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Abstract

The automatic induction of scripts (Schank
and Abelson, 1977) has been the focus of
many recent works. In this paper, we employ
a variety of these methods to learn Schank
and Abelson’s canonical restaurant script, us-
ing a novel dataset of restaurant narratives we
have compiled from a website called “Din-
ners from Hell.” Our models learn narrative
chains, script-like structures that we evaluate
with the “narrative cloze” task (Chambers and
Jurafsky, 2008).

1 Introduction

A well-known theory from the intersection of psy-
chology and artificial intelligence posits that humans
organize certain kinds of general knowledge in the
form of scripts, or common sequences of events
(Schank and Abelson, 1977). Though many early AI
systems employed hand-encoded scripts, more re-
cent work has attempted to induce scripts with auto-
matic and scalable techniques. In particular, several
related techniques approach the problem of script in-
duction as one of learning narrative chains from text
corpora (Chambers and Jurafsky, 2008; Chambers
and Jurafsky, 2009; Jans et al., 2012; Pichotta and
Mooney, 2014). These statistical approaches have
focused on open-domain script acquisition, in which
a large number of scripts may be learned, but the ac-
quisition of any particular set of scripts is not guar-
anteed. For many specialized applications, however,
knowledge of a few relevant scripts may be more
useful than knowledge of many irrelevant scripts.
With this scenario in mind, we attempt to learn

the famous “restaurant script” (Schank and Abel-
son, 1977) by applying the aforementioned narrative
chain learning methods to a specialized corpus of
dinner narratives we compile from the website “Din-
ners from Hell.” Our results suggest that applying
these techniques to a domain-specific dataset may
be reasonable way to learn domain-specific scripts.

2 Background

Previous work in the automatic induction of scripts
or script-like structures has taken a number of dif-
ferent approaches. Regneri et al. (2010) attempt
to learn the structure of specific scripts by eliciting
event sequence descriptions (ESDs) from humans
to which they apply multiple sequence alignment
(MSA) to yield one global structure per script. (Orr
et al. (2014) learn similar structures in a probabilis-
tic framework with Hidden Markov Models.) Al-
though Regneri et al. (2010), like us, are concerned
with learning pre-specified scripts, our approach is
different in that we apply unsupervised techniques to
scenario-specific collections of natural, pre-existing
texts.

Note that while the applicability of our approach
to script learning may appear limited to domains
for which a corpus conveniently already exists, pre-
vious work demonstrates the feasibility of assem-
bling such a corpus by automatically retrieving rel-
evant documents from a larger collection. For ex-
ample, Chambers and Jurafsky (2011) use informa-
tion retrieval techniques to gather a small number of
bombing-related documents from the Gigaword cor-
pus, which they successfully use to learn a MUC-
style (Sundheim, 1991) information extraction tem-
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plate for bombing events.
Following the work of Church and Hanks (1990)

in learning word associations via mutual informa-
tion, and the DIRT system introduced by Lin and
Pantel (2001), Chambers and Jurafsky (2008) pro-
pose a PMI-based system for learning script-like
structures called narrative chains. Several follow-
up papers introduce variations and improvements
on this original model for learning narrative chains
(Chambers and Jurafsky, 2009; Jans et al., 2012; Pi-
chotta and Mooney, 2014). It is from this body of
work that we borrow techniques to apply to the Din-
ners from Hell dataset.

As defined by Chambers and Jurafsky (2008), a
narrative chain is “a partially ordered set of narrative
events that share a common actor,” where a narrative
event is “a tuple of an event (most simply a verb) and
its participants, represented as typed dependencies.”
To learn narrative chains from text, Chambers and
Jurafsky extract chains of narrative events linked by
a common coreferent within a document. For exam-
ple, the sentence “John drove to the store where he
bought some ice cream.” would generate two nar-
rative events corresponding to the protagonist John:
(DRIVE, nsubj) followed by (BUY, nsubj). Over
these extracted chains of narrative events, pointwise
mutual information (PMI) is computed between all
pairs of events. These PMI scores are then used to
predict missing events from such chains, i.e. the nar-
rative cloze evaluation.

Jans et al. (2012) expand on this approach, intro-
ducing an ordered PMI model, a bigram probabil-
ity model, skip n-gram counting methods, corefer-
ence chain selection, and an alternative scoring met-
ric (recall at 50). Their bigram probability model
outperforms the original PMI model on the narra-
tive cloze task under many conditions. Pichotta and
Mooney (2014) introduce an extended notion of nar-
rative event that includes information about subjects
and objects. They also introduce a competitive “un-
igram model” as a baseline for the narrative cloze
task.

To learn the restaurant script from our dataset,
we implement the models of Chambers and Juraf-
sky (2008) and Jans et al. (2012), as well as the
unigram baseline of Pichotta and Mooney (2014).
To evaluate our success in learning the restaurant
script, we perform a modified version of the nar-

rative cloze task, predicting only verbs that we an-
notate as “restaurant script-relevant” and comparing
the performance of each model. Note that these an-
notations are not used for training.

3 Methods

This section provides an overview of each of the dif-
ferent methods and parameter settings we employ to
learn narrative chains from the Dinners from Hell
corpus, starting with the original model (Chambers
and Jurafsky, 2008) and extending to the modifica-
tions of Jans et al. (2012). As part of this work,
we are releasing a program called NaChos, our inte-
grated Python implementation of each of the meth-
ods for learning narrative chains described in this
section.1

3.1 Counting methods for PMI
Formally, a narrative event, e := (v, d), is a verb,
v, paired with a typed dependency (De Marneffe
et al., 2006), d, defining the role a “protagonist”
(coreference mention) plays in an event (verb). The
main computational component of learning narrative
chains in Chambers and Jurafsky’s model is to learn
the pointwise mutual information for any pair of nar-
rative events:

pmi(e1, e2) := log
C(e1, e2)

C(e1, ∗)C(∗, e2)
(1)

where C(e1, e2) is the number of times that narrative
events e1 and e2 “co-occur” and

C(e, ∗) :=
∑
e′

C(e, e′) (2)

Chambers and Jurafsky define C(e1, e2) as “the
number of times the two events e1 and e2 had a core-
ferring entity filling the values of the dependencies
d1 and d2.” This is a symmetric value with respect
to e1 and e2.

We implement the following counting variants:

Skip N-gram By default, C(e1, e2) is incre-
mented if e1 and e2 occur anywhere within the same
chain of events derived from a single coreference
chain (skip-all); we also implement an option to re-
strict the distance between e1 and e2 to 0 though 5
intervening events (skip-0 through skip-5). (Jans et
al., 2012)

1www.clsp.jhu.edu/people/rachel-rudinger
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Coreference Chain Length The original model
counts co-occurrences in all coreference chains; we
include Jans et al. (2012)’s option to count over only
the longest chains in each document, or to count
only over chains of length 5 or greater (long).

Count Threshold Because PMI favors low-count
events, we add an option to set C(e1, e2) to zero for
any e1, e2 for which C(e1, e2) is below some thresh-
old, T , up to 5.

3.2 Predictive Models for Narrative Cloze
In order to perform the narrative cloze task, we need
a model for predicting the missing narrative event, e,
from a chain of observed narrative events, e1 . . . en,
at insertion point k. The original model, proposed
by Chambers and Jurafsky (2008), predicts the event
that maximizes unordered pmi,

ê = arg max
e∈V

n∑
i=1

pmi(e, ei) (3)

where V is the set of all observed events (the vo-
cabulary) and C(e1, e2) is symmetric. Two addi-
tional models are introduced by Jans et al. (2012)
and we use them here, as well. First, the ordered
pmi model,

ê = arg max
e∈V

k∑
i=1

pmi(ei, e) +
n∑

i=k+1

pmi(e, ei)

(4)
where C(e1, e2) is asymmetric, i.e., C(e1, e2)
counts only cases in which e1 occurs before e2. Sec-
ond, the bigram probability model:

ê = arg max
e∈V

k∏
i=1

p(e|ei)
n∏

i=k+1

p(ei|e) (5)

where p(e2|e1) = C(e1,e2)
C(e1,∗) and C(e1, e2) is asym-

metric.

Discounting For each model, we add an option
for discounting the computed scores. In the case
of the two PMI-based models, we use the discount
score described in Pantel and Ravichandran (2004)
and used by Chambers and Jurafsky (2008). For the
bigram probability model, this PMI discount score
would be inappropriate, so we instead use absolute
discounting.

Document Threshold We include a document
threshold parameter, D, that ensures that, in any nar-
rative cloze test, any event e that was observed dur-
ing training in fewer than D distinct documents will
receive a worse score (i.e. be ranked behind) any
event e′ whose count meets the document threshold.

4 Dataset: Dinners From Hell

The source of our data for this experiment is a blog
called “Dinners From Hell”2 where readers submit
stories about their terrible restaurant experiences.
For an example story, see Figure 1. To process the
raw data, we stripped all HTML and other non-story
content from each file and processed the remain-
ing text with the Stanford CoreNLP pipeline version
3.3.1 (Manning et al., 2014). Of the 237 stories ob-
tained, we manually filtered out 94 stories that were
“off-topic” (e.g., letters to the webmaster, dinners
not at restaurants), leaving a total of 143 stories. The
average story length is 352 words.

4.1 Annotation

For the purposes of evaluation only, we hired four
undergraduates to annotate every non-copular verb
in each story as either corresponding to an event
“related to the experience of eating in a restaurant”
(e.g., ordered a steak), “unrelated to the experience
of eating in a restaurant” (e.g., answered the phone),
or uncertain. We used the WebAnno platform for
annotation (Yimam et al., 2013).

A total of 8,202 verb (tokens) were annotated,
each by three annotators. 70.3% of verbs anno-
tated achieved 3-way agreement; 99.4% had at least
2-way agreement. After merging the annotations
(simple majority vote), 30.7% of verbs were labeled
as restaurant-script-related, 68.6% were labeled as
restaurant-script-unrelated, and the remaining 0.7%
as uncertain.

Corresponding to the 8,202 annotated verb to-
kens, there are 1,481 narrative events at the type
level. 580 of these narrative event types were anno-
tated as script-relevant in at least one token instance.

2www.dinnersfromhell.com
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“A long time ago when I was still in college, my family
decided to take me out for pizza on my birthday. We
decided to try the new location for a favorite pizza
chain of ours. It was all adults and there were about 8
of us, so we ordered 3 large pizzas. We got to chatting
and soon realized that the pizzas should’ve been ready
quite a bit ago, so we called the waitress over and she
went to check on our pizzas. She did not come back.
We waited about another 10 minutes, then called over
another waitress, who went to check on our pizzas and
waitress. It now been over an hour. About 10 minutes
later, my Dad goes up to the check-out and asks the girl
there to send the manager to our table. A few minutes
later the manager comes out. He explains to us that
our pizzas got stuck in the oven and burned. They were
out of large pizza dough bread, so they were making us
6 medium pizzas for the price of 3 large pizzas. We

had so many [pizzas] on our table we barely had
[room] to eat! Luckily my family is pretty easy going
so we just laughed about the whole thing. We did tell
the manager that it would have been nice if someone,
anyone, had said something earlier to us, instead of
just disappearing, and he agreed. He even said it was
his responsibility, but that he had been busy trying to
fix what caused the pizzas to jam up in the oven. He
went so far as to give us 1/2 off our bill, which was
really nice. It was definitely a memorable birthday!”

Figure 1: Example story from Dinners from Hell corpus. Bold
words indicate events in the “we” coreference chain (the longest
chain). Boxed words (blue) indicate best narrative chain of
length three (see Section 5.2); underlined words (orange) are
corresponding subjects and bracketed words (green) are corre-
sponding objects.

5 Evaluation

5.1 Narrative Cloze

We evaluate the various models on the narrative
cloze task. What is different about our version of
the narrative cloze task here is that we limit the cloze
tests to only “interesting” events, i.e., those that have
been identified as relevant to the restaurant script by
our annotators (see Section 4.1).

Because our dataset is small (143 documents), we
perform leave-one-out testing at the document level,
training on 133 folds total. (Ten documents are ex-
cluded for a development set.) For each fold of train-
ing, we extract all of the narrative chains (mapped
directly from coreference chains) in the held out test
document. For each test chain, we generate one nar-
rative cloze test per “script-relevant” event in that

MODEL AVGRNK MRR R@50
unigram model (baseline) 298.13 0.062 0.50
1. unordered pmi; avgrnk 276.88 0.063 0.36
2. unordered pmi; mrr 376.25 0.058 0.33
3. unordered pmi; R@50 400.36 0.050 0.50
4. ordered pmi; avgrnk 284.68 0.061 0.32
5. ordered pmi; mrr 381.44 0.054 0.25
6. ordered pmi; R@50 401.69 0.047 0.50
7. bigram; avgrnk 281.07 0.077 0.38
8. bigram; mrr 378.06 0.066 0.30
9. bigram; R@50 271.78 0.084 0.43
10. bigram disc; avgrnk 283.01 0.077 0.38
11. bigram disc; mrr 378.10 0.067 0.30
12. bigram disc; R@50 271.62 0.089 0.43

Figure 2: Narrative cloze evaluation. Shaded blue cells indi-
cate which scoring metric that row’s parameter settings have
been optimized to. Bold numbers indicate a result that beats
the baseline. Row 12 representes the best model performance
overall.

ROW SKIP T D COREF PMI DISC ABS DISC

1 0 1 3 all yes N/A
2 1 3 5 long no N/A
3 1 5 4 longest yes N/A
4 0 1 3 all yes N/A
5 3 5 5 long no N/A
6 0 3 4 longest yes N/A
7 all 1 3 all N/A no
8 3 5 5 long N/A no
9 all 1 5 all N/A no
10 all 1 3 all N/A yes
11 3 5 5 long N/A yes
12 all 1 5 all N/A yes

Figure 3: Parameter settings corresponding to each model in
Fig 2.

chain. For example, if a chain contains ten events,
three of which are “script-relevant,” then three cloze
tests will be generated, each containing nine “ob-
served” events. Chains with fewer than two events
are excluded. In this way, we generate a total of
2,273 cloze tests.

Scoring We employ three different scoring met-
rics: average rank (Chambers and Jurafsky, 2008),
mean reciprocal rank, and recall at 50 (Jans et al.,
2012).

Baseline The baseline we use for the narrative
cloze task is to rank events by frequency. This
is the “unigram model” employed by Pichotta and
Mooney (2014), a competitive baseline on this task.
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For each model and scoring metric, we perform
a complete grid search over all possible parameter
settings to find the best-scoring combination on a
cloze tests from a set-aside development set of ten
documents. The parameter space is defined as the
Cartesian product of each of the following possible
parameter values: skip-n (all,0-5), coreference chain
length (all, long, longest), count threshold (T=1-
5), document threshold (D=1-5), and discounting
(yes/no). Bigram probability with and without dis-
counting are treated as two separate models.

Figure 2 reports the results of the narrative cloze
evalutation. Each of the four models (unordered
pmi, ordered pmi, bigram, and bigram with dis-
counting) outperform the baseline on the average
rank metric when the parameters are optimized for
that metric. Both bigram models beat the baseline on
mean reciprocal rank not only for MRR-optimized
parameter settings, but for the average-rank- and
recall-at-50-optimized settings. None of the param-
eter settings are able to ouperform the baseline on
recall at 50, though both PMI models tie the base-
line. Overall, the model that performs the best is the
bigram probability model with discounting (row 12
of Figure 2) which has the following parameter set-
tings: skip-all, coref-all, T=1, and D=5.

The fact that several model settings outperform an
informed baseline on average rank and mean recip-
rocal rank indicates that these methods may in gen-
eral be applicable to smaller, domain-specific cor-
pora. Furthermore, it is apparent from the results
that the bigram probability models perform better
overall than PMI-based models, a finding also re-
ported in Jans et al. (2012). This replication is futher
evidence that these methods do in fact transfer.

5.2 Qualitative Example

To get a qualitative sense of the narrative events
these models are learning to associate from this data,
we use the conditional probabilities learned in the
bigram model (Fig 2, row 12) to select the high-
est probability narrative chain of length three out of
the 12 possible events in the “we” coreference chain
in Figure 1 (bolded). The three events selected are
boxed and highlighted in blue. The bigram model
selects the “deciding” event (selecting restaurant)
and the “having” event (having pizza), both reason-
able components of the restaurant script. The third

event selected is “having room,” which is not part of
the restaurant script. This mistake illustrates a weak-
ness of the narrative chains model; without consid-
ering the verb’s object, the model is unable to distin-
guish “have pizza” from “have room.” Incorporating
object information in future experiments, as in Pi-
chotta and Mooney (2014), might resolve this issue,
although it could introduce sparsity problems.

6 Conclusion

In this work, we describe the collection and anno-
tation of a corpus of natural descriptions of restau-
rant visits from the website “Dinners from Hell.” We
use this dataset in an attempt to learn the restaurant
script, using a variety of related methods for learn-
ing narrative chains and evaluating on the narrative
cloze task. Our results suggest that it may be pos-
sible in general to use these methods on domain-
specific corpora in order to learn particular scripts
from a pre-specified domain, although further exper-
iments in other domains would help bolster this con-
clusion. In principle, a domain-specific corpus need
not come from a website like Dinners from Hell;
it could instead be sub-sampled from a larger cor-
pus, retrieved from the web, or directly elicited. Our
domain-specific approach to script learning is poten-
tially useful for specialized NLP applications that re-
quire knowledge of only a particular set of scripts.

One feature of the Dinners from Hell corpus that
bears further inspection in future work is the fact that
its stories contain many violations of the restaurant
script. A question to investigate is whether these vi-
olations impact how the restaurant script is learned.
Other avenues for future work include incorporat-
ing object information into event representations and
applying domain adaptation techniques in order to
leverage larger general-domain corpora.
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