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On the menu

Processing grammatical structure to detect fine-grained opinions.

Our dystopian future.
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Q: So, uh, where was the grammar?
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A: Uh . . . uhmmm . . .
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But your point is well-taken.

To recap. . .

1 We started with basic bag-of-words product review work → not much
grammar.

2 Then we covered resource construction → sometimes intended for
grammar work.

3 Next we covered a little bit of machine learning → could be for
grammar work.

4 And then we covered a simple vector space model (not grammar) and
CRF-based techniques (some grammar).
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But what we want is full grammar.
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Q: Why do we want it?
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A: Because it’s cool?

Source

Opinion

Target

Well yeah, but, we need as much evidence as possible to identify
the full sentiment triangle.
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Remember this from part 2?

Example: information technology business press

Lloyd Hession, chief security officer at BT Radianz in New York,
said that virtualization also opens up a slew of potential network
access control issues.

“slew” and “issues”: convey negative sentiment about
“virtualization”.

How do we know they’re negative in this domain?

What about words like “update”? Important in IT domain, not
mentioned in major polarity lexicon.

The “little” details of syntax/semantics and the “big” details
of pragmatics actually intertwine.
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So let’s try this without much
machine learning.

Remember we talked about Zhuang et al. (2006) in part 4? Only in passing.

Movie review mining – author is source.

Use grammatical templates and keyword lists from training data to
identify candidate targets in test data.
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So it sits about here on the
sentiment triangle.

Source

Opinion

Target

As we discussed in part 4, targets tend to need more grammar.
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What does that look like overall?
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And what do the extracted patterns
look like?
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And how well does their overall
approach work?
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Q: How to make it more flexible?
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A: By learning generalized
characteristics of useful paths.
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Another opportunity for
self-aggrandizement ;-)

Sayeed et al. (2012) presents a data structure to facilitate learning gram-
matical connections.

SRT – “syntactic relatedness trie”, compress dependency trees?
information to overcome data sparseness.

Use graphical modelling technique to learn characteristics of
grammatical connections.
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How does this use dependency
trees?

Anchor sentiment at words that apply to a target.

Our approach: word-level annotations with links to domain concepts.

What do we mean by “apply to a target”? Transitive links (paths)
through dependency parse.

Example: Stanford dependency parse for “Annabelle happens to like
Stephanie”:

Ultimately: make grammatical info avail. for polarity classification.
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This is a labelling problem.

We need to learn the difference. How?

Flow path

Stephanie
dobj−−−→ like

Inert path

Annabelle
nsubj−−−→ happens

xcomp−−−−→ like
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This is a labelling problem.

By labelling each element along the path.

flow node: there is a node that follows that eventually leads to a
opinion word.

inert node: no node that follows leads to an opinion word.
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This is a labelling problem.

By labelling each element along the path.

Flow path

Stephanie:flow
dobj−−−→ like:flow

Inert path

Annabelle:inert
nsubj−−−→ happens:inert

xcomp−−−−→ like:inert
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Let’s have a more complicated
example.

From the MPQA, with Pitt lexicon sentiment words

The dominant role of the European climate protection policy
has benefits for our economy.

Let’s say that “dominant” applies to “role”, not “policy.”
Then paths from “policy” are the following:

Flow paths

policy
nn−→ protection

policy
prep of−−−−→ role

nsubj−−−→ has
dobj−−−→ benefits
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Let’s have a more complicated
example.

From the MPQA, with Pitt lexicon sentiment words

The dominant role of the European climate protection policy
has benefits for our economy.

Let’s say that “dominant” applies to “role”, not “policy.”
They share elements with:

Inert path

policy
prep of−−−−→ role

amod−−−→ dominant
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It leaves us with a data sparsity
problem.

Overlapping paths with potentially overlapping labels

All flow: policy
prep of−−−−→ role

nsubj−−−→ has
dobj−−−→ benefits

All inert: policy
prep of−−−−→ role

amod−−−→ dominant

When flow and inert paths coincide, this can cause a sparsity problem.

Solution: partially mark inert paths with flow at any point where it
coincides with flow.

We want to follow paths from target to opinion word.
flow means “continue following”.
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And our answer was the SRT

Legend:

Unlabelled nodes are empty.
flow nodes are filled green.
inert nodes are red circles.

(We omit dependency edge
labels for space).

policy

protection

role

has benefits

dominant
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And our answer was the SRT

SRT construction:

Step 1:

Insert all paths into tree.
Label leaves as flow or inert.

Step 2:

Propagate all flow up the tree.
(Anything left over is inert.)

policy

protection

role

has benefits

dominant
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And our answer was the SRT

During inference: node propagation
scheme guarantees coherent paths.

Changing a node to inert makes
all its descendants inert.

Changing a node to flow makes
all its ancestors flow.

policy

protection

role
has benefits

dominant
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And our answer was the SRT

During inference: node propagation
scheme guarantees coherent paths.

Changing a node to inert makes
all its descendants inert.

Changing a node to flow makes
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Finally, we need a learning
algorithm.

parent

node

child1 child2 child3

h

g

f

Scoring function per node
in-edge:

score(label) =∏
φ∈Feat

f (parentφ, nodeφ)g(nodeφ)

h(nodeφchild1φ . . . childnφ)

Features include POS tag,
role (in-edge dep. label),
word.

Gibbs sampling.

Implemented in
FACTORIE (UMass
Amherst).
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And, as usual, does it work?

Objective is retrieving flow labels: highest accuracy required for
correct path classification.

Some highlights of labelwise performance (mean avg 10 runs, many
more results in paper):

Baseline Node only features All features
0.47

0.49

0.51

0.53

0.55

0.57

0.59

0.51

0.54

0.59

0.50

0.51

0.56

Invariant No invariant

A
cc

u
ra

cy
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(But, you’ll notice, no targets were
actually extracted.)
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(This is what we call, in the
business, “future work.”)
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But there’s at least one thing we
need to come back to.

Source

Opinion

Target

That’s actually inferring polarity.
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That requires some amount of
semantic compositionality. . .

. . . if we want to do better than PMI/bag-of-words.
Compositional-distributional semantics is a major recent trend.

Distributional hypothesis

“If two words tend to occur in similar contexts, we can assume they are
similar in meaning.”

This can be implemented as vector space models.

Words represented as vectors of statistically-induced contextual
features.

Semantic composition operations via matrix algebra.

Big question: what algebraic operations?
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Whatever helps us calculate up the
tree.

Socher et al. (2012)

Matrix operations for composition need to preserve the dimensionality
of the matrix.

Otherwise, you run out of dimensions!

Need a function to restore the dimensionality after composition:

They propose “Matrix-vector recursive neural networks” (MV-RNN).
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What does it look like?
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Does it work?

They evaluate on movie review ratings. 10,000 pos/neg sentence extracted
from reviews.
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And I could literature-review
onwards from there, but all good

things come to an end. However. . .
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Q: What does this have to do with
our dystopian future?
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A: Consider what we’ve been doing.
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We’re talking about increasingly
rich formalisms and powerful

systems . . .
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. . . that infer subtle psychological
features . . .
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. . . from subtle linguistic cues . . .
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. . . in a world where there are huge
incentives . . .
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. . . to make use of behavioural
information.
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You do the math.
(No seriously, you’ll be doing the math.)
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