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Abstract

We describe a novel approach to unsuper-
vised learning of the events that make up
a script, along with constraints on their
temporal ordering. We collect natural-
language descriptions of script-specific
event sequences from volunteers over the
Internet. Then we compute a graph rep-
resentation of the script’s temporal struc-
ture using a multiple sequence alignment
algorithm. The evaluation of our system
shows that we outperform two informed
baselines.

1 Introduction

A script is “a standardized sequence of events that
describes some stereotypical human activity such
as going to a restaurant or visiting a doctor” (Barr
and Feigenbaum, 1981). Scripts are fundamental
pieces of commonsense knowledge that are shared
between the different members of the same cul-
ture, and thus a speaker assumes them to be tac-
itly understood by a hearer when a scenario re-
lated to a script is evoked: When one person says
“I’m going shopping”, it is an acceptable reply
to say “did you bring enough money?”, because
the SHOPPING script involves a ‘payment’ event,
which again involves the transfer of money.

It has long been recognized that text under-
standing systems would benefit from the implicit
information represented by a script (Cullingford,
1977; Mueller, 2004; Miikkulainen, 1995). There
are many other potential applications, includ-
ing automated storytelling (Swanson and Gordon,
2008), anaphora resolution (McTear, 1987), and
information extraction (Rau et al., 1989).

However, it is also commonly accepted that the
large-scale manual formalization of scripts is in-
feasible. While there have been a few attempts at
doing this (Mueller, 1998; Gordon, 2001), efforts

in which expert annotators create script knowledge
bases clearly don’t scale. The same holds true of
the script-like structures called “scenario frames”
in FrameNet (Baker et al., 1998).

There has recently been a surge of interest in
automatically learning script-like knowledge re-
sources from corpora (Chambers and Jurafsky,
2008b; Manshadi et al., 2008); but while these
efforts have achieved impressive results, they are
limited by the very fact that a lot of scripts – such
as SHOPPING – are shared implicit knowledge, and
their events are therefore rarely elaborated in text.

In this paper, we propose a different approach
to the unsupervised learning of script-like knowl-
edge. We focus on the temporal event structure of
scripts; that is, we aim to learn what phrases can
describe the same event in a script, and what con-
straints must hold on the temporal order in which
these events occur. We approach this problem by
asking non-experts to describe typical event se-
quences in a given scenario over the Internet. This
allows us to assemble large and varied collections
of event sequence descriptions (ESDs), which are
focused on a single scenario. We then compute a
temporal script graph for the scenario by identify-
ing corresponding event descriptions using a Mul-
tiple Sequence Alignment algorithm from bioin-
formatics, and converting the alignment into a
graph. This graph makes statements about what
phrases can describe the same event of a scenario,
and in what order these events can take place. Cru-
cially, our algorithm exploits the sequential struc-
ture of the ESDs to distinguish event descriptions
that occur at different points in the script storyline,
even when they are semantically similar. We eval-
uate our script graph algorithm on ten unseen sce-
narios, and show that it significantly outperforms
a clustering-based baseline.

The paper is structured as follows. We will
first position our research in the landscape of re-
lated work in Section 2. We will then define how



we understand scripts, and what aspect of scripts
we model here, in Section 3. Section 4 describes
our data collection method, and Section 5 explains
how we use Multiple Sequence Alignment to com-
pute a temporal script graph. We evaluate our sys-
tem in Section 6 and conclude in Section 7.

2 Related Work

Approaches to learning script-like knowledge are
not new. For instance, Mooney (1990) describes
an early attempt to acquire causal chains, and
Smith and Arnold (2009) use a graph-based algo-
rithm to learn temporal script structures. However,
to our knowledge, such approaches have never
been shown to generalize sufficiently for wide
coverage application, and none of them was rig-
orously evaluated.

More recently, there have been a number of ap-
proaches to automatically learning event chains
from corpora (Chambers and Jurafsky, 2008b;
Chambers and Jurafsky, 2009; Manshadi et al.,
2008). These systems typically employ a method
for classifying temporal relations between given
event descriptions (Chambers et al., 2007; Cham-
bers and Jurafsky, 2008a; Mani et al., 2006).
They achieve impressive performance at extract-
ing high-level descriptions of procedures such as
a CRIMINAL PROCESS. Because our approach in-
volves directly asking people for event sequence
descriptions, it can focus on acquiring specific
scripts from arbitrary domains, and we can con-
trol the level of granularity at which scripts are
described. Furthermore, we believe that much
information about scripts is usually left implicit
in texts and is therefore easier to learn from our
more explicit data. Finally, our system automat-
ically learns different phrases which describe the
same event together with the temporal ordering
constraints.

Jones and Thompson (2003) describe an ap-
proach to identifying different natural language re-
alizations for the same event considering the tem-
poral structure of a scenario. However, they don’t
aim to acquire or represent the temporal structure
of the whole script in the end.

In its ability to learn paraphrases using Mul-
tiple Sequence Alignment, our system is related
to Barzilay and Lee (2003). Unlike Barzilay and
Lee, we do not tackle the general paraphrase prob-
lem, but only consider whether two phrases de-
scribe the same event in the context of the same

script. Furthermore, the atomic units of our align-
ment process are entire phrases, while in Barzilay
and Lee’s setting, the atomic units are words.

Finally, it is worth pointing out that our work
is placed in the growing landscape of research
that attempts to learn linguistic information out of
data directly collected from users over the Inter-
net. Some examples are the general acquisition of
commonsense knowledge (Singh et al., 2002), the
use of browser games for that purpose (von Ahn
and Dabbish, 2008), and the collaborative anno-
tation of anaphoric reference (Chamberlain et al.,
2009). In particular, the use of the Amazon Me-
chanical Turk, which we use here, has been evalu-
ated and shown to be useful for language process-
ing tasks (Snow et al., 2008).

3 Scripts

Before we delve into the technical details, let us
establish some terminology. In this paper, we dis-
tinguish scenarios, as classes of human activities,
from scripts, which are stereotypical models of the
internal structure of these activities. Where EAT-
ING IN A RESTAURANT is a scenario, the script
describes a number of events, such as ordering and
leaving, that must occur in a certain order in order
to constitute an EATING IN A RESTAURANT activ-
ity. The classical perspective on scripts (Schank
and Abelson, 1977) has been that next to defin-
ing some events with temporal constraints, a script
also defines their participants and their causal con-
nections.

Here we focus on the narrower task of learning
the events that a script consists of, and of model-
ing and learning the temporal ordering constraints
that hold between them. Formally, we will spec-
ify a script (in this simplified sense) in terms of a
directed graph Gs = (Es, Ts), where Es is a set
of nodes representing the events of a scenario s,
and Ts is a set of edges (ei, ek) indicating that the
event ei typically happens before ek in s. We call
Gs the temporal script graph (TSG) for s.

Each event in a TSG can usually be expressed
with many different natural-language phrases. As
the TSG in Fig. 3 illustrates, the first event in the
script for EATING IN A FAST FOOD RESTAURANT

can be equivalently described as ‘walk to the
counter’ or ‘walk up to the counter’; even phrases
like ‘walk into restaurant’, which would not usu-
ally be taken as paraphrases of these, can be ac-
cepted as describing the same event in the context



  1. walk into restaurant
  2. find the end of the line
  3. stand in line
  4. look at menu board
  5. decide on food and drink
  6. tell cashier your order
  7. listen to cashier repeat order
  8. listen for total price
  9. swipe credit card in scanner
 10. put up credit card
 11. take receipt
 12. look at order number
 13. take your cup
 14. stand off to the side
 15. wait for number to be called
 16. get your drink

 1. look at menu
 2. decide what you want
 3. order at counter
 4. pay at counter
 5. receive food at counter 
 6. take food to table
 7. eat food

 1. walk to the counter
 2. place an order
 3. pay the bill
 4. wait for the ordered food
 5. get the food
 6. move to a table
 7. eat food
 8. exit the place

Figure 1: Three event sequence descriptions

of this scenario. We call a natural-language real-
ization of an individual event in the script an event
description, and we call a sequence of event de-
scriptions that form one particular instance of the
script an event sequence description (ESD). Ex-
amples of ESDs for the FAST FOOD RESTAURANT

script are shown in Fig. 1.
One way to look at a TSG is thus that its nodes

are equivalence classes of different phrases that
describe the same event; another is that valid ESDs
can be generated from a TSG by randomly select-
ing phrases from some nodes and arranging them
in an order that respects the temporal precedence
constraints in Ts. Our goal in this paper is to take
a set of ESDs for a given scenario as our input
and then compute a TSG that clusters different de-
scriptions of the same event into the same node,
and contains edges that generalize the temporal in-
formation encoded in the ESDs.

4 Data Acquisition

In order to automatically learn TSGs, we selected
22 scenarios for which we collect ESDs. We de-
liberately included scenarios of varying complex-
ity, including some that we considered hard to
describe (CHILDHOOD, CREATE A HOMEPAGE),
scenarios with highly variable orderings between
events (MAKING SCRAMBLED EGGS), and sce-
narios for which we expected cultural differences
(WEDDING).

We used the Amazon Mechanical Turk1 to col-
lect the data. For every scenario, we asked 25 peo-
ple to enter a typical sequence of events in this sce-
nario, in temporal order and in “bullet point style”.

1http://www.mturk.com/

We required the annotators to enter at least 5 and
at most 16 events. Participants were allowed to
skip a scenario if they felt unable to enter events
for it, but had to indicate why. We did not restrict
the participants (e.g. to native speakers).

In this way, we collected 493 ESDs for the 22
scenarios. People used the possibility to skip a
form 57 times. The most frequent explanation for
this was that they didn’t know how a certain sce-
nario works: The scenario with the highest pro-
portion of skipped forms was CREATE A HOME-
PAGE, whereas MAKING SCRAMBLED EGGS was
the only one in which nobody skipped a form. Be-
cause we did not restrict the participants’ inputs,
the data was fairly noisy. For the purpose of this
study, we manually corrected the data for orthog-
raphy and filtered out forms that were written in
broken English or did not comply with the task
(e.g. when users misunderstood the scenario, or
did not list the event descriptions in temporal or-
der). Overall we discarded 15% of the ESDs.

Fig. 1 shows three of the ESDs we collected
for EATING IN A FAST-FOOD RESTAURANT. As
the example illustrates, descriptions differ in their
starting points (‘walk into restaurant’ vs. ‘walk to
counter’), the granularity of the descriptions (‘pay
the bill’ vs. event descriptions 8–11 in the third
sequence), and the events that are mentioned in
the sequence (not even ‘eat food’ is mentioned in
all ESDs). Overall, the ESDs we collected con-
sisted of 9 events on average, but their lengths var-
ied widely: For most scenarios, there were sig-
nificant numbers of ESDs both with the minimum
length of 5 and the maximum length of 16 and ev-
erything in between. Combined with the fact that
93% of all individual event descriptions occurred
only once, this makes it challenging to align the
different ESDs with each other.

5 Temporal Script Graphs

We will now describe how we compute a temporal
script graph out of the collected data. We proceed
in two steps. First, we identify phrases from dif-
ferent ESDs that describe the same event by com-
puting a Multiple Sequence Alignment (MSA) of
all ESDs for the same scenario. Then we postpro-
cess the MSA and convert it into a temporal script
graph, which encodes and generalizes the tempo-
ral information contained in the original ESDs.



row s1 s2 s3 s4

1 � walk into restaurant � enter restaurant
2 � � walk to the counter go to counter
3 � find the end of the line � �
4 � stand in line � �
5 look at menu look at menu board � �
6 decide what you want decide on food and drink � make selection
7 order at counter tell cashier your order place an order place order
8 � listen to cashier repeat order � �
9 pay at counter � pay the bill pay for food

10 � listen for total price � �
11 � swipe credit card in scanner � �
12 � put up credit card � �
13 � take receipt � �
14 � look at order number � �
15 � take your cup � �
16 � stand off to the side � �
17 � wait for number to be called wait for the ordered food �
18 receive food at counter get your drink get the food pick up order
19 � � � pick up condiments
20 take food to table � move to a table go to table
21 eat food � eat food consume food
22 � � � clear tray
22 � � exit the place �

Figure 2: A MSA of four event sequence descriptions

5.1 Multiple Sequence Alignment
The problem of computing Multiple Sequence
Alignments comes from bioinformatics, where it
is typically used to find corresponding elements in
proteins or DNA (Durbin et al., 1998).

A sequence alignment algorithm takes as its in-
put some sequences s1, . . . , sn ∈ Σ∗ over some al-
phabet Σ, along with a cost function cm : Σ×Σ→
R for substitutions and gap costs cgap ∈ R for in-
sertions and deletions. In bioinformatics, the ele-
ments of Σ could be nucleotides and a sequence
could be a DNA sequence; in our case, Σ contains
the individual event descriptions in our data, and
the sequences are the ESDs.

A Multiple Sequence Alignment A of these se-
quences is then a matrix as in Fig. 2: The i-th col-
umn of A is the sequence si, possibly with some
gaps (“�”) interspersed between the symbols of
si, such that each row contains at least one non-
gap. If a row contains two non-gaps, we take these
symbols to be aligned; aligning a non-gap with a
gap can be thought of as an insertion or deletion.

Each sequence alignment A can be assigned a
cost c(A) in the following way:

c(A) = cgap · Σ� +
n∑

i=1

m∑
j=1,

aji 6=�

m∑
k=j+1,
aki 6=�

cm(aji, aki)

where Σ� is the number of gaps in A, n is the
number of rows and m the number of sequences.
In other words, we sum up the alignment cost for
any two symbols from Σ that are aligned with
each other, and add the gap cost for each gap.

There is an algorithm that computes cheapest pair-
wise alignments (i.e. n = 2) in polynomial time
(Needleman and Wunsch, 1970). For n > 2, the
problem is NP-complete, but there are efficient al-
gorithms that approximate the cheapest MSAs by
aligning two sequences first, considering the result
as a single sequence whose elements are pairs, and
repeating this process until all sequences are incor-
porated in the MSA (Higgins and Sharp, 1988).

5.2 Semantic similarity

In order to apply MSA to the problem of aligning
ESDs, we choose Σ to be the set of all individ-
ual event descriptions in a given scenario. Intu-
itively, we want the MSA to prefer the alignment
of two phrases if they are semantically similar, i.e.
it should cost more to align ‘exit’ with ‘eat’ than
‘exit’ with ‘leave’. Thus we take a measure of se-
mantic (dis)similarity as the cost function cm.

The phrases to be compared are written in
bullet-point style. They are typically short and
elliptic (no overt subject), they lack determiners
and use infinitive or present progressive form for
the main verb. Also, the lexicon differs consider-
ably from usual newspaper corpora. For these rea-
sons, standard methods for similarity assessment
are not straightforwardly applicable: Simple bag-
of-words approaches do not provide sufficiently
good results, and standard taggers and parsers can-
not process our descriptions with sufficient accu-
racy.

We therefore employ a simple, robust heuristics,
which is tailored to our data and provides very



get in line
enter restaurant

stand in line

wait in line
look at menu board

wait in line to order my food
examine menu board

look at the menu
look at menu

go to cashier
go to ordering counter

go to counter

i decide what i want
decide what to eat

decide on food and drink
decide on what to order

make selection
decide what you want

order food
i order it

tell cashier your order
order items from wall menu

order my food
place an order

order at counter
place order

pay at counter
pay for the food

pay for food
give order to the employee

pay the bill
pay

pay for the food and drinks
pay for order collect utensils

pay for order
pick up order

make payment
keep my receipt

take receipt

wait for my order
look at prices

wait
look at order number

wait for order to be done
wait for food to be ready

wait for order
wait for the ordered food

expect order
wait for food

pick up condiments
take your cup
receive food

take food to table
receive tray with order

get condiments
get the food

receive food at counter
pick up food when ready

get my order
get food

move to a table
sit down

wait for number to be called
seat at a table

sit down at table
leave

walk into the reasturant
walk up to the counter

walk into restaurant
go to restaurant

walk to the counter

Figure 3: An extract from the graph computed for EATING IN A FAST FOOD RESTAURANT

shallow dependency-style syntactic information.
We identify the first potential verb of the phrase
(according to the POS information provided by
WordNet) as the predicate, the preceding noun (if
any) as subject, and all following potential nouns
as objects. (With this fairly crude tagging method,
we also count nouns in prepositional phrases as
“objects”.)

On the basis of this pseudo-parse, we compute
the similarity measure sim:

sim = α · pred+ β · subj + γ · obj

where pred, subj, and obj are the similarity val-
ues for predicates, subjects and objects respec-
tively, and α, β, γ are weights. If a constituent
is not present in one of the phrases to compare,
we set its weight to zero and redistribute it over
the other weights. We fix the individual simi-
larity scores pred, subj, and obj depending on
the WordNet relation between the most similar
WordNet senses of the respective lemmas (100 for
synonyms, 0 for lemmas without any relation, and
intermediate numbers for different kind of Word-
Net links).

We optimized the values for pred, subj, and
obj as well as the weights α, β and γ using a
held-out development set of scenarios. Our exper-
iments showed that in most cases, the verb con-
tributes the largest part to the similarity (accord-
ingly, α needs to be higher than the other factors).
We achieved improved accuracy by distinguishing
a class of verbs that contribute little to the meaning
of the phrase (i.e., support verbs, verbs of move-
ment, and the verb “get”), and assigning them a
separate, lower α.

5.3 Building Temporal Script Graphs

We can now compute a low-cost MSA for each
scenario out of the ESDs. From this alignment, we
extract a temporal script graph, in the following
way. First, we construct an initial graph which has
one node for each row of the MSA as in Fig. 2. We
interpret each node of the graph as representing
a single event in the script, and the phrases that
are collected in the node as different descriptions
of this event; that is, we claim that these phrases
are paraphrases in the context of this scenario. We
then add an edge (u, v) to the graph iff (1) u 6=
v, (2) there was at least one ESD in the original
data in which some phrase in u directly preceded
some phrase in v, and (3) if a single ESD contains
a phrase from u and from v, the phrase from u
directly precedes the one from v. In terms of the
MSA, this means that if a phrase from u comes
from the same column as a phrase from v, there
are at most some gaps between them. This initial
graph represents exactly the same information as
the MSA, in a different notation.

The graph is automatically post-processed in
a second step to simplify it and eliminate noise
that caused MSA errors. At first we prune spu-
rious nodes which contain only one event descrip-
tion. Then we refine the graph by merging nodes
whose elements should have been aligned in the
first place but were missed by the MSA. We merge
two nodes if they satisfy certain structural and se-
mantic constraints.

The semantic constraints check whether the
event descriptions of the merged node would be
sufficiently consistent according to the similarity
measure from Section 5.2. To check whether we
can merge two nodes u and v, we use an unsuper-
vised clustering algorithm (Flake et al., 2004) to



first cluster the event descriptions in u and v sep-
arately. Then we combine the event descriptions
from u and v and cluster the resulting set. If the
union has more clusters than either u or v, we as-
sume the nodes to be too dissimilar for merging.

The structural constraints depend on the graph
structure. We only merge two nodes u and v if
their event descriptions come from different se-
quences and one of the following conditions holds:

• u and v have the same parent;

• u has only one parent, v is its only child;

• v has only one child and is the only child of
u;

• all children of u (except for v) are also chil-
dren of v.

These structural constraints prevent the merg-
ing algorithm from introducing new temporal re-
lations that are not supported by the input ESDs.

We take the output of this post-processing step
as the temporal script graph. An excerpt of the
graph we obtain for our running example is shown
in Fig. 3. One node created by the node merg-
ing step was the top left one, which combines one
original node containing ‘walk into restaurant’ and
another with ‘go to restaurant’. The graph mostly
groups phrases together into event nodes quite
well, although there are some exceptions, such as
the ‘collect utensils’ node. Similarly, the tempo-
ral information in the graph is pretty accurate. But
perhaps most importantly, our MSA-based algo-
rithm manages to keep similar phrases like ‘wait
in line’ and ‘wait for my order’ apart by exploiting
the sequential structure of the input ESDs.

6 Evaluation

We evaluated the two core aspects of our sys-
tem: its ability to recognize descriptions of the
same event (paraphrases) and the resulting tem-
poral constraints it defines on the event descrip-
tions (happens-before relation). We compare our
approach to two baseline systems and show that
our system outperforms both baselines and some-
times even comes close to our upper bound.

6.1 Method
We selected ten scenarios which we did not use
for development purposes, five of them taken from
the corpus described in Section 4, the other five

from the OMICS corpus.2 The OMICS corpus is a
freely available, web-collected corpus by the Open
Mind Initiative (Singh et al., 2002). It contains
several stories (≈ scenarios) consisting of multi-
ple ESDs. The corpus strongly resembles ours in
language style and information provided, but is re-
stricted to “indoor activities” and contains much
more data than our collection (175 scenarios with
more than 40 ESDs each).

For each scenario, we created a paraphrase set
out of 30 randomly selected pairs of event de-
scriptions which the system classified as para-
phrases and 30 completely random pairs. The
happens-before set consisted of 30 pairs classified
as happens-before, 30 random pairs and addition-
ally all 60 pairs in reverse order. We added the
reversed pairs to check whether the raters really
prefer one direction or whether they accept both
and were biased by the order of presentation.

We presented each pair to 5 non-experts, all
US residents, via Mechanical Turk. For the para-
phrase set, an exemplary question we asked the
rater looks as follows, instantiating the Scenario
and the two descriptions to compare appropriately:

Imagine two people, both telling a story
about SCENARIO. Could the first one
say event2 to describe the same part of
the story that the second one describes
with event1 ?

For the happens-before task, the question template
was the following:

Imagine somebody telling a story about
SCENARIO in which the events event1
and event2 occur. Would event1 nor-
mally happen before event2?

We constructed a gold standard by a majority deci-
sion of the raters. An expert rater adjudicated the
pairs with a 3:2 vote ratio.

6.2 Upper Bound and Baselines

To show the contributions of the different system
components, we implemented two baselines:

Clustering Baseline: We employed an unsu-
pervised clustering algorithm (Flake et al., 2004)
and fed it all event descriptions of a scenario. We
first created a similarity graph with one node per
event description. Each pair of nodes is connected

2http://openmind.hri-us.com/



SCENARIO
PRECISION RECALL F-SCORE

sys basecl baselev sys basecl baselev sys basecl baselev upper
M

T
U

R
K

pay with credit card 0.52 0.43 0.50 0.84 0.89 0.11 0.64 0.58 • 0.17 0.60
eat in restaurant 0.70 0.42 0.75 0.88 1.00 0.25 0.78 • 0.59 • 0.38 • 0.92
iron clothes I 0.52 0.32 1.00 0.94 1.00 0.12 0.67 • 0.48 • 0.21 • 0.82
cook scrambled eggs 0.58 0.34 0.50 0.86 0.95 0.10 0.69 • 0.50 • 0.16 • 0.91
take a bus 0.65 0.42 0.40 0.87 1.00 0.09 0.74 • 0.59 • 0.14 • 0.88

O
M

IC
S

answer the phone 0.93 0.45 0.70 0.85 1.00 0.21 0.89 • 0.71 • 0.33 0.79
buy from vending machine 0.59 0.43 0.59 0.83 1.00 0.54 0.69 0.60 0.57 0.80
iron clothes II 0.57 0.30 0.33 0.94 1.00 0.22 0.71 • 0.46 • 0.27 0.77
make coffee 0.50 0.27 0.56 0.94 1.00 0.31 0.65 • 0.42 ◦ 0.40 • 0.82
make omelette 0.75 0.54 0.67 0.92 0.96 0.23 0.83 • 0.69 • 0.34 0.85

AVERAGE 0.63 0.40 0.60 0.89 0.98 0.22 0.73 0.56 0.30 0.82

Figure 4: Results for paraphrasing task; significance of difference to sys: • : p ≤ 0.01, ◦ : p ≤ 0.1

with a weighted edge; the weight reflects the se-
mantic similarity of the nodes’ event descriptions
as described in Section 5.2. To include all input in-
formation on inequality of events, we did not allow
for edges between nodes containing two descrip-
tions occurring together in one ESD. The underly-
ing assumption here is that two different event de-
scriptions of the same ESD always represent dis-
tinct events.

The clustering algorithm uses a parameter
which influences the cluster granularity, without
determining the exact number of clusters before-
hand. We optimized this parameter automatically
for each scenario: The system picks the value that
yields the optimal result with respect to density
and distance of the clusters (Flake et al., 2004),
i.e. the elements of each cluster are as similar as
possible to each other, and as dissimilar as possi-
ble to the elements of all other clusters.

The clustering baseline considers two phrases
as paraphrases if they are in the same cluster. It
claims a happens-before relation between phrases
e and f if some phrase in e’s cluster precedes
some phrase in f ’s cluster in the original ESDs.
With this baseline, we can show the contribution
of MSA.

Levenshtein Baseline: This system follows the
same steps as our system, but using Levenshtein
distance as the measure of semantic similarity for
MSA and for node merging (cf. Section 5.3). This
lets us measure the contribution of the more fine-
grained similarity function. We computed Leven-
shtein distance as the character-wise edit distance
on the phrases, divided by the phrases’ character
length so as to get comparable values for shorter
and longer phrases. The gap costs for MSA with
Levenshtein were optimized on our development

set so as to produce the best possible alignment.
Upper bound: We also compared our system

to a human-performance upper bound. Because no
single annotator rated all pairs of ESDs, we con-
structed a “virtual annotator” as a point of com-
parison, by randomly selecting one of the human
annotations for each pair.

6.3 Results
We calculated precision, recall, and f-score for our
system, the baselines, and the upper bound as fol-
lows, with allsystem being the number of pairs la-
belled as paraphrase or happens-before, allgold as
the respective number of pairs in the gold standard
and correct as the number of pairs labeled cor-
rectly by the system.

precision =
correct

allsystem
recall =

correct

allgold

f -score =
2 ∗ precision ∗ recall
precision+ recall

The tables in Fig. 4 and 5 show the results of our
system and the reference values; Fig. 4 describes
the paraphrasing task and Fig. 5 the happens-
before task. The upper half of the tables describes
the test sets from our own corpus, the remainder
refers to OMICS data. The columns labelled sys
contain the results of our system, basecl describes
the clustering baseline and baselev the Levenshtein
baseline. The f-score for the upper bound is in the
column upper. For the f-score values, we calcu-
lated the significance for the difference between
our system and the baselines as well as the upper
bound, using a resampling test (Edgington, 1986).
The values marked with • differ from our system
significantly at a level of p ≤ 0.01, ◦marks a level
of p ≤ 0.1. The remaining values are not signifi-
cant with p ≤ 0.1. (For the average values, no sig-



SCENARIO
PRECISION RECALL F-SCORE

sys basecl baselev sys basecl baselev sys basecl baselev upper
M

T
U

R
K

pay with credit card 0.86 0.49 0.65 0.84 0.74 0.45 0.85 • 0.59 • 0.53 0.92
eat in restaurant 0.78 0.48 0.68 0.84 0.98 0.75 0.81 • 0.64 0.71 • 0.95
iron clothes I 0.78 0.54 0.75 0.72 0.95 0.53 0.75 0.69 • 0.62 • 0.92
cook scrambled eggs 0.67 0.54 0.55 0.64 0.98 0.69 0.66 0.70 0.61 • 0.88
take a bus 0.80 0.49 0.68 0.80 1.00 0.37 0.80 • 0.66 • 0.48 • 0.96

O
M

IC
S

answer the phone 0.83 0.48 0.79 0.86 1.00 0.96 0.84 • 0.64 0.87 0.90
buy from vending machine 0.84 0.51 0.69 0.85 0.90 0.75 0.84 • 0.66 ◦ 0.71 0.83
iron clothes II 0.78 0.48 0.75 0.80 0.96 0.66 0.79 • 0.64 0.70 0.84
make coffee 0.70 0.55 0.50 0.78 1.00 0.55 0.74 0.71 ◦ 0.53 ◦ 0.83
make omelette 0.70 0.55 0.79 0.83 0.93 0.82 0.76 ◦ 0.69 0.81 • 0.92

AVERAGE 0.77 0.51 0.68 0.80 0.95 0.65 0.78 0.66 0.66 0.90

Figure 5: Results for happens-before task; significance of difference to sys: • : p ≤ 0.01, ◦ : p ≤ 0.1

nificance is calculated because this does not make
sense for scenario-wise evaluation.)

Paraphrase task: Our system outperforms
both baselines clearly, reaching significantly
higher f-scores in 17 of 20 cases. Moreover, for
five scenarios, the upper bound does not differ sig-
nificantly from our system. For judging the pre-
cision, consider that the test set is slightly biased:
Labeling all pairs with the majority category (no
paraphrase) would result in a precision of 0.64.
However, recall and f-score for this trivial lower
bound would be 0.

The only scenario in which our system doesn’t
score very well is BUY FROM A VENDING MA-
CHINE, where the upper bound is not significantly
better either. The clustering system, which can’t
exploit the sequential information from the ESDs,
has trouble distinguishing semantically similar
phrases (high recall, low precision). The Leven-
shtein similarity measure, on the other hand, is too
restrictive and thus results in comparatively high
precisions, but very low recall.

Happens-before task: In most cases, and on
average, our system is superior to both base-
lines. Where a baseline system performs better
than ours, the differences are not significant. In
four cases, our system does not differ significantly
from the upper bound. Regarding precision, our
system outperforms both baselines in all scenarios
except one (MAKE OMELETTE).

Again the clustering baseline is not fine-grained
enough and suffers from poor precision, only
slightly better than the majority baseline. The Lev-
enshtein baseline gets mostly poor recall, except
for ANSWER THE PHONE: to describe this sce-
nario, people used very similar wording. In such a
scenario, adding lexical knowledge to the sequen-

tial information makes less of a difference.
On average, the baselines do much better here

than for the paraphrase task. This is because once
a system decides on paraphrase clusters that are
essentially correct, it can retrieve correct informa-
tion about the temporal order directly from the
original ESDs.

Both tables illustrate that the task complexity
strongly depends on the scenario: Scripts that al-
low for a lot of variation with respect to ordering
(such as COOK SCRAMBLED EGGS) are particu-
larly challenging for our system. This is due to the
fact that our current system can neither represent
nor find out that two events can happen in arbitrary
order (e.g., ‘take out pan’ and ‘take out bowl’).

One striking difference between the perfor-
mance of our system on the OMICS data and on
our own dataset is the relation to the upper bound:
On our own data, the upper bound is almost al-
ways significantly better than our system, whereas
significant differences are rare on OMICS. This
difference bears further analysis; we speculate it
might be caused either by the increased amount of
training data in OMICS or by differences in lan-
guage (e.g., fewer anaphoric references).

7 Conclusion

We conclude with a summary of this paper and
some discussion along with hints to future work
in the last part.

7.1 Summary

In this paper, we have described a novel approach
to the unsupervised learning of temporal script in-
formation. Our approach differs from previous
work in that we collect training data by directly
asking non-expert users to describe a scenario, and



then apply a Multiple Sequence Alignment algo-
rithm to extract scenario-specific paraphrase and
temporal ordering information. We showed that
our system outperforms two baselines and some-
times approaches human-level performance, espe-
cially because it can exploit the sequential struc-
ture of the script descriptions to separate clusters
of semantically similar events.

7.2 Discussion and Future Work
We believe that we can scale this approach to
model a large numbers of scenarios represent-
ing implicit shared knowledge. To realize this
goal, we are going to automatize several process-
ing steps that were done manually for the cur-
rent study. We will restrict the user input to lex-
icon words to avoid manual orthography correc-
tion. Further, we will implement some heuristics
to filter unusable instances by matching them with
the remaining data. As far as the data collection is
concerned, we plan to replace the web form with a
browser game, following the example of von Ahn
and Dabbish (2008). This game will feature an
algorithm that can generate new candidate scenar-
ios without any supervision, for instance by identi-
fying suitable sub-events of collected scripts (e.g.
inducing data collection for PAY as sub-event se-
quence of GO SHOPPING)

On the technical side, we intend to address the
question of detecting participants of the scripts and
integrating them into the graphs, Further, we plan
to move on to more elaborate data structures than
our current TSGs, and then identify and repre-
sent script elements like optional events, alterna-
tive events for the same step, and events that can
occur in arbitrary order.

Because our approach gathers information from
volunteers on the Web, it is limited by the knowl-
edge of these volunteers. We expect it will per-
form best for general commonsense knowledge;
culture-specific knowledge or domain-specific ex-
pert knowledge will be hard for it to learn. This
limitation could be addressed by targeting spe-
cific groups of online users, or by complementing
our approach with corpus-based methods, which
might perform well exactly where ours does not.
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