Computational Psycholinguistics

Lecture 3: Parsing and Memory

I
Matthew W Crocker

Computerlinguistik
Universitét des Saarlandes

Overview

@ Computational psycholinguistics

O Models of how people use linguistic knowledge to process language
Grammaticality: possibly including degrees of acceptability
Complexity: when sentences are too complex
Behaviour: preferences in resolving ambiguity and reanalysis

@ Computational models provide the framework for examining the
characteristics and predictions of particular theories.

B Implementing Parsers in Prolog
U Top-down
O Shift-reduce (bottom-up)
@ Implementing Left-corner parsers in Prolog:
1 Arc-standard
U Arc Eager
@ Profiling memory requirements for embeddings

© Matthew W. Crocker Computational Psycholinguistics

Memory Load in Parsing

0 Left-embedding (LE) is easy:
O [[[John’s brother]’s car door]'s handle] broke off.
@ So is right-embedding (RE):
1 John believes [Bill knows [Mary said [she likes cats]]]
@ But centre-embedding (CE) is hard:
U [The mouse [the cat [the dog bit] chased] died]
@ Top-down: LE:hard CE:hard RE: easy
@ Bottom-up: LE:easy CE:hard RE: hard
@ Left-corner: |LE:easy CE:hard RE: easy

© Matthew W. Crocker Computational Psycholinguistics

Grammars as Programs

@ So, for a grammar like:

S --> np, vp.
np --> det, n.
vp --> v, np, np.
vp ——> V.
det --> [the] . det --> [a] .
n -—> [man] . n --> [woman] .
v -—> [gave] . v --> [swims] .

M In Prolog:
S(A/B) e np(AlC)l VP(C/B)-
np(A,B) :- det(A,C), n(C,B).
vp(AlB) b V(AIC)I np(C/D)rnp(DrB)-
det (A,B) := ’'C" (A,the,B).

" C’ ([Head|Tail] ,Head, Tail) .

© Matthew W. Crocker Computational Psycholinguistics

Grammars as Data

B Writing an parser
O write a parser which takes a grammar and string as it’s input
O Since ‘-->’ converts a rule into a Prolog clause, use a new operator: ‘--->’

@ So, for a grammar like:

:— op (1100, xfx, ‘-=->1').

s ---> np, VvVp.

np ---> det, n.

vp --—> v, np.

vp -———> V.

det ---> [the] . det --—> [a].

n -——=> [man] . n ---> [woman] .

v ---> [gave] . v -——> [swims] .
© Matthew W. Crocker Computational Psycholir

A Top-Down Parser in Prolog

[

% Expand the current NT using a rule
td parse(NT, PO, P) :-
(NT ---> Body),
td parse (Body, PO, P).
% Parse each of the symbols on the RHS
td parse((Bodyl, BodyZ2), PO, P) :-
td parse(Bodyl, PO, P1),
td parse(Body2, P1l, P).
% Consume a word in the input
td parse ([Word] , PO, P) :-
connects (PO, Word, P).
% Difference list handling
connects ([Word|List] ,Word, List) .

© Matthew W. Crocker Computational Psycholir

The Shift-Reduce Parser in Prolog

[

% Done
parse([s],[]) .

% Reduce
parse ([Y,X|Rest] ,String) :-

(LHS --—> X,Y),
parse ([LHS|Rest] ,String) .
% Shift
parse (Stack,[Word|Rest]) :-
(Cat —=—> [Word]),

parse ([Cat|Stack] ,Rest) .

© Matthew W. Crocker Computational Psycholir

A Psychologically Plausible Parser

@ Left-Corner Parsing
@ Rules are ‘activated’ by their ‘left-corner’

VP NP

v
| T

@ Combines input-driven with top-down
@ There is a ‘class’ of LC parsers

© Matthew W. Crocker Computational Psycholir

An example LC parse

M “The woman read the book”

S S S
SN
NP NP VP
N RN
Det Det N Det N
the the the woman
[S] [N.S] [VP]

S
T~
NP VP
P AN
the woman V NP

read

(NP]

M [s this incremental?

© Matthew W. Crocker Computational Psycholir

A Grammar

:— op (1100, xfx, ‘-—-->").

s ———> np, vp.

np ---> det, n.
np ---> np, rc.
rc ---> rpro, sgap.
sgap —---> np, Vvt.
vp ---> vt, np.
vp ---> Vs, S.
det ---> [the] .

N ---> [cat] .

vt —---> [chased] .
vs —---> [knows] .

© Matthew W. Crocker Computational Psycholir

Left-Corner Parsing in Prolog

parse (Phrase, S1,S0) :-
connects (S1,Word, S2),
(Cat ---> [Word]),
lc (Cat, Phrase, S2,S51) .

% Reflexive closure
lc (Phrase, Phrase, S0, S0) .

% Transitive closure

lc (SubPhrase, SuperP, S1,S50) :-
(Phrase ---> SubPhrase, Right),
parse (Right, S1,52),
lc (Phrase, SuperP,S2,S0) .

% Difference list handling

connects ([Word|List] ,Word, List) .

© Matthew W. Crocker Computational Psycholinguisti 1

Evaluating the LC Parser

B Almost incremental
I Variations:
O Using a ‘top-down’ oracle of LC relation

1 Arc-standard versus arc-eager
S S

T S

NP VP NP VP

N VP PR N
Det N PN Det N V
the man \% the man saw
saw

@ Affect on ambiguity resolution for arc-eager:
O Commitment to attachments is early (before constituents are complete)
O Top-down use of syntactic context

@ Possible left-recursion problems

© Matthew W. Crocker Computational Psycholinguisti 12

Using an Oracle

@ The left-corner relation holds for only a finite pair of categories.
% Grammar

s ———> np, vp.

np ---> det, n.
det ---> np, poss.
vp ———> Vv, np.

% Oracle: reflexive, transitive closure.
link(s,s). link(np,s) . link (np,np) .
link(n,n) . link(det,s). link(v,vp) .
link(det,np). link(vp,vp) .

link (det, det).

© Matthew W. Crocker Computational Psycholir

Left-Corner Parsing with Oracle

parse (Phrase, S1,S50) :-
connects (S1,Word, S2),
(Cat -—-> [Word]),
link (Cat, Phrase),
lc (Cat, Phrase, S2,581) .

% Reflexive closure
lc (Phrase, Phrase, S0, S0) .

% Transitive closure

lc (SubPhrase, SuperP,S1,50) :-
(Phrase ---> SubPhrase, Right),
link (SubPhrase, SuperP),
parse (Right,S1,52),
lc (Phrase, SuperP, S2,S0) .

© Matthew W. Crocker Computational Psycholir

Evaluating the LC Parser

I “Quite” incremental

M Variations:
1 Using a ‘top-down’ oracle of LC relation
U Arc-standard versus Arc-eager

S
T
NP VP Arc standard: 3
=~ VP
the man T
\% S
knew S Arc eager: 1
T

P
PN
the dog

© Matthew W. Crocker Computational Psycholir

Eager Left-Corner Parsing

[

% Reflexive closure
lc (Phrase, Phrase, S0, S0) .

% Eager composition

lc (Phrase, SuperP,S1,S0) :-
(SuperP ---> Phrase, Right),
parse (Right, S1,S0) .

% Transitive closure

lc (SubPhrase, SuperP,S1,S0) :-
(Phrase ---> SubPhrase, Right),
parse (Right,S1,52),
lc (Phrase, SuperP, S2,S0) .

© Matthew W. Crocker Computational Psycholir

Summary of Behaviour

Node Arcs Centre

Top-down Either O(n)

Shift-reduce Either O(n)

Left-corner Standard O(n)

Left-corner Eager O(n)

People O(n)

© Matthew W. Crocker Computational Psycholinguistics 17

Comments on Left-Corner

B Mixed data-driven and hypothesis driven approaches
I An oracle can increase the top-down component, reduce ambiguity

@ Composition:
O Eager parsing corresponds to composition of partial structures

O Combinatory categorial grammar (CCG) directly incorporates such
composition into the grammar formalism.

B Trade-off:
O Arc Standard: less ambiguity
attachments are made when constituents are complete: safer
delayed attachment means more must be kept on the stack
U Arc Eager: less memory
early composition reduces memory for the push-down automata
eager attachments are made with less bottom-up evidence

© Matthew W. Crocker Computational Psycholinguistics 18

We can motivate the LC-eager parser in term of memory requirements
What predictions does it make for ambiguity resolution?

Consider the following high-low attachment ambiguity:
O “Two sisters after eighteen years
Q “John that he will go to Edinburgh ?
These sentence are perceived as odd, because people prefer to attach
the “low” (to the immediately preceding phrase), but it must be
attached “ ” (to the main verb)

Extending the computational model:
O What attachment is preferred by the parsers discussed here?
O Does the choice of grammar make a difference?

O Is there some what to implement this “low attachment” preference in the
parsers discussed?

© Matthew W. Crocker Computational Psycholinguistics 19

10

