processing. This tradition can be traced to Boole's (1854) suggestion that logic
and probability theory describe “Laws of Thought”, and that reasoning in accordance with
these laws can be conducted by following symbolic rules. It runs through Turing’s (1936)
argument that all thought can be modeled by symbolic operations on a tape (i.e., by a
Turing machine), through von Neumann’s design for the modern digital computer, to
modern computer science, artificial intelligence, generative grammar and symbolic cog-
nitive science.
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Connectionism (also known as “parallel distributed processing”, “neural networks” or
“neuro-computing”) has a different origin, in attempts to design computers inspired by the
brain. McCulloch and Pitts (1943) provided an early and influential idealization of neural
function. In the 1950s and 1960s, Ashby (1952), Minsky (1954), Rosenblatt (1962) and
others designed computational schemes based on related idealizations. These schemes
were of interest because these systdearned from experience, rather than being
designed. Such “self-organizing” or learning machines therefore seemed plausible as
models of learned cognitive abilities, including many aspects of language processing
(although e.g., Chomsky, 1965, challenged the extent to which langsagarned).
Throughout this period connectionist and symbolic computation stood as alternative
paradigms for modeling intelligence, and it was unclear which would prove to be the most
successful. But gradually the symbolic paradigm gained ground, providing powerful
models in core domains, such as language (Chomsky, 1965), and problem solving (Newell
& Simon, 1972). Connectionism was largely abandoned, particularly in view of the
limited power of then current connectionist methods (Minsky & Papert, 1969). But, more
recently, some of these limitations have been overcome (e.g., Rumelhart, Hinton &
Williams, 1986), re-opening the possibility that connectionism constitutes an alternative to
the symbolic model of thought.

What does the “neural inspiration” behind connectionism mean in practice? At a coarse
level, the brain consists of a very large number of simple processors, neurons, which are
densely interconnected into a complex network. These neurons do not appear to tackle
information processing problems alone—rather, large numbers of neurons operate simul-
taneously and co-operatively to process information. Furthermore, neurons appear to
communicate numerical values (encoded by firing rate) rather than symbolic messages,
and therefore neurons can be viewed as mapping numerical inputs (from other neurons)
onto a numerical output (which is transmitted to other neurons). Connectionist nets mimic
these properties: They consist of large numbers of simple processors, knawitsgsr
nodes), which are densely interconnected into a complex network, and which operate
simultaneously and co-operatively; they transmit numerical values; and the output of a
unit is usually assumed to be a function of its inputs. But connectionist nets are not
realistic models of the brain (see, e.g., Sejnowski, 1986), either at the level of individual
processing unit, which drastically oversimplifies and knowingly falsifies many features of
real neurons, or in terms of network structure, which typically bears no relation to brain
architecture. One research direction is to seek increasing biological realism (e.g., Koch &
Segev, 1989). But in the study of aspects of cognition such as language where few
biological constraints are available, research has concentrated instead on modeling human
behavior. Thus, data is taken from cognitive psychology, linguistics and cognitive neu-
ropsychology, rather than neuroscience. Here, connectionist nets must compete head-on
with symbolic models language processing.

We noted that the relative merits of connectionist and symbolic models of language are
hotly debated. But should they be in competition at all? Advocates of symbolic models of
language processing assume that symbolic processes are somehow implemented in the
brain: They too are connectionists, at the levelimplementation They assume that
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language processing can be described both at the psychological level, in terms of symbol
processing, and at an implementational level, in neuroscientific terms (to which connec-
tionism approximates). If this is right, then connectionist modeling should start with
symbol processing models of language processing, and implement these in connectionist
nets. Advocates of this view (Fodor & Pylyshyn, 1988; Pinker & Prince, 1988) typically
assume that it implies that symbolic modeling is entirely autonomous from connectionism;
symbolic theories set the goalposts for connectionism, but not the reverse. Chater and
Oaksford (1990) have argued that, even according to this view, there will be a two-way
influence between symbolic and connectionist theories, since many symbolic accounts can
be ruled out precisely because they could not be neurally implemented to run in real time.
But most connectionists in the field of language processing have a more radical agenda:
To challenge, rather than reimplement, the symbolic approach.

Before discussing research in the key domains discussed in this Special Issue, we set
out some recurring themes in discussion of the value of the connectionist approach to
language:

Learning

Connectionist nets typically learn from experience, rather than being fully prespecified by
a designer. By contrast, symbolic models of language processing are typically fully
prespecified and do not learn.

Generalization

Few aspects of language are simple enough to be learned by rote. The ability to generalize
to novel cases is thus a critical test for many connectionist models.

Representation

Because connectionist nets learn, their internal codes are devised by the network to be
appropriate for the task. Developing methods for understanding these codes is an impor-
tant research problem. Whereas internal codes may be learned, the inputs and outputs to
a network generally use a code specified by the designer. The choice of code can be crucial
in determining network performance. How these codes relate to standard symbolic
representations of language is contentious.

Rules versus Exceptions

Many aspects of language exhibit “quasi-regularities”—regularities which usually hold,
but which admit exceptions. In a symbolic framework, quasi-regularities may be captured
by symbolic rules, associated with explicit lists of exceptions. Symbolic processing
models often incorporate this distinction by having separate mechanisms for regular and
exceptional cases. In contrast, connectionist nets may provide a single mechanism which
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can learn general rules, and their exceptions. The viability of such “single route” models
has been a major point of controversy, although it is not intrinsic to connectionism. One
or both separate mechanisms for rules and exceptions could themselves be modeled in
connectionist terms (Pinker, 1991; Coltheart, Curtis, Atkins & Haller, 1993). A further
question is whether networks really learn rules at all, or merely approximate rule-like
behavior. Opinions differ on whether the latter is an important positive proposal, which
may lead to a revision of the role of rules in linguistics (Rumelhart & McClelland, 1986;
Smolensky, 1988; but cf. Smolensky, this issue), or whether it is fatal to connectionist
models of language (Pinker & Prince, 1988).

With these general issues in mind, we consider the five core domains which are the
focus of discussion in Part | of this Special Issue.

[ll. SPEECH PROCESSING

Connectionist modeling of speech processing was initiated by the influential TRACE
model (McClelland & Elman, 1986). This model has iateractive activatiomarchitec-

ture: It consists of a sequence of “layers” of units. Units in the first layer are specific to
phonetic features, units in the second layer to phonemes, and units in the third layer to
words. Within and between layers, there are inhibitory connections between units which
stand for incompatible states of affairs. For example, there are inhibitory connections
between word units, so that “candidate” words compete. Similarly, excitatory connections
exist between units that stand for mutually reinforcing states of affairs. In addition to the
standard interactive activation architecture, which we shall encounter repeatedly below,
TRACE includes a feature to deal with the temporal dimension of speech: There are many
copies of the entire network, standing for different points in time in the utterance, with
appropriate connections between the units in each copy. Unlike later models, TRACE is
completely prespecified (i.e., it does not learn).

Theinteractivecharacter of TRACE embodies a controversial theoretical claim. Many
researchers assume that speech processing involves the successive computation of in-
creasingly abstract levels of representation, and assume no feedback from more abstract
to less abstract levels. This kind of account is sometimes known as “bottom-up” and can
also be realized in connectionist networks, as we shall see below. TRACE, by contrast,
allows information to flow both bottom-up and top-down. Whether speech processing is
bottom-up or interactive is highly controversial, and the same debate rages in the reading
literature and throughout perception (e.g., Fodor, 1983; Marr, 1982).

TRACE captures a wide range of empirical data, such as the apparent influence of
lexical context on phoneme identification, and the categorical aspects of phoneme per-
ception. In addition, TRACE makes empirical predictions which appear to be incompat-
ible with any bottom-up model. In natural speech, the pronunciation of a phoneme is
altered by the surrounding phonemes: This is known as coarticulation. The speech
processing system takes account of this in phoneme recognition—this is called “compen-
sation for coarticulation” (CFC). CFC appears to provide a way of detecting whether
lexical information feeds back, top-down, to the phoneme level. EIman and McClelland
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(1988) considered CF&crossword boundaries, for example, a word-final /s/ influencing

a word-initial /t/ as inChristmas tapesif the lexical level feeds back to phoneme level,

the compensation of the /t/ should still occur when the /s/ relies on lexically driven
phoneme restoration for its identity (i.e., in an experimental condition in which the identity
of /s/ in Christmasis obscured, the /s/ should be restored and thus CFC should proceed
as normal). TRACE does indeed make this prediction; and it is not obvious that a
bottom-up account of speech perception could make the same prediction. ElIman and
McClelland (1988) conducted the crucial experiment and confirmed TRACE's prediction.

It has recently been argued, however, that bottom-up connectionist models can, despite
appearances, capture these results. Norris (1993) traingichgle recurrent network
(SRN) (introduced by Elman, 1990—see Steedman, this issue, for a description of this
architecture) on input and output consisting of words (from a 12 word lexicon) presented
one phoneme at a time. Input phonemes were represented by vectors of phonetic features,
and these features could have intermediate values, corresponding to ambiguous phonemes.
The output layer consisted of one unit for each phoneme. When the net received input with
an ambiguous first word-final phoneme and ambiguous initial segments of the second
word, a parallel to CFC was observed: The percentages of /t/ and /k/ responses to the first
phoneme of the second word depended on the identity of the first word, as in Elman and
McClelland’'s experiment. But the explanation for this pattern of results cannot be
top-down influence from units representing words, because the net has no words units and
is, in any case, purely bottom-up.

Norris’ small scale example is suggestive, but the question remains: Would a bot-
tom-up net trained on natural speech show the same effect? Shillcock, Lindsey, Levy and
Chater (1992) trained a recurrent network (a close variant of the SRN) on phonologically
transcribed conversational English, where inputs and outputs to the network were repre-
sented in terms of phonetic features. As in Norris’ simulations, there was no lexical level
of representation, and processing was strictly bottom-up. Nonetheless, phoneme restora-
tion followed the pattern that ElIman and McClelland explained by lexical influence.

How can bottom-up processes mimic lexical effects? Shillcock et al. (1992) argue that
restoration occurs on the basis of statistical regularities at the phonemic level, rather than
lexical influence. It just happens that the words used in EIman and McClelland’s (1988)
experiment were more statistically regular at the phonemic level than the non-words with
which they were contrasted. This was confirmed by a statistical analysis of the corpus of
natural speech on which Shillcock et al.’s net was trained.

Further evidence for the ability of bottom-up models to accommodate apparently
lexical effects on speech processing was provided by Gaskell, Hare and Marslen—Wilson
(1995). They trained an SRN version of the Shillcock et al. model to map a systematically
altered featural representation of speech onto a canonical representation of the same
speech, and found that the network showed evidence of lexical abstraction (i.e., tolerating
systematic phonetic variation, but not random change). More recently, Gaskell and
Marslen—-Wilson (1997) have added a new dimension to the debate, presenting an SRN
network in which sequentially presented phonetic input for each word were mapped onto
corresponding distributed representations of phonological surface form and semantics.
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Based on the ability of the network to model the integration of partial cues to phonetic
identity and the time course of lexical access, they suggested that distributed models may
provide a better explanation of speech perception than their localist counterparts (e.g.,
TRACE). An important challenge for such distributed models is to accommodate the
simultaneous activation of multiple lexical candidates necessitated by the temporal am-
biguity of the speech input (e.g., /keep/ could be the beginning of bafitain and
captive. The coactivation of several lexical candidates in a distributed model results in a
semantic “blend” vector. Through statistical analyses of vector spaces, Gaskell and
Marslen—-Wilson (this issue) investigate the properties of such semantic blends, and apply
the results to explain some recent empirical speech perception data.

The interactivevs bottom-up debate illustrates how the introduction of connectionist
models has led to unexpected theoretical predictions, and promoted further empirical
research seeking to provide definitive evidence for either the interactive (e.g., Samuel,
1997) or the bottom-up approach (e.g., Pitt & McQueen, 1998).

IV. MORPHOLOGY

One of the connectionist models that has created the most controversy is Rumelhart and
McClelland’'s (1986) model of the learning of English past tense. The English past tense
is a quasi-regular mapping, traditionally assumed to require two symbolic routes. This
dual route account appears to be backed up by a U-shaped pattern of acquisition—
oversimplifying, children appear initially correct with irregulars, then fail due to over-
regularization, and finally, re-establish the irregulars correctly. This has traditionally been
explained by assuming that the child initially uses a memorization route, which is then
overtaken by a rule-based route, and finally the correct balance between the two is
established.

Rumelhart and McClelland (1986) argued that this pattern can, however, be explained
using a single processing route. They trained a single layer network to map from roots to
past tense forms of words, using the perceptron learning algorithm (Rosenblatt, 1962).
They used a “wickelfeature” representation, which encodes triples of consecutive ele-
ments in the phoneme string.

When first trained on 10 verbs, and then exposed to 420 verbs, the net approximated
a U-shaped learning curve. After the first training stage, the network performed perfectly
on the 10 verbs getting irregulars and regulars correct. Early in the second stage, it tended
to regularize irregular verbs while getting regulars correct. Finally, towards the end of
training the network again approached perfect performance on all verbs.

The model has, however, faced considerable criticism. First, the wickelfeature repre-
sentation has been attacked (e.g., Pinker & Prince, 1988), and later models have switched
to other styles of representation. Second, and more fundamental, the U-shaped learning
appears to be an artifact of suddenly increasing the total number of verbs (from 10 to 420),
a discontinuity which has no developmental justification (Pinker & Prince, 1988).

Plunkett and Marchman (1991), however, have shown U-shaped learning for a net
trained with afixedtraining set. They used a feed-forward network with a hidden unit
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layer, trained on a vocabulary of artificial verb stems and past tense forms, patterned on
regularities in the English past tense. With a constant training vocabulary, they obtained
classical U-shaped learning, and also observed various selective micro U-shaped devel-
opmental patterns found in children’s behavior. For example, the net was able to simulate
a number of subregularities between the phonological form of a verb stem and its past
tense form (e.gsleep— slept keep— kep) not captured by Rumelhart and McClelland’s
(1986) model. Subsequently, Plunkett and Marchman (1993) also obtained similar results
using an incremental, and perhaps more realistic, training regime. Following initial
training on 20 verbs, the vocabulary was gradually increased to 500 verbs. This incre-
mental training regime significantly improved the net’s overall performance. This work
also suggested an intriguing theoretical claim: That a critical mass of verbs is needed
before a change from rote-learning (memorization) to system-building (rule-like gener-
alization behavior) can occur. Plunkett and Juola (this issue) find a similar critical mass
effect in their model of English noun and verb morphology. They analyzed the develop-
mental trajectory of a feed-forward network trained to produce the plural form for 2280
nouns, and the past tense form for 946 verbs. The model exhibited patterns of U-shaped
development for both nouns and verbs (with noun inflections acquired earlier than verb
inflections), and also demonstrated a strong tendency to regularize deverbal nouns and
denominal verbs.

However, Prasada and Pinker (1993) have argued that connectionist models implicitly
depend on an artifact of the idiosyncratic frequency statistics of English. They focus on
the defaultinflection of words (e.g.,ed suffixation of English regular verbs). The default
inflection of a word is assumed to be independent of its phonological shape and to occur
unless the word is marked as irregular. Prasada and Pinker argue that connectionist models
generalize according to frequency and surface similarity. Regular English verbs have a
high type frequency but a relatively low token frequency, allowing a network to construct
a broadly defined default category. By contrast, irregulars have low type frequency and
high token frequency, which permits the memorization of the irregular past tenses in terms
of a number of narrow phonological subcategories (e.g., one farahaternation insing
— sang ring — rang, another for the-e alternation ingrow — grew, blow — blew, etc.).
Prasada and Pinker (1993) show that the default generalization in Rumelhart and Mc-
Clelland’s (1986) model depends on a similar frequency distribution in the model’s
training set. They furthermore contend that no connectionist model can accommodate
default generalization for a class of words which have both low type frequency and low
token frequency, such as the default inflection of plural nouns in German (see Clahsen,
Rothweiler, Woest & Marcus, 1993; Marcus, Brinkmann, Clahsen, Wiese, Woest &
Pinker, 1995). If true, such lack of cross-linguistic validity would pose serious problems
for connectionist models of morphology.

However, recent connectionist work has addressed minority defaults. Hare, EIman and
Daugherty (1995) trained a multi-layer feed-forward network (with additional “clean-up”
units—see Plaut, this issue, for an explanation) to map between phonological represen-
tations of stems and past tenses for a set of verbs representative of very early Old English.
The training set consisted of five classes of irregular verbs plus one class of regular
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verbs—each class containing the same number of words. Thus, words taking the default
generalizationed formed a minority (i.e., only 17%). But the net learned the appropriate
default behavior even when faced with a low-frequency default class. Indeed, it appears
that generalization in neural networks may not be strictly dependent on similarity to
known items. Hare et al.’s results show that if the non-default (irregular) classes have a
sufficient degree of internal structure, default generalization may be promoted by the lack
of similarity to known items.

Moreover, Hahn and Nakisa (in press) provide problems for the dual route approach.
They compared connectionist and other implementations of rule and memaorization routes,
against a single memorization route, and found that performance was consistently superior
when the rule-route wasot used, on a comprehensive sample of German nouns.

Finally, rule-like and frequency-independent default generalization may not be as
pressing a problem for connectionist models as Clahsen et al. (1993) and Marcus et al.
(1995) claim. Reanalyzing data concerning German noun inflection (in combination with
additional data from Arabic and Hausa), Bybee (1995) showed that default generalization
is sensitive to type frequency and does not seem to be entirely rule-like. This pattern may
fit better with the kind of default generalization in connectionist nets rather than with the
rigid defaults of symbolic models.

The issue of whether humans employ a single, connectionist mechanism for morpho-
logical processing is far from settled. Connectionist models fit a wide range of develop-
mental and linguistic data. And even opponents of connectionist models typically concede
that a connectionist mechanism may explain the complex patterns found in the “irregular”
cases. The controversial question is whether a single connectionist mechanism can
simultaneously deal with both regular and the irregular cases, or whether the regular cases
can only be generated by a distinct route involving symbolic rules. Future work is likely
to involve further connectionist modeling of cross-linguistic phenomena as well as more
detailed fits with developmental data.

V. SENTENCE PROCESSING

Sentence processing provides a considerable challenge for connectionist research. In view
of the difficulty of the problem, much early work “hand-wired” symbolic structures into

the network architecture (e.g., Fanty, 1985; McClelland & Kawamoto, 1986; Miyata,
Smolensky & Legendre, 1993; Small, Cottrell & Shastri, 1982). Such connectionist
re-implementation®f symbolic systems can have interesting computational properties
and may be illuminating regarding the viability of a particular style of symbolic model for
distributed computation (Chater & Oaksford, 1990). But most connectionist research has
a larger goal: To provide alternatives to symbolic accounts of syntactic processing.

Two classes of models potentially provide such alternatives, both of waah to
process language from experience, rather than implementing a prespecified set of sym-
bolic rules. The first, less ambitious, class (e.g., Hanson & Kegl, 1987; Howells, 1988;
Stolcke, 1991) learns to parse “tagged” sentences. Nets are trained on sentences, each
associated with a particular grammatical structure, and the task is to assign the appropriate
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grammatical structures to novel sentences. Thus, much linguistic structure is not learned
by observation, but is built into the training items. These models are related to statistical
approaches to language learning such as stochastic context-free grammars (e.g., Charniak,
1993) in which probabilities of grammar rules in a prespecified context-free grammar are
learned from a corpus of parsed sentences.

The second, more ambitious, class of models, which includes Tabor and Tanenhaus
(this issue), attempts the much harder task of learning syntactic structure from sequences
of words. The most influential approach of this kind is due to Elman (1991, 1993), who
trained an SRN to predict the next input word, for sentences generated by a small
context-free grammar. This grammar involved subject noun/verb agreement, variations in
verb argument structure (i.e., intransitive, transitive, optionally transitive), and subject and
object relative clauses (allowing multiple embeddings with complex long-distance depen-
dencies). These simulations suggested that an SRN can acquire some of the grammatical
regularities underlying a grammar. In addition, EIman’s SRN showed some similarities
with human behavior on center-embedded structures. Christiansen (1994, 1999) extended
this work, using more complex grammars involving prenominal genitives, prepositional
modifications of noun phrases, noun phrase conjunctions, and sentential complements, in
addition to the grammatical features used by Elman. One of the grammars moreover
incorporated cross-dependencies, a weakly context-sensitive structure found in Dutch and
Swiss-German. Christiansen found that SRNs could learn these more complex grammars,
and moreover, that the SRNs exhibit the same qualitative processing difficulties as humans
do on similar constructions. The nets also showed sophisticated generalization abilities,
overriding local word co-occurrence statistics while complying with structural constraints
at the constituent level (Christiansen & Chater, 1994).

Current models of syntax typically use “toy” fragments of grammar and small vocab-
ularies. Aside from raising the question of the viability of scaling-up, this makes it difficult
to provide detailed fits with empirical data. Nonetheless, some attempts have recently been
made toward fitting existing data and deriving new empirical predictions from the models.
For example, Tabor, Juliano and Tanenhaus (1997) present an SRN-based dynamic
parsing model which fits reading time data concerning the interaction of lexical and
structural constraints on the resolution of temporary syntactic ambiguities (i.e., garden
path effects) in sentence comprehension. MacDonald and Christiansen (in press) provide
SRN simulations of reading time data concerning the differential processing of singly
center-embedded subject and object relative clauses by good and poor comprehenders.
Finally, Christiansen (1999; Christiansen & Chater, 1999) describes an SRN trained on
recursive sentence structures, which fits grammaticality ratings data from several behav-
ioral experiments. He also derives novel predictions about the processing of sentences
involving multiple prenominal genitives, multiple prepositional phrase modifications of
nouns, and doubly center-embedded object relative clauses, which have subsequently been
empirically confirmed (Christiansen & MacDonald, 1999).

Overall, connectionist models of syntactic processing are at an early stage of devel-
opment. Tabor and Tanenhaus (this issue) advance this work by extending their dynamic
parsing model to account for some recent empirical findings concerning semantic effects
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in sentence processing. They also propose a new approach to the distinction between
syntactic and semantic incongruity. However, more research is required to decide whether
promising initial results can be scaled up to deal with the complexities of real language,
or whether a purely connectionist approach is beset by fundamental limitations, so that
connectionism can only succeed by providing reimplementations of symbolic methods
(see the papers in Part Il of this issue for further discussion).

VI. LANGUAGE PRODUCTION

In connectionist research, as in the psychology of language in general, there is relatively
little work on languag@roduction However, some important steps have been taken, most
notably by Dell and colleagues. Dell's (1986) spreading activation model was an impor-
tant early production model. The model was presented as a sentence production model, but
high level morphological, syntactic, and semantic processing were not implemented. The
implemented part of the model was concerned with moving from the choice of word to be
spoken, to finding the phonological encoding of that word.

Dell (1986) used an interactive activation network, like the TRACE model, described
above. The net has layers corresponding to morphemes (or lexical nodes), syllables, rimes
and consonant clusters, phonemes, and phonetic features. To a first approximation, the
nodes are connected bi-directionally between layers, but with no lateral connections
within layers. Whereas processing in the TRACE model begins bottom-up from speech
input, Dell's model begins top-down, with the activation of a lexical node. Activation then
spreads down the network, and then upwards via the feedback connections. At a fixed time
(determined by the speaking rate), the nodes with the highest activations are selected for
the onset, vowel, and coda slots.

The model accounted for a variety of common speech errors, such as substitutions (e.qg.,
dog — log), deletions log — og), and additionsdog — drog). Errors occur when an
incorrect node is selected because it becomes more active than the correct node (given the
activated lexical node). This may occur due to the feedback connections activating nodes
other than those directly corresponding to the initial word node (due to the general spread
of activation and differences in resting levels). Alternatively, other words activated as a
product of internal noise may interfere with the processing of the network. The model
made quantitative predictions concerning the retrieval of phonological forms during
production, some of which were later confirmed experimentally (Dell, 1988). More
recently, the model has been extended to simulate aphasia (Dell, Schwartz, Martin,
Saffran & Gagnon, 1997; Martin, Dell, Saffran & Schwartz, 1994, see also Dell et al., this
issue).

Dell's model has had considerable impact on subsequent accounts of speech produc-
tion, both connectionist (e.g., Harley, 1993) and symbolic (e.g., Levelt, 1989). But the
model has limitations, most obviously that it cannot learn. This is psychologically
unattractive because lexical information is language-specific, and therefore cannot be
innate. Moreover, the inability to learn makes it practically difficult to scale-up the model
because each connection must be hand-coded. This problem is addressed by a recent
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SRN-based model (Dell, Juliano & Govindjee, 1993) which learned to map lexical items
to sequences of phonological segments. The SRN had a small additional modification: The
currentoutputwas “copied back” as additional input to the network (Jordan, 1986) along
with the current state of the hidden units. Dell et al. (1993) could account for speech error
data without having to build syllabic frames and phonological rules into the network (see
Dell et al., this issue, for further discussion; but cf. Dell, Burger & Svec, 1997).

The account of syntactic priming as implicit learning presented in Dell et al. (this issue)
can be seen as an extension of this work. This model was trained to generate words given
an input message encoding a given proposition using blocks of semantic features (e.g.,
CHILD and MALE), event roles (e.gagentand patien), and action descriptions (e.g.,
GIVING and WALKING). Dell et al. (this issue) simulated syntactic priming by allowing
learning to occurduring testing. By contrast, most other connectionist models have
learning disabled during testing. The ongoing learning created sufficiently robust short-
term changes in weight space to ensure priming—even across 10 unrelated sentences.
Although the current model focuses on grammatical encoding, it is couched within a
broader theoretical framework which provides a first step toward an integrated connec-
tionist account of sentence comprehension and production.

Connectionist models of language production have modeled empirical data on both
normal and impaired performance, contributed to fundamental theoretical debates and
generated new experimental work. It seems likely that connectionist language production
models will have an important role in shaping future research on speech production.

VIl. READING

The psychological processes engaged in reading are extremely complex and varied,
ranging from early visual processing of the printed word, to syntactic, semantic and
pragmatic analysis, to integration with general knowledge. Connectionist models have
concentrated on simple aspects of reading: 1) recognizing letters and words from printed
text, and 2) word “naming”—i.e., mapping visually presented letter strings onto sequences
of sounds. We focus on models of these two processes here.

One of the earliest connectionist models was McClelland and Rumelhart's (1981)
interactive activation model of visual word recognition (see also Rumelhart & McClel-
land, 1982). This network has three layers of units standing for visual features of letters,
letters (in particular positions within the word), and words, and uses the same principles
as TRACE, described above, but without the need for a temporal dimension, as the entire
word is presented at once.

Word recognition occurs as follows: A visual stimulus is presented, which activates in
a probabilistic fashion visual feature units in the first layer. As the features become
activated, they send activation via their excitatory and inhibitory connections to the letter
units, which, in turn, send activation to the word units. The words compete via their
inhibitory connections, and reinforce their component letters via excitatory feedback to the
letter level (there is no word-to-letter inhibition). Thus an “interactive” process occurs:
Bottom-up information from the visual input is combined with the top-down information
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flow from the word units. This process involves a cascade of overlapping and interacting
processes: Letter and word recognition do not occur sequentially, but overlap and are
mutually constraining.

This model accounted for a variety of phenomena, mainly concerning context effects
on letter perception. For example, it captures the facilitation of letter recognition in the
context of a word, in comparison to recognition of single letters, or letters embedded in
random letter strings. This occurs because partially active words provide a top-down
confirmation of the letter identity, and thus they “conspire” to enhance recognition.
Similarly, the model explains how degraded letters can be disambiguated by their letter
context, how words can be recognized even walkktheir component letters are visually
ambiguous, and a range of other effects.

Recent connectionist models of reading have focussed not on word recognition but on
word naming, which involves relating written word forms to their pronunciations. The first
such model was Sejnowski and Rosenberg’s (1987) NETtalk, which learns to read aloud
from text. NETtalk is a two-layer feed-forward net, with input units representing a
“window” of consecutive letters of text, and output units representing the network’s
suggested pronunciation for the middle letter. The network pronounces a written text by
shifting the moving input window across the text, letter by letter, so that the central letter
to be pronounced moves onwards a letter at a time. In English orthography, there is not,
of course, a one-to-one mapping between letters and phonemes. NETtalk relies on a rather
ad hoc strategy to deal with this: In clusters of letters realized by a single phoneme (e.g.
“th”, “sh”, “ough”), only one letter is chosen to be mapped onto the speech sound, and the
others are not mapped onto any speech sound. NETtalk learns from exposure to text
associated with the correct pronunciation using back-propagation (Rumelhart, Hinton &
Williams, 1986). Its pronunciation is good enough to be largely comprehensible when fed
through a speech synthesizer.

NETtalk was intended as a demonstration of the power of neural networks. The first
detailed psychological model of word naming was provided by Seidenberg & McClelland
(1989). They also used a feedforward network with a single hidden layer, but they
represented the entire written form of the word as input, and the entire phonological form
as output. The net was trained on 2897 monosyllabic English words, rather than dealing
with unrestricted text like NETtalk. Inputs and outputs used the wickelfeature type of
representation, which proved controversial in the context of past tense models, as dis-
cussed above.

The net's performance captured a wide range of experimental data (on the reasonable
assumption that the net's error can be mapped onto response time in experimental
paradigms). As with the past tense debate above, a controversial claim concerning this
reading model was that it uses a single route to handle quasi-regular mappings. This
contrasts with the standard view of reading, which assumes that there are two (non-
semantic) routes in reading; a “phonological route”, which applies rules of pronunciation,
and a “lexical route” which is simply a list of words and their pronunciations. Regular
words can be read using either route; but irregulars must be read by using the lexical route;
and non-words must use the phonological route (these will not be known by the lexical
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route). Seidenberg and McClelland (1989) claim to have shown that this dual route view
is not necessarily correct, because their single route can pronounce both irregular words
and non-words. Moreover, they have provided a fully explicit computational model, while
previous dual-route theorists had merely sketched the reading system at the level of
“boxes and arrows.”

A number of criticisms have been leveled at Seidenberg and McClelland’s account.
Besner, Twilley, McCann and Seergobin (1990) have argued that its non-word reading is
actually very poor compared with people (though, see Seidenberg & McClelland, 1990).
Moreover Coltheart et al. (1993) argued that better performance at non-word reading can
be achieved by symbolic learning methods, using the same word-set as Seidenberg and
McClelland. Another limitation of the Seidenberg and McClelland model is the use of
(log) frequency compression during training. Recently, however, Plaut, McClelland,
Seidenberg and Patterson (1996) have shown that a feed-forward networkaogiag
word frequencies in the learning process can achieve human level of performance on both
word and non-word pronunciation.

As in the past tense debate, the wickelfeature representation has been criticized, leading
to alternative representational schemes. For example, Plaut and McClelland (1993) use a
localist code which exploits regularities in English orthography and phonology to avoid a
completely position-specific representation. Their model learns to read non-words very
well, but it does so by building in a lot of knowledge into the representation, rather than
having the network learn this knowledge. One could plausibly assume (cf. Plaut et al.,
1996) that some of this knowledge is acquired prior to reading acquisition; that is, children
normally know how to pronounce words (i.e., talk) before they start learning to read. This
idea is explored by Harm, Altmann and Seidenberg (1994) who showed that pretraining
a network on phonology can help learning the mapping from orthography to phonology.

One problem with this representational scheme is, however, that it only works for
monosyllabic words. Bullinaria (1997), on the other hand, also obtains very high non-
word reading performance for words of any length. He gives up the attempt to provide a
single route model of reading, and aims to model the phonological route, using a variant
of NETtalk, in which orthographic and phonological forms are not pre-aligned by the
designer. Instead of having a single output pattern, the network has many output patterns
corresponding to all possible alignments between phonology and orthography. All pos-
sibilities are considered, and the one that is nearest to the netvamtkial output is taken
as the correct output, and used to adjust the weights. This approach, like NETtalk, uses an
input window which moves gradually over the text, producing one phoneme at a time.
Hence, a simple phoneme-specific code can be used; the order of the phonemes is implicit
in the order in which the network produces them.

A further difficulty for Seidenberg and McClelland’s model is the apparent double
dissociation between phonological and lexical reading in acquired dyslexics: Surface
dyslexics can read exception words, but not non-words; but phonological dyslexics can
pronounce non-words but not irregular words. The standard (although not certain) infer-
ence from double dissociation to modularity of function suggests that normal non-word
and exception word reading are subserved by distinct systems—Ileading to a dual-route
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model (e.g., Morton & Patterson, 1980). Acquired dyslexia can be simulated by damaging
Seidenberg and McClelland’s network in various ways (e.g., removing connections or
units). Although the results of this damage do have neuropsychological interest (Patterson,
Seidenberg & McClelland, 1989), they do not produce this double dissociation. An
analogue of surface dyslexia is found (i.e., regulars are preserved), but no analogue of
phonological dyslexia is observed. Furthermore, Bullinaria and Chater (1995) have
explored a range of rule-exception tasks using feedforward networks trained by back-
propagation, and concluded that, while double dissociations between rules and exceptions
can occur in single-route models, this appears to occur only in very small scale networks.
In large networks, the dissociation in which the rules are damaged but the exceptions are
preserved does not occur. It remains possible that some realistic single route model of
reading, incorporating factors which have been claimed to be important to connectionist
accounts of reading such as word frequency and phonological consistency effects (cf.
Plaut et al., 1996) might give rise to the relevant double dissociation. However, Bullinaria
and Chater’s results indicate that modeling phonological dyslexia is potentially a major
challenge for any single route connectionist model of reading.

Single and dual route theorists argue about whether non-word and exception word
reading is carried out by a single system, but agree that there is an additional “semantic”
route, in which pronunciation is retrieved via a semantic code. This pathway is evidenced
by deep dyslexics, who make semantic errors in reading aloud, such as reading the word
peachaloud as “apricot”. Plaut et al. (1996) argue that this route also plays a role in
normal reading. In particular, they suggest that a division of labor emerges between the
phonological and the semantic pathway during reading acquisition: Roughly, the phono-
logical pathway moves towards a specialization in regular (consistent) orthography-to-
phonology mappings at the expense of exception words which are read by the semantic
pathway.

The putative effect of the latter pathway was simulated by Plaut et al. (1996) as extra
input to the phoneme units in a feedforward network trained to map orthography to
phonology. The strength of this external input is frequency-dependent and gradually
increases during learning. As a result, the net comes to rely on this extra input. If
eliminated (following a simulated lesion to the semantic pathway), the net loses much of
its ability to read exception words, but retains good reading of regular words as well as
non-words. Thus, Plaut et al. provides a more accurate account of surface dyslexia than
Patterson et al. (1989). Conversely, selective damage to the phonological pathway (or to
phonology itself) should produce a pattern of deficit resembling phonological dyslexia:
Reasonable word reading but impaired non-word reading—but this hypothesis was not
tested directly by Plaut et l.

The Plaut et al. account of surface dyslexia has been challenged by the existence of
patients with considerable semantic impairments but who demonstrate a near-normal
reading of exception words. Plaut (1997) presents simulations results, suggesting that
variations in surface dyslexia may stem from pre-morbid individual differences in the
division of labor between the phonological and semantic pathways. In particular, if the
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phonological pathway is highly developed prior to lesioning, a pattern of semantic
impairment with good exception word reading can be observed in the model.

More recently, connectionist models of reading have been criticized for not capturing
certain effects of orthographic length on naming latencies in single word reading. Plaut
(this issue) takes up this challenge, presenting an SRN model of sequential processing in
reading. Whereas the output of most previous connectionist reading models (except the
NETtalk models) generated static phonological representatioastwe words, this new
model pronounces words phoneme-by-phoneme. It also has the ability to refixate on the
input when it is unable to pronounce part of a word. The model performs well on words
and nonwords, and provides a reasonably good fit with the empirical data on orthographic
length effects. These results are encouraging, and suggest that this sequential reading
model may provide a first step toward a connectionist account of the temporal aspects of
reading.

We have seen that connectionist accounts have provided a good fit with data on normal
and impaired reading, although points of controversy remain. Moreover, connectionist
models have contributed to a re-evaluation of core theoretical issues, such as whether
reading is interactive or purely bottom-up, and whether rules and exceptions are dealt with
separately or by a single mechanism.

VIIl. PROSPECTS FOR CONNECTIONIST NATURAL LANGUAGE
PROCESSING

Current connectionist models as exemplified in Part | of this Special |$2agress
involve drastic simplifications with respect to real natural language. How can connec-
tionist models be ‘scaled up’ to provide realistic models of human language processing?
Part 11, Prospectsprovides three different perspectives on how connectionist models may
develop.

Seidenberg and MacDonald (this issue) argue that connectionist models will be able to
replace the currently dominant symbolic models of language structure and language
processing, throughout the cognitive science of language. They suggest that connectionist
models exemplify grobabilistic rather than a rigid, view of language, that requires the
foundations of linguistics as well as the cognitive science of language more generally to
be radically rethought.

Smolensky (this issue), by contrast, argues that current connectionist models alone
cannot handle the full complexity of linguistic structure and language processing. He
suggests that progress requires a match between insights from the generative grammar
approach in linguistics, and the computational properties of connectionist systems (e.g.,
constraint satisfaction). He exemplifies this approach with two grammar formalisms
inspired by connectionist systems, Harmonic Grammar and Optimality Theory.

Steedman (this issue) argues that claims that connectionist systems can take over the
territory of symbolic views of language, such as syntax or semantics, are premature. He
suggests that connectionist and symbolic approaches to language and language processing
should be viewed as complementary, but as currently dealing with different aspects of
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language processing. Nonetheless, Steedman believes that connectionist systems may
provide the underlying architecture on which high level symbolic processing occurs.

Whatever the outcome of these important debates, we note that connectionist psycho-
linguistics has already had an important influence on the cognitive science of language.
First, connectionist models have raised the level of theoretical debate in many areas, by
challenging theorists of all viewpoints to provide computationally explicit accounts. This
has provided the basis for more informed discussions about processing architecture (e.g.,
single vs. dual route mechanisms, and interactive vs. bottom-up processing). Second, the
learning methods used by connectionist models have reinvigorated interest in computa-
tional models of language learning (Bates & Elman, 1993). While Chomsky (e.g., 1986)
has argued for innate “universal’ aspects of language, the vast amount of language-
specific information that the child acquires must be learned. Connectionist models may
account for how some of this learning occurs. Furthermore, connectionist models provide
a test-bed for the learnability of linguistic properties previously assumed to be innate.
Finally, the dependence of connectionist models on the statistical properties of their input
has contributed to the upsurge of interest in statistical factors in language learning and
processing (MacWhinney, Leinbach, Taraban & McDonald, 1989; Redington, Chater &
Finch, 1998).

Connectionism has thus already had a considerable influence on the psychology of
language. But the final extent of this influence depends on the degree to which practical
connectionist models can be developed and extended to deal with complex aspects of
language processing in a psychologically realistic way. If realistic connectionist models of
language processing can be provided, then the possibility of a radical rethinking not just
of the nature of language processing, but of the structure of language itself, may be
required. It might be that the ultimate description of language resides in the structure of
complex networks, and can only be approximated by rules of grammar. Or perhaps
connectionist learning methods do not scale up, and connectionism can only succeed by
re-implementing standard symbolic models. The future of connectionist psycholinguistics
is therefore likely to have important implications for the theory of language processing
and language structure, either in overturning, or reaffirming, traditional psychological and
linguistic assumptions. We hope that the papers in this Special Issue will contribute to
determining what the future will bring.

NOTES

1. Theterm “connectionism” as referring to the use of artificial neural networks to model cognition was coined
on the pages of this journal by Feldman and Ballard (1982).

2. Harm and Seidenberg (1999) have found the appropriate double dissociation in the context of develop-
mental, rather than acquired, dyslexia.
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