

Annotation and automatic classification of situation entity types

Annemarie Friedrich
Computerlinguistik, Universität des Saarlandes

Alexis Palmer
IMS, Universität Stuttgart

http://sitent.coli.uni-saarland.de

Discourse modes & situation entities [Smith 2003]

+ REPORT, DESCRIPTION

STATE: Carl is a cat.

EVENT: Carl entered the room.

GENERALIZING SENTENCE:

Carl sometimes catches mice.

GENERIC SENTENCE:

Cats are popular pets.

ABSTRACT ENTITIES:

I know/believe that Mary likes cats.

Goals of the project

- assess the applicability of situation entity type classification: borderline cases? human agreement?
- training, development, evaluation of automatic systems for classifying situation entities and related tasks
- long-term: improving automatic (temporal) discourse processing, providing a foundation for analysis of the theory of discourse modes [Smith 2003]

Situation types and their features

Features: how to distinguish situation entity types

Genericity of main referent

What is this clause about?

particular entity/group/company/organization/situation/process Mary likes cats. That she didn't answer upset me.

kind-referring/generic NPs, generic concepts

Cats eat mice. Security is an important issue.

Krifka et al. (1995):

genericity;

Carlson (2005):

habitual sentences

Habituality of clause

Mary fed her cats this morning. episodic: one-time event

Mary drives to work by car.

Glass breaks easily.

habitual: regularity

Mary owns four cats. static

Aspectual class of main verb

Juice fills the glass. stative
She filled the glass with juice. dynamic

The glass was filled with juice. both

ne glass **was filled** with juice. **both**

→ Vendler (1957): lexical aspect; Bach (1986): eventuality types

Advantages of feature-driven annotation [Friedrich & Palmer 2014a]

- easier to convey annotation scheme
- harness useful partial information
- analysis of disagreements

Automatic prediction of aspectual class of verbs in context [Friedrich & Palmer 2014b]

Findings:

- accuracies between 80% and 90%
- verb-type based features generalize across verb types
- → classifying instances of verbs unseen in training data
- especially for ambiguous verbs, instance-based features are essential

Corpus annotation

Data: Manually Annotated SubCorpus (MASC) of the Open American National Corpus: various genres, other linguistic (syntactic/semantic) annotations available + Wikipedia.

Status: ≈ 40,000 double-/triple-annotated segments

→ **substantial agreement** (except for main referent: reason is sparseness of generic main referents, agreement higher if balanced)

Outlook

- automatic prediction of
 - genericity + habituality, situation entity types
 - aspectual class of light verbs:
 have a heart attack vs. have a daughter
 make sense vs. make a cake
- situation entity types = aspectual information
 - = how speaker / writer presents a situation (≈ lens)
 - extend annotation scheme to other languages (planned: German, Chinese)
 - leverage information e.g. for
 - evaluation of translation quality
 - temporal processing

References

E. Bach. The algebra of events. 1986. Linguistics and philosophy 9 (1).

G. N. Carlson. *Generics, habituals and iteratives.* 2005. Encyclopedia of Language and Linguistics, Elsevier.

A.Friedrich & A. Palmer. Situation entity annotation. 2014a. LAW VIII, Dublin, Ireland. **A.Friedrich & A. Palmer.** Automatic prediction of aspectual class of verbs in context. 2014b. ACL, Baltimore, USA.

M. Krifka et al. Genericity: An Introduction. 1995. The Generic Book.

C. Smith. *Modes of Discourse: the local structure of texts.* 2003. Cambridge University Press.

Z. Vendler. Verbs and Times. 1957. In: Linguistics in Philosophy, Cornell University Press.