
I N T E G R A T I O N O F L I G H T - W E I G H T
S E M A N T I C S I N T O A S Y N T A X Q U E R Y

F O R M A L I S M

an extension of the tiger query language

torsten marek

A thesis for the degree of

Master of Science
in

Language Science & Technology
at the

Department of Computational Linguistics
of

Saarland University

March 2009



Torsten Marek: Integration of Light-weight Semantics into a Syntax Query
Formalism, Master of Science, © March 2009



E R K L Ä R U N G

Hiermit erkläre ich an Eides statt, dass ich diese Arbeit selbständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Saarbrücken, den 23. März 2009

Torsten Marek





A B S T R A C T

In the Computational Linguistics community, much work is put into
the creation of large, high-quality linguistic resources, often with com-
plex annotation. In order to make these resources accessible to non-
technical audiences, formalisms for searching and filtering are needed.

The TIGER query language can, by describing partial structures, be
used to search treebanks with syntactic annotation. Recently, aug-
mented treebanks have been published, including the SALSA corpus
which features frame semantic annotation on top of syntactic structure.
Query languages, however, need to keep up with newly introduced an-
notation, allowing it to be searchable and easy to access.

We design an extension for the TIGER language which allows search-
ing for frame structures along with syntactic annotation. To achieve
this, the TIGER object model is expanded to include frame semantics,
while remaining fully backwards-compatible.

Finally, these extensions have been added to our own implementa-
tion of TIGER, which includes novel indexing features not found in
the original work of Lezius (2002a).

Z U S A M M E N F A S S U N G

Ein großer Teil der Arbeit in der Computerlinguistik wird auf die Er-
stellung hochqualitativer linguistischer Resourcen mit oft komplexer
Annotation verwendet. Damit diese Resourcen auch dann noch von
nicht-technischen Benutzern verwendet werden können, wenn sie eine
gewisse Größe überschritten haben, sind Formalismen zum Durchsu-
chen und Filtern von großer Wichtigkeit.

Zum Durchsuchen von Baumbanken mit syntaktischer Annotation
kann die TIGER-Abfragesprache benutzt werden, die die Beschreibung
partieller Strukturen ermöglicht. In den letzten Jahren wurden jedoch
erweiterte Baumbanken erstellt, so zum Beispiel das SALSA-Korpus,
das zusätzlich zur syntaktischen auch Annotation von semantischen
Frames enthält. Abfragesprachen wie TIGER müssen mit der Erweite-
rung der Annotation mithalten, da diese sonst nicht durchsuchbar und
somit nur schwer zugänglich ist.

Wir entwickeln eine Erweiterung für die TIGER-Abfragesprache, die
zusätzlich zur Suche über Syntax auch Frame-Strukturen unterstützt.
Um dies zu erreichen, erweitern wir unter Erhaltung vollständiger
Rückwärtskompatibilität das TIGER-Objektmodell mit neuen Typen
für die Frame-Semantik.

Darüber hinaus haben wir diese Erweiterungen im Rahmen unser
eigenen TIGER-Implementation realisiert, die Methoden zur Graph-
Indizierung benutzt, welche über die ursprüngliche Arbeit von Lezius
(2002a) hinausgehen.

v





Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.
Readability counts.

Special cases aren’t special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.
Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

— from The Zen of Python, by Tim Peters

A C K N O W L E D G M E N T S

First of all, I want to thank my supervisor Caroline Sporleder for her
support during my thesis work, her comments on all stages of the
language design and implementation, literature support and her ex-
tensive feedback on different drafts of this text.

Ines Rehbein and Josef Ruppenhofer both answered my questions on
frame semantics and provided helpful requests, comments and feed-
back on the interface and syntax of the query language.

Professor Manfred Pinkal strongly supported my thesis idea from the
very beginning and included me in his research group.

I owe special thanks to Professor Martin Volk, who has mentored me
since I first met him in the fall of 2005 and with whom I hope to
continue the work that has only just begin with this thesis.

As far as the practical part of my work is concerned, I am deeply
indebted to Johannes Stiehler. The lessons I learned while working with
him are invaluable in their contribution to my software engineering
skills. The TIGER implementation in the TreeAligner would not be
what it is today without him.

My friends and former fellow students Martin Lazarov and Armin
Schmidt proof-read this thesis and provided helpful comments and
corrections. More importantly, they both accompanied me since we
started studying Computational Linguistics in Tübingen back then, for
which I am very grateful.

In the time this thesis was written, I shared many wonderful hours
with Jennifer Moore. I am thankful for her love, her unbounded cheer-
fulness, her perfect coffee and her work as the principal tie-breaker for
all my questions regarding the English language.

vii





C O N T E N T S

1 introduction 1

1.1 Frame Semantics 1

1.1.1 Frame Nets 2

1.1.2 Multilinguality 2

1.2 Resources for Frame Semantics 2

1.2.1 Berkeley FrameNet 2

1.2.2 TIGER & SALSA 3

1.2.3 Other Projects 3

1.3 Motivation 3

1.4 Thesis Goals 4

1.4.1 Requirements 4

1.4.2 Implementation and Context 5

1.4.3 Limitations 5

1.4.4 Thesis Outline 5

2 related work 7

2.1 Multi-Level Annotation 7

2.2 Multi-Level Searching 8

2.2.1 NQL 8

2.2.2 MMAXQL 9

2.2.3 ANNIS 10

2.2.4 DDDquery 10

2.2.5 SPLICR 11

2.3 Conclusion 12

3 the tiger corpus query language 13

3.1 Overview 13

3.2 Corpus Description Language 13

3.2.1 Feature Records 13

3.2.2 Node Relations 15

3.2.3 Graph Descriptions 16

3.3 Query Language 17

3.3.1 Complex Node Descriptions 17

3.3.2 Constraint Modifiers 18

3.3.3 Derived Relations 18

3.3.4 Predicates 19

3.3.5 Negation 19

3.4 Further Reading 19

4 design of the query language extension 21

4.1 Annotation of Frame Semantics 21

4.1.1 New Annotation Elements 21

4.1.2 Underspecification 23

4.2 Integration into the Query Language 24

4.2.1 Node Types for Frame Semantics 25

4.2.2 Syntactic Considerations 27

4.2.3 Basic Node Relations 29

4.2.4 Non-Local References 30

4.2.5 Frame-to-Frame and Role Relationships 33

4.2.6 Other Frame Relations 35

ix



x contents

4.2.7 Type Hierarchies for Feature Values 36

4.2.8 Backwards Compatibility 37

4.2.9 Final Remarks 37

4.3 Summary of the Extensions 38

4.3.1 Features 38

4.3.2 Relation Constraints 40

4.3.3 Predicates 42

4.4 Result 43

5 implementation of the extension 45

5.1 Architecture of the Query Evaluator 45

5.1.1 The Corpus Index 45

5.1.2 Overview 46

5.1.3 Query Parsing 47

5.1.4 Query Analysis 47

5.1.5 Node Candidate Retrieval 49

5.1.6 Result Set Creation 49

5.2 Preprocessing Frame Semantics Annotation 50

5.2.1 Precomputed Information 51

5.3 Query Evaluation Example 53

5.3.1 Query Preparation 54

5.3.2 Node Queries 54

5.3.3 Result Set Generation 55

5.4 Efficient Query Evaluation 56

5.4.1 Constraint Checks 56

5.4.2 Node Ordering 56

5.5 Benchmarks 59

5.6 Further Reading 60

6 summary & outlook 61

6.1 Summary 61

6.1.1 Minor Query Language Features 62

6.1.2 Implementation 62

6.2 Future Work 62

6.2.1 New Kinds of Annotation 63

6.2.2 Quality Assurance 63

6.2.3 Efficiency & Scalability 63

a a guide to the implementation 65

a.1 Introduction 65

a.2 Package Layout 66

a.2.1 API Documentation 66

a.3 Query Evaluator Architecture 67

a.3.1 The High Level Interface 67

a.3.2 The Query Parser 68

a.3.3 Query Analysis 69

a.3.4 Node Candidate Searching 69

a.3.5 Relation Constraint Checking 70

a.4 Quality Assurance 72

a.4.1 Unit Tests 72

a.4.2 Integration Tests 72

b quick reference 75

bibliography 77



L I S T O F F I G U R E S

Figure 3.1 Syntax graph of a German sentence, with cross-
ing edges 16

Figure 3.2 Example graph, with lemmas and neutral edge
labels omitted 16

Figure 4.1 Annotation structure of a frame instance 21

Figure 4.2 Example of a frame-evoking element with two
referenced nodes 22

Figure 4.3 The old and new hierarchies of the syntax node
types 26

Figure 4.4 The final extended type hierarchy 27

Figure 4.5 Excerpt from the inheritance hierarchy defined
by the frame-to-frame relations 34

Figure 4.6 Match for the first common ancestor constraint
from the query in example 4.25 41

Figure 4.7 The annotated graph for the sentence from exam-
ple 1.8 43

Figure 5.1 Nodes with Gorn addresses 52

Figure 5.2 A graph containing a match of the query in ex-
ample 5.11 54

Figure B.1 Node types and relations 75

L I S T O F T A B L E S

Table 3.1 Feature definitions 14

Table 4.1 Type definitions for syntactic relations from chap-
ter 3 24

Table 4.2 Statistics on fe nodes and references to syntactic
material in the SALSA corpus 31

Table 4.3 Frame-to-frame relations in SALSA 33

Table 5.1 The node descriptions and variables of query ex-
ample 5.11 54

Table 5.2 Results from the graph in fig. 5.2 for the node
queries in table 5.1 55

Table 5.3 Relation constraint check results for all possible
variable assignments, based on table 5.2 55

Table 5.4 Unique relation constraints based on the nodes
in table 5.2 56

Table 5.5 Effect of constraints on the topological ordering
of nodes 59

Table 5.6 Query benchmark results 60

Table A.1 Code statistics 67

Table A.2 Match limits between operands of different con-
straints 71

xi





1I N T R O D U C T I O N

The goal of this thesis is to extend the TIGER language, a query
formalism for syntactically annotated corpora, to treebanks which
also contain light-weight semantic annotation in the form of frame
semantics. In this chapter, we give a brief introduction to frame
semantics and some available resources. With an example of a
linguistic query, we motivate our work and properly define its
goal and scope. The last section contains a brief outline of the
thesis and the relations between the individual chapters.

1.1 frame semantics

Frame semantics (Fillmore, 1976, 1985) is a formalism that aims to rep-
resent predicates and their arguments as conceptual structures. These
conceptual structures, called frames, represent prototypical situations.
As such, they provide an abstraction layer on the concrete syntactic
realization of the predicate and its arguments and also disambiguate
potentially polysemous words. Rather than describing the grammati-
cal function of a phrase, frames relate phrases to predicates based on
their semantic function, the role. The predicates which can evoke a
frame are called lexical units and may be verbs, nouns, adjectives or
adverbs. The actual instance of a lexical unit in the text is referred to
as the target of a frame. Examples 1.1 to 1.3 show three instances of the
frame sending, all evoked by the lexical unit send.v, but with differing
target realizations. The target material is underlined, with the frame
name in the subscript, material of roles is enclosed square brackets and
the subscript contains the role name.

(1.1) [Alice]sender sent sending [Bob]recipient [a message]theme.

(1.2) [Alice]sender sends sending [a message]theme [to Bob]recipient.

(1.3) [To Bob]recipient, [the message]theme had been sent sending [by
Alice]sender.

While the syntactic structure varies from example to example, all
sentences describe the prototypical situation of sending a theme (the
message) from a sender (Alice) to a recipient (Bob). In all cases, the
frame sending is evoked by the lexical unit send, independent of its
tense and diathesis. Verbal alternations, as between example 1.1 and
example 1.2, do not influence the frame structure.

The shallow analysis provided by frame semantics helps to general-
ize across syntactic alterations that fully or nearly preserve the mean-
ing and provide a more abstract level than a syntactic analysis can, but
at the same time is more robust than a full (deep) semantic analysis.
On the other hand, frame semantics ignores phenomena like negation
or scope ambiguity, which results in example 1.4 having the exact same
frame semantic analysis as examples 1.1 to 1.3.

(1.4) [Alice]sender did not send sending [a message]theme [to
Bob]recipient.

1



2 introduction

While a full semantic representation of a text, for instance for Nat-
ural Language Understanding, must encode such information, frame
semantics is mainly a formalism for lexical semantics. In this context,
it is concerned with representing valence and polysemy of predicates
rather than fully capturing the meaning of a sentence.

1.1.1 Frame Nets

Each frame has its own set of locally defined roles. Their interpretation
is always linked to the frame, since the specification of universal roles
that apply to all frames is problematic at best. This implies that roles
with the same name on different frames do not necessarily reflect the
same concept and should not be treated as such (cf. Burchardt et al.,
2006a, sec. 2).

In order to allow for a generalization, relations between frames and
roles are defined, which creates a frame net. An important relation is
inheritance, which defines a conceptual hierarchy of frames and their
roles. This relation encodes role equivalences explicitly, without the
need to rely on a limited set of universal roles.

1.1.2 Multilinguality

Because of its generality, frame semantics is especially interesting in a
multilingual context. A number of frames are language-independent
and can be used as a light-weight interlingua representation, other
frames are tied to individual languages. Even in the case of differ-
ing frames, sets of closely related frames should be identifiable across
languages (Ruppenhofer et al., 2006, ch. 6).

1.2 resources for frame semantics

Several projects have developed frame semantic resources for different
languages. The creation of a frame net, which contains the definitions
of all frames for a given language, along with their roles, lexical units
and frame-to-frame relations is usually accompanied by the annotation
of one or more corpora with instances of frames.

1.2.1 Berkeley FrameNet

The Berkeley FrameNet project (Baker et al., 1998) at the International
Computer Science Institute at UC Berkeley has created a frame net for
English. In the latest release 1.3, it contains 795 frame descriptions,
which define the meaning of each frame, its roles and lexical units.

These descriptions also contain annotated example sentences, using
a plain-text format that is similar to the format used in examples 1.1
to 1.4. Additionally, a list of sentences is given for each lexical unit,
with more formal annotation using an XML format. The examples
are taken from the British National Corpus, but their usage as a real
corpus resource is hampered by the fact that only some sentences are
taken, which are scattered all over the corpus. They form a collection
of sentences, but not a coherent collection of texts.

In newer versions, the FrameNet distribution also contains some
texts from the PropBank (Palmer et al., 2005) and the AQUAINT pro-



1.3 motivation 3

gram with exhaustive frame semantic annotation. Roles and targets
are annotated on the raw surface text, the syntactic structure outside
of these parts of the sentence is not known, since the corpus does not
contain a full phrase structure annotation.

1.2.2 TIGER & SALSA

Based on the Berkeley FrameNet, the SALSA project at Saarland Uni-
versity started annotating the TIGER corpus (Brants et al., 2002), a
corpus of 1.5 million words of German newspaper text, with frame
semantics. A first version of this augmented corpus was eventually
released as the SALSA corpus in 2007 (Erk et al., 2003; Burchardt et al.,
2006a).

In contrast to the corpora included in FrameNet, the TIGER corpus
has phrase structure annotation and roles and targets are not anno-
tated on the surface text, but on the syntactic structure. This results
in several interacting structural layers, also known as multi-level an-
notation. This is a new feature not found in earlier treebanks, which
only contain one structural layer and probably several flat layers on
the surface text.

To support the annotators, a new annotation tool has been devel-
oped (SALTO, Burchardt et al., 2006b). Roles and targets of frame in-
stances can be connected directly to the syntactic material in the phrase
structure tree of the sentence, which is presented to the annotators in
a graphical user interface.

1.2.3 Other Projects

Other frame semantic resources exist for Spanish (Subirats and Sato,
2004), developed at the University of Barcelona, and Japanese (Ohara
et al., 2003). Both projects work in collaboration with the Berkeley
FrameNet project.

The Spanish frame net also contains a corpus of 350 million words,
which is currently under construction. Apart from the frame informa-
tion, it contains POS tag and phrase chunk annotations.

1.3 motivation

Corpora such as TIGER or SALSA are important resources for Natural
Language Processing, as the annotation can be used to train machine-
learning based systems. These systems usually process the whole or
a contiguous part of the corpus, since their usefulness results from a
broad coverage of existing phenomena. In contrast to that, linguistic
interest is often limited to a single, specific phenomenon at a time,
resulting in an exploratory rather than exhaustive usage pattern of the
corpus.

The TIGER corpus query language (Lezius, 2002a) is a part of the
TIGER project and has been developed to support exactly this kind
of linguistically motivated text exploration. The language is imple-
mented in TIGERSearch (Lezius, 2002b), a graphical tool for browsing
and querying syntactically annotated treebanks.

With the TIGER language, linguistic queries like in example 1.5 can
be expressed compactly, as shown in the query in example 1.6. Lezius



4 introduction

(2002a) also describes an implementation, so that annotated corpora of
the size of TIGER can be searched within a matter of seconds, even for
complex structures.

(1.5) Find all sentences which have a coordinated noun phrase for a subject.

(1.6) [cat="S"] >SB [cat="CNP"]

A TIGER query consists of node descriptions and constraints on
the syntactic relations between them. In this case, a sentence has the
category (cat) s, and the relation constraint >SB expresses that the node
on the right hand side, the coordinated noun phrase with the category
cnp, must be the subject of the sentence.

Expressive Inadequacy

With the availability of a large corpus with frame semantic and syntac-
tic annotation, it is natural to formulate queries like the one in exam-
ple 1.7, matching the sample sentence in example 1.8.

(1.7) Find all sentences where the role topic in the frame statement is
realized by a PP with the preposition “über”.

(1.8) [Hotels und Gaststätten]speaker klagen statement [über knauserige
Gäste]topic.

[Hotels and restaurants]speaker complain statement [about stingy
guests]topic.

The part of the query which describes the syntactic realization of the
role can be expressed in a simple way, shown in example 1.9.

(1.9) [cat="PP"] >AC [word="über"]

The search for a frame and its role instances and, even more impor-
tant, the connection between a role and its syntactic material is inex-
pressible within the existing TIGER query language. For the SALSA
corpus, the corpus encoding format was extended (Erk and Padó, 2004)
and the new elements and relations, described in section 4.1, are not
represented in the query language. This reduces the usefulness of the
SALSA corpus to linguists—while it is still possible to visualize the
corpus with SALTO, the new annotation can neither be searched nor
browsed in TIGERSearch.

1.4 thesis goals

In the course of this work, we are going to extend the TIGER language
to include elements for querying frame semantic annotation and espe-
cially the interface between frame semantics and syntax. As a result,
it will be possible to write a query that matches the graphs informally
described in example 1.7.

1.4.1 Requirements

The extended language must provide a complete formalization of the
new annotations and allow queries for all its parts:

• Instances of frames



1.4 thesis goals 5

• Instances of roles
• Instances of lexical units/target lemmas
• Roles and targets occurring in frames
• Syntactic realizations of roles and targets

It should be possible to freely mix frame semantic elements, syntac-
tic phrases and constraints on their relations within a single query. All
new elements must be well-defined and keep the language sound; a
new element may not introduce meaningless or ambiguous relation-
ships or elements without the query being rejected as invalid.

1.4.2 Implementation and Context

Along with the inclusion of frame semantics into the definition of
the language, we will add the extensions to our own implementation
of TIGER, which was originally introduced in the TreeAligner (Volk
et al., 2007; Mettler, 2007) for querying parallel treebanks. Over the
last year, it has been reimplemented to cover almost all features of
the TIGER query language, and also contains some experimental ex-
tensions which try to remedy some of TIGER’s shortcomings (cf. sec-
tion 3.3.5).

1.4.3 Limitations

The focus of our work is on those relations which are expressible
within TIGER without fundamentally changing the formalism and ob-
ject model. While the frame semantic annotation introduces a new
structural layer, the extended TIGER formalism remains a language to
describe partial structures completely contained in a single graph.

The domain of our extension only contains instances of frames and
roles. The abstract frame and role descriptions and the relations de-
fined between them are included into the query language if they are
useful, but only as a means to generalize over annotated instances. It
cannot be used to query the frame database itself; a solution for this
use case already exists with FrameSQL (Subirats and Sato, 2004).

1.4.4 Thesis Outline

Chapter 2 contains a review of work that is related to our own. We will
list several corpora with multiple layers of annotation and investigate
new, post-TIGER query formalisms for searching in these resources.

Design

Chapter 3 contains an introduction to the TIGER query language as
developed in Lezius (2002a), with particular focus on the duality of
TIGER as a corpus description on the one hand and a query language
on the other hand. We will show how the tree structure of syntactic
annotation is encoded using a directed acyclic graph and explain the
basic node relations, along with several examples of queries. This chap-
ter summarizes the most important background information needed
for the comprehension of our extensions

In chapter 4, we present our extension of the query language. We
first describe the structure of frame semantic annotation as encoded



6 introduction

by the TIGER/SALSA XML format (Erk and Padó, 2004). Section 4.2
contains an extensive discussion on the design of single aspects of the
new extension. The discussion is guided by several important factors;
ease of use, formal correctness with regard to the original language
specification and exact representation of the annotation structure are
carefully weighted against each other in order to find a suitable so-
lution. For some elements, an exact representation is not possible. In
these cases, we try to sketch possible solutions for the problem at hand
to be implemented in upcoming extensions or new query languages.

Section 4.3 contains the final description of all new query language
elements. In contrast to the discussion section, we only present the
final extensions without possible alternatives or motivation for any
particular design. The contents serve as a basis for the implementation
as well as a documentation for query authors. Appendix B contains a
condensed version of this section, to be used as a quick reference.

Implementation

The technical realization of the new elements in our implementation
is explained in chapter 5. We give an introduction to the architecture
of the query evaluator and describe where new language elements are
included. In some cases, the implementation needs to be extended to
support a new feature, which we discuss, too. An example of the query
evaluation process based on a query that combines syntactic structure
and frame semantics is given in section 5.3. Based on this example, we
explain the inner workings of the constraint checker and demonstrate
some of the techniques that enable more efficient query evaluation.

The technical descriptions are on an abstract level and indepen-
dent of the programming language used for the implementation. An
overview of the source code distribution is given in appendix A. It con-
tains a walk-through of the classes in the query module, more details
on the formal properties of relation constraints and pointers on how
to execute the included automatic test suites.

Summary & Outlook

In chapter 6, we provide a summary of our contribution. We also
outline some of the future work to be done, which is needed to support
the parts of the annotation that were found to be unrealizable within
the current framework and which will ultimately create a much more
powerful annotation formalism and query language.



2R E L A T E D W O R K

In this chapter, we will give an overview of annotation and query
formalisms which are related to our work. We limit the overview
to query languages that support more than just queries on flat
annotation layers and a single hierarchical structure and examine
several implementations that support conflicting hierarchies, the
combination of hierarchical and time-sequential annotation or an
arbitrary number of overlapping flat annotation layers.

2.1 multi-level annotation

The availability of large annotated corpora as resources for data-driven
Natural Language Processing has led to advancements in many fields.
Treebanks like the Penn Treebank (Marcus et al., 1994) greatly helped
the development of better statistical parsers (Charniak, 1997), another
example is the EuroParl corpus (Koehn, 2005) and its role as the most
important training data for statistical Machine Translation systems.
Since then, innovations in corpus creation have gone into two main
directions:

1. Additional or new types of annotation

• PropBank (Palmer et al., 2005)
A version of the Penn Treebank with predicate-argument
relations

• MuLi (Baumann et al., 2004)
Subset of the TIGER corpus with prosody, information struc-
ture and augmented syntactic annotation

• Potsdam Commentary Corpus (Stede, 2004)
Newspaper commentary with morphological annotations,
discourse connectives and rhetorical structure.

• SALSA Corpus (Burchardt et al., 2006a)
TIGER corpus with frame semantics

2. Multilingual corpora

• SMULTRON (Samuelsson and Volk, 2006)
Parallel corpus with syntactic structure and phrase align-
ments

These corpora are usually created to be used as training material in
machine-learning processes, but are also of general interest to many
researchers outside the Computational Linguistics community, for ex-
ample Linguistics or Liberal Arts. In connection to that, the sustainabil-
ity of linguistic resources (Dipper et al., 2006) has received increasing
amounts of attention. While corpora are usually released under semi-
restrictive licenses which allow free use for research purposes, but no
modification or redistribution and are encoded with easily processable
markup languages like XML, usability for non-technical audiences is
severely limited by the lack of proper graphical user interfaces and
methods of exploration and searching for interesting phenomena.

7



8 related work

2.2 multi-level searching

To store these corpora and make them accessible to a large audience,
a number of new object models and query languages have been devel-
oped, which we will shortly describe in this section.

2.2.1 NQL

The NITE object model (Carletta et al., 2003) defines an annotation
model for multi-modal corpora. In multi-modal corpora, a timeline
common to all recorded phenomena, like speech, gestures or mimics,
serves as a connection layer. More complex structures, like hierarchical
annotation are added on top of a transcription layer, which is linked
to the base timeline. The NITE object model allows for any number of
input and annotation layers, which again can be the basis for an arbi-
trary number of possibly intersecting hierarchies. The annotation data
model of NITE is an directed acyclic graph similar to TIGER (cf. chap-
ter 3), but in contrast to it, a node can have any number of incoming
edges. Other relationships are modeled using pointers, which repre-
sent directed edges between two nodes that do not allow for transitive
closure and may therefore introduce cycles.

NQL (Evert and Voormann, 2003) is a query language on top of
the NITE object model that can be used to search both structural and
timeline-based annotations in multi-modal corpora. NQL queries are
similar to queries in languages like SQL or XQuery1. Variables are
declared, bound by quantifiers and constrained in expressions.

The TIGER query from example 1.9 is equivalent to the NQL query
found in example 2.1, given a corpus with the same feature names. A
notable difference is the lack of labeled dominance edges, this is ap-
proximated by the @gf attribute of the child node, ‘^1‘ is the operator
for immediate dominance.

(2.1) ($pp phrase) ($w word):

$pp ^1 $w && $pp@cat == "PP" && $w@gf = "AC"

Heid et al. (2004) have shown that it is possible to encode the SALSA
corpus in the NITE object model. This makes it possible to formu-
late moderately complex linguistic queries like 2.2 as NQL queries, as
shown in example 2.3.

(2.2) Find words or syntactic categories which are the target of different
semantic frames or which have more than one role, each role belonging
to a different frame.

(2.3) ($f1 frame) ($f2 frame)

(exists $phrase syntax)

(exists $target word):

$f1 >"target" $target &&

$f2 >"target" $target &&

$f1 ^ $phrase &&

$f2 ^ $phrase &&

$f1 != $f2

Frames are implemented as a new type of annotation, and they are
connected to their targets using pointers, which are queried by the use

1 XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery/

http://www.w3.org/TR/xquery/


2.2 multi-level searching 9

of the >"target" operator. For the syntactic material inside frames,
generic dominance is used, which is not distinguishable from the dom-
inance between syntactic elements. The authors do not give a complete
definition of frame annotation structure as represented in the NITE ob-
ject model, but only present a proof of the general concept.

NXT Search, the sample implementation of NQL, is freely available
from the University of Stuttgart2, but has not seen any updates since
2003.

2.2.2 MMAXQL

MMAX2 (Müller, 2006) is an annotation tool for corpora with several
layers of flat annotation. It uses stand-off representation, in which the
actual annotation, whether flat or hierarchical, is stored at a different
location than the base material (flat text or time series). It is not an
object model per se, but simply a means to allow serialization of con-
flicting or overlapping hierarchies in XML.

The important difference between MMAX2 and graph- or tree-based
annotation object models is that annotation layers in MMAX2 are in-
dependent of each other. Each layer is defined independently and
connected only to the base data, any relation between two layers, if
meaningful, can only be established through it. This format is opti-
mized for superimposed flat annotation layers, but is problematic in
case of hierarchical structures. Since the layers need to be known be-
forehand, graph-like annotation is limited to a fixed depth3 and the
relations between layers have to be specified in order to allow mean-
ingful queries on syntactic structure.

The specification of elements in the base data is left to individual
corpus designers. While words (lexical tokens) are a good default for
text-based corpora, it is also possible to use single characters or other
units. All other layers contain markables, which reference complete base
units, i. e. the granularity of the base layer must be chosen accordingly
so that no markable might ever need to reference only parts of base
elements.

Simplified MMAXQL (Müller, 2005) is a query language for the
MMAX annotation object model. A query is composed from query
tokens for either base elements (word) or markables and relations be-
tween these query tokens. Relations are all defined with regard to
the base layer. Sequential relations describe the position of two query
tokens on the base layer, hierarchical relations use containment.

Example 2.4 contains an MMAX query that approximates the TIGER
query from example 1.9. It searches for the word “über” contained in
the grammatical function GF that starts at the same point as a phrase
of category PP.

(2.4) ‘über‘ in (/gf=AC starts /cat=PP)

MMAX has been applied in the context of coreference annotation
(Chiarcos et al., 2008) and transcription of speech in multi-modal cor-
pora, but to our knowledge not for corpora with syntactic annotation
and frame semantics. The definition of dominance by containment of
markables is rather implicit and the spreading of similar categories

2 http://www.ims.uni-stuttgart.de/projekte/nite/
3 Given a sufficiently high number of layers or a flat syntax formalism, this should not

pose a problem in practice.

http://www.ims.uni-stuttgart.de/projekte/nite/


10 related work

over several layers when used for hierarchical structures makes it awk-
ward to implement. Also, it is not immediately possible to constrain
the number of children of nodes, since this requires an expensive
search over several annotation layers.

The ability to relate arbitrary layers by their reference to a common
timeline is the key strength of MMAX2 and makes it very suitable
for several layers of flat or fixed-depth annotation like noun chunks
or named entities, but turns out to be complex in heavily structured
annotation, where the relations between elements are strictly defined.

2.2.3 ANNIS

ANNIS (Götze and Dipper, 2006) is a complete system for storage and
retrieval of annotated corpora. It uses PAULA-XML (Dipper, 2005),
a stand-off XML format that is meant to be an interlingua between
all existing file formats for encoding linguistic annotation on corpora.
PAULA-XML supports an arbitrary number of structural layers on the
token layer. Token layers themselves are based on the original text,
which is stored as plain text. This allows several different tokeniza-
tions.

In the ANNIS system, a corpus read from PAULA-XML files is
stored in a relational database management system and made accessi-
ble for browsing and querying via a web interface. The ANNIS query
language can be used to search through the database. Example 2.5
shows the ANNIS QL equivalent of the query in example 1.9.

(2.5) word="über" & cat="PP"

#2 >[tiger:func="AC"] #1

As opposed to TIGER or NQL, nodes in ANNIS QL are named im-
plicitly, based on their order of appearance in the query string. The op-
erators for structural queries are taken over from TIGER and comple-
mented by sequential relation operators. The ANNIS query language
has been successfully employed for examining non-canonical construc-
tions in the TIGER corpus (Chiarcos et al., 2008), which was extended
with coreference annotations. Structures of interest were then explored
with a combination of sequential and hierarchical relation constraints
available in ANNIS QL. So far however, the query language has not
been applied to corpora with frame semantic annotation.

In Dipper et al. (2007), the authors also evaluate the applicability of
XQuery-based searches on PAULA-XML corpora. Its generality and
the current state of XQuery implementations make it infeasible for
larger data sets. Queries similar to the ones listed in Lai and Bird
(2004), written in XQuery and executed on the TIGER corpus encoded
in the PAULA-XML stand-off format could not be evaluated due to
memory limitations. A condensed representation, which abandons the
advantages of the stand-off format in exchange of speed, still took at
least 1 min even for simple queries like Find all sentences with the word

“kam”.

2.2.4 DDDquery

For the DDD corpus (Lüdeling et al., 2004), a diachronic corpus of
German texts ranging from Old High German to Modern German, the



2.2 multi-level searching 11

query language DDDquery has been developed (Vitt, 2005). Similar
to ANNIS QL and NQL, it supports both hierarchical and sequential
queries, but also supports layers that are word-aligned to the original
text

DDDquery takes over syntax elements from XPath4, similar to LPath
(Bird et al., 2005). The TIGER query in example 1.9 can be written as
in example 2.6, where $w defines a variable binding.

(2.6) //PP/word$w/"über" & $w/attribute::GF=="AC"

Internally, DDDQuery is based on LoToS (Faulstich and Leser, 2005),
a system that translates predicate logic expressions to SQL queries that
can be evaluated by a relational database.

While the structure of DDDQuery should allow for queries on cor-
pora with syntactic and frame semantic annotation, no such applica-
tion has been tried out yet. In contrast to the other query languages,
no publicly accessible implementation exists, an independent evalua-
tion of DDDquery for these purposes is therefore not possible.

2.2.5 SPLICR

SPLICR (Rehm et al., 2008b) is a platform for archiving and accessing
a huge collection of corpora that have been created by several research
groups at the universities of Tübingen, Hamburg, Potsdam and Berlin.

The object model used is comparable to the NITE object model, since
it allows multiple layers of annotation with conflicting hierarchies. The
query system is based on AnnoLab (Rehm et al., 2008a), which uses
XQuery to evaluate linguistic queries. An approximate translation of
1.9 is given in example 2.75

(2.7) declare namespace leveler="urn:xmlns:sfb441:leveler";

element result {

let $w := ds:layer(’Lexical’)//tok[

. &= ’über’]

let $pp := ds:layer(’Phrase’)//[

@leveler:category=’PP’]

let $res := seq:containing($pp, $w)

for $s in $res

return element match { $s }

}

Similar to Dipper et al. (2007), Rehm et al. (2008a) report compa-
rably long run times for the evaluation of simple linguistic queries.
Furthermore, even very simple queries result in complex expressions,
which facilitates the need for a simpler interface on top. In the case
of SPLICR, a web interface is used that contains a graphical editor for
linguistic queries.

Due to the fact that AnnoLab supports multi-layer corpora, it can be
used to formulate queries on corpora with syntactic and frame seman-
tic annotation, but so far no such work has been carried out.

4 XML Path Language (XPath) Version 1.0: http://www.w3.org/TR/xpath
5 Due to the scarcity of documentation, we cannot guarantee the correctness of this exam-

ple.

http://www.w3.org/TR/xpath


12 related work

2.3 conclusion

Apart from Heid et al. (2004), no work has been done to create a system
that fully integrates queries on syntactic and frame semantic annota-
tion, and our work is a novel contribution, especially in the context of
the TIGER query formalism.

For research purposes, we think that it is of highest importance that
systems created at public universities are freely accessible to other re-
searchers or commercial users, without any restrictions on modifica-
tion or redistribution and that systems are available not only as bina-
ries, but also in source code. This is the case for our query module.

In the case of NQL, which has a free implementation in the form
of NXT Search, the problem is that the query language has not seen
active work in six years and the latest release of the search tool is as old.
In an unmaintained state, its usefulness to the research community is
diminished since even existing bugs will not fixed.



3T H E T I G E R C O R P U S Q U E R Y L A N G U A G E

This chapter contains an overview of the TIGER corpus query
language, which serves as a basis for the novel work described in
chapter 4. We will shortly present the syntax and semantics of
the query language, how it is connected to the object model of the
TIGER corpus annotation formalism and outline its origin, scope
and limitations.

3.1 overview

TIGER is a description and query language for syntactically annotated
corpora created by Lezius (2002a). It has been developed for the TIGER
treebank (Brants et al., 2002), a corpus of approximately 50,000 sen-
tences of manually annotated German newspaper text. The reference
implementation is TIGERSearch (Lezius, 2002b), a powerful tool for
browsing and querying treebanks with support for quantitative statis-
tics on result sets. The usage is not limited to the TIGER treebank, it
can be used with any corpus that is representable in TIGER-XML, an
application of XML for the serialization of TIGER annotation graphs.

3.2 corpus description language

In contrast to other tools for retrieval of syntactically annotated text,
like TGrep2 (Rohde, 2005) or LPath (Bird and Lee, 2006; Bird et al.,
2005), TIGER is a formalism for description of the annotation as well
as a query language. Lezius (2002a) uses the example of TGrep (the
predecessor of TGrep2), which operates on syntax trees in common
bracketed notation as found in the Penn Treebank. TGrep queries are
given in a special syntax which is different from the syntax for the
annotation. While the queries are evaluated on the class of tree struc-
tures, the syntax of the language is not designed to describe the full
trees.

The design of TIGER is based on tree description languages (Rogers
and Vijay-Shanker, 1992; Blackburn et al., 1993). The syntactic annota-
tion of a parse tree is modeled by the means of a directed graph, in
which nodes and edges are strongly typed. The words of the sentences
are in the leaf nodes of the graphs, which are called terminals and have
the type t. Phrases are represented as internal nodes with the type
nt for nonterminals. A corpus is defined as a set of graphs, and each
graph by a list of all its nodes and relations between them.

3.2.1 Feature Records

The supertype for nonterminal and terminal nodes is frec, the generic
feature record. Each node can be seen as a shallow typed feature struc-
ture, also known as attribute-value matrix. While the features need to
be defined explicitly in a concrete corpus, the TIGER formalism does

13



14 the tiger corpus query language

type feature feature name

t Surface string word

t Lemma lemma

t Word category / Part of speech pos

t Morphological information morph

nt Phrasal category cat

Table 3.1: Features commonly used in TIGER-encoded corpora

not dictate which features have to be defined for which node types1.
Usually, corpora adhere to a quasi-standard for feature names, to in-
crease interoperability between different corpora. Some of the com-
monly used features are listed in table 3.1. Since there is no theoretical
limit on the number of features, a corpus can have any number of flat
annotation layers on the terminal nodes, which makes TIGER useful
for corpora without any syntactic annotation, too.

In the linguistic literature, typed feature structures are written using
a special layout. A feature structure for a t node representing the
word “runs”, containing lemma and POS tag information, is given in
example 3.1.

(3.1)

t

word runs
lemma run
pos VBZ


This layout is certainly not suited for computational uses, especially

since the same formalism is used for queries, which are typed in by
users. The keyboard-compatible version of the feature record from 3.1
is given in example 3.2. In the remainder of the text, we will refer to
these structures as node descriptions.

(3.2) [T & word="runs" & lemma="run" & pos="VBZ"]

A simple node description is a conjunction of type (T) and feature
constraints (word="runs"). The type constraint is effectively superflu-
ous; since all features are defined for specific node types, the type of a
node description can usually be inferred from the feature constraints.

In a graph description, nodes are referenced at more than one place.
Although it is possible that two node descriptions refer to the same
node when the type and feature constraints are identical, it is often
needed to state several facts about exactly the same node, especially
for the node relations introduced in the next section. This requires that
it is possible to refer to node descriptions by a name. The definition of
a node variable, which allows multiple references to the same node, is
shown in example 3.3.

(3.3) #a:[T & ...]

The variable #a can be used at any place in the graph description
where a node description can occur.

1 Because of this, it can be used to encode any kind of tree structure, not just phrase trees.



3.2 corpus description language 15

3.2.2 Node Relations

With node descriptions, all features of a node can be defined, but no
connections between nodes exist so far. The following binary relation
constraints are used to define the relationship between two nodes, the
conjunction of all constraints forms the overall structure of the annota-
tion graph.

Dominance

The phrase structure of the parse tree is described by means of the
dominance relation between two nodes. A parent node of type nt can
dominate any number of child nodes, which can be either terminal
or nonterminal. Terminal nodes cannot dominate other nodes2. The
edges representing the dominance relation may not introduce a cycle
in the graph and each node may have at most one incoming edge, i. e.
one parent. A valid syntax graph must also have exactly one root node,
a node without a parent, from which all other nodes in the graph are
reachable by traversing the directed dominance edges. The dominance
relation is irreflexive, asymmetric and transitive.

Dominance edges are labeled, which are typically used to annotate
the grammatical function of the child node. If such information is not
required, a neutral label is used, usually represented by “--”.

(3.4) [cat="S"] >SBJ [cat="NP"]

In example 3.4, the noun phrase with category np is the subject (SBJ)
of its parent node, a sentence, with ‘>‘ being the dominance operator.

Linear Precedence

Although the structure defined by the dominance relation is a proper
tree (acyclic, directed, single root, at most one parent per node), we
always called the structures graphs. In a tree, the linearization of the
leaves is normally given by the linear ordering of internal nodes, which
is often defined implicitly. In TIGER, the linear precedence of t nodes
is encoded explicitly in the graph description. A linear ordering of
nt nodes is then reduced to a graph layout problem, since it can be
deduced from the terminals and does not need to be encoded explicitly.
Linear precedence is asymmetric, irreflexive and transitive.

The graph description fragment in example 3.5 defines that the word
“The” precedes the word “dog”, using the operator ‘.‘ for linear prece-
dence.

(3.5) [T & word="The" & ... ] . [T & word="dog" & ...]

Most importantly, explicit linear ordering of the leaf nodes can be
used to model crossing dominance edges. In the NEGRA annotation
scheme (Brants et al., 1997, 1999), which is used for the TIGER corpus
and many other German treebanks, the main finite verb is always di-
rectly dominated by its sentence, using the label HD (for head) on the
dominance edge. In sentences like the one shown in fig. 3.1, this leads
to a crossing edge.

2 Annotation of the internal structure of morphologically complex words must be done
using a feature with a specialized syntax.



16 the tiger corpus query language

`` Geschäftemachen ist seine Welt und nicht die Politik .
$( NN VAFIN PPOSAT NN KON PTKNEG ART NN $.

HD PD

NK NK

SB

CJ CD CJ

NG NK NK

S

NP

CNP

NP

Business is his forte, and not politics.

Figure 3.1: Syntax graph of a German sentence, with crossing edges

Secondary Edges

The secondary edge relation is used to model structure-sharing. Since
it is not possible that a tree branch can have more than one parent, el-
lipsis3 is modeled by connecting the omitted material with a secondary
edge. Secondary edges are labeled and can be used to encode other
linguistic phenomena, like anaphoric relations, too. They are directed
and can exist between any combination of two nodes, regardless of
their type, effectively creating a second structural layer on top of the
syntactic annotation. The constraint operator is ‘>~l‘, where l is the
label of the edge.

3.2.3 Graph Descriptions

A description of the graph in fig. 3.2 is given in example 3.6, which is
a conjunction of node descriptions and relation constraints.

The dog runs
DT NN VBZ

SBJ

NP VP

S

Figure 3.2: Example graph, with lemmas and neutral edge labels omitted

(3.6) #n1:[cat="S"] & #n2:[cat="NP"] & #n3:[cat="VP] &

#n4:[word="The" & lemma="the" & pos="DT"] &

#n5:[word="dog" & lemma="dog" & pos="NN"] &

#n6:[word="runs" & lemma="run" & pos="VBZ"] &

#n1 >SBJ #n2 & #n1 >-- #n3 &

#n2 >-- #n4 & #n2 >-- #n5 & #n3 >-- #n6 &

#n4 . #n5 & #n5 . #n6

While this description encodes the graph in fig. 3.2, it does not spec-
ify that this is the complete material of the graph—all other graphs

3 For example, when a noun phrase is part of several sentences, but occurs only once in
the surface.



3.3 query language 17

which contain the nodes and fulfill the relation constraints from exam-
ple 3.6 match the description, too. This open-endedness is important
for the query language, but for a graph description, it is undesired.
The arity4 of all nonterminal nodes must be fixed and the root node
defined explicitly, effectively preventing the addition of any other ma-
terial. In practice, this is done with predicates, the third top-level ele-
ment of the TIGER language. Together, examples 3.6 and 3.7 form the
complete description.

(3.7) root(#n1) & arity(#n1, 2) &

arity(#n2, 2) & arity(#n3, 1)

3.3 query language

In the corpus description, special emphasis is put on the fact that only
the material specified, and nothing else, is part of the graph. Using un-
derspecified descriptions, which is done by simply leaving out certain
parts of the graph material, the same formalism can be used as a cor-
pus query language. The result set of a query will contain only those
graphs from the corpus that contain the described nodes and fulfill the
relation constraints and predicates.

In order to make the query language more user-friendly and to al-
low for the expression of more general structures, more elements are
included in the language.

3.3.1 Complex Node Descriptions

The basis of all queries are the node descriptions. They can contain
arbitrary boolean expressions for both feature values and feature con-
straints to allow for more compact expression of alternatives.

(3.8) [pos=("NN"|"NNS") | cat="NP"]

The node description from example 3.8 matches terminals whose
POS tag is either NN or NNS or nonterminals with category np. It also
shows that a single node description can refer to nodes of different
types.

Additionally to the literal feature values shown so far, the query
language also allows the usage of regular expressions5 in feature con-
straints. When a value on the right-hand side of a feature constraint is
surrounded by forward slashes (/) instead of double quotes, it is inter-
preted as a regular expression, which is evaluated against the feature
values of nodes.

Boolean expressions in node descriptions also allow negation to
match all nodes whose feature does not have a certain value or match
a regular expression. For instance, the node description in example 3.9
matches all terminal nodes which are not tagged as nouns.

(3.9) [pos=!("NN"|"NNS")]

4 The number of outgoing dominance edges.
5 Regular expressions in TIGER use a subset of the ubiquitous Perl regular expression

syntax.



18 the tiger corpus query language

3.3.2 Constraint Modifiers

With the relations defined in section 3.2.2, all possible graph struc-
tures can be described, the query language is complete and reduced
to three basic, well-defined notions. In practice, however, such a lan-
guage would be cumbersome to use and some queries range between
impractical and impossible to express. When two nodes are supposed
to be in a transitive rather than direct dominance or precedence rela-
tion, a query would have to specify a disjunction of paths of all possi-
ble lengths between the two nodes, which can, in theory, be infinitely
many.

To allow expression of queries like this, the semantics of relation con-
straint operators can be changed using modifiers. Transitivity, which
applies to both dominance and precedence, is expressed using the as-
terisk symbol ‘*‘.

(3.10) #n1:[cat="S"] >* #n2:[word="house"]

The query in example 3.10 matches all graphs containing a node #n1

with category s that transitively dominates a node where the value of
the feature word is “house”. While #n1 has to be an nt node, because
only nonterminal nodes can have outgoing dominance edges, the type
of #n2 is entirely up to the corpus definition6.

With the transitivity modifier, the length of the path between two
nodes is unrestricted. If the path length should have a fixed or fall into
an interval, it can be suffixed to the operator symbol. The operator
‘.4‘, for example, matches all pairs of terminals which have three
intervening other terminals.

Relation operators can also be modified by omission. Both the dom-
inance and secondary edge relation can be used without the label,
which only states the existence of an edge between two nodes, but
leaves the labeling unspecified.

3.3.3 Derived Relations

Siblings

Two nodes with the same parent are commonly called siblings. Since
so far the tree hierarchy is only defined in terms of dominance, a query
which requires two nodes to be siblings always needs to mention the
parent node as well. If there are no constraints on the features of the
parent, it can be left empty, but not dropped. Since the sibling relation
is quite common, a derived relation with the constraint operator ‘$‘ is
introduced, shown in example 3.11.

(3.11) [pos="DT"] $ [pos="NN"]

Corners

The corner relation constraint matches on left- (‘>@l‘) or rightmost
(‘>@r‘) terminal successors of nonterminal nodes. It is a derived rela-
tion which combines both basic relations, dominance and linear prece-
dence. It is also used to define the precedence between nt nodes.

6 The use of the feature word suggests the type t, however.



3.4 further reading 19

3.3.4 Predicates

The predicates root and arity have already been introduced for graph
descriptions. The query language also includes the following predi-
cates:

tokenarity(#v, n) true iff the number of terminals dominated by
#v is n.

continuous(#v) true iff the terminal successors of #v are a substring
of the annotated sentence, i. e. there are no holes.

discontinuous(#v) the negation of continuous

3.3.5 Negation

All constraints in modified or basic form can be negated by prefixing
the operator symbol with a ‘!‘. Since each node description implies an
existential quantification, the result set includes all graphs that contain
nodes which fulfill the constraints.

(3.12) [cat="S"] !>* [cat="PP"]

As an example, the query in example 3.12 matches all graphs that
contains a node with category pp that is not dominated by one with
category s. Negation in TIGER cannot be used to express the complete
absence of a certain node, because it lacks universal quantification.
This is a restriction of the underlying logical formalism.

Partial Support for Universal Quantifiers

Marek et al. (2008) describe a new addition to the TIGER query lan-
guage which introduces a light version of universal quantification. The
query in example 3.13 only matches those graphs which contain an s

node that does not dominate any pp node. Universal quantification is
signaled by the use of % as a variable prefix.

(3.13) [cat="s"] !>* %s:[cat="pp"]

3.4 further reading

In this chapter, we have only given a very short introduction of the
TIGER query language. A complete overview and discussion of all its
features along with the manual of TIGERSearch and a description of
the corpus storage format TIGER-XML is available online7.

The complete formal background with the description of the refer-
ence implementation is available in Lezius (2002a), which is written in
German. A shorter English overview is König and Lezius (2003).

Lai and Bird (2004) compare TIGERSearch with other query for-
malisms for treebanks. This paper also has a discussion of the nega-
tion restrictions and its implications on linguistic queries. Solutions
for some of these problems are discussed in Marek et al. (2008).

7 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch

http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch




4D E S I G N O F T H E Q U E R Y L A N G U A G E E X T E N S I O N

In this chapter, we will design an extension for the TIGER corpus
query language which combines the existing features for querying
syntactic with frame semantic annotations. We will review the
extensions Erk and Padó (2004) added to TIGER-XML in order
to store this type of annotation and transfer them back into the
query language. This results in a change of the node type system
and introduces a list of new basic and derived node relations and
predicates.

4.1 annotation of frame semantics

In the previous chapter, we described the TIGER corpus query lan-
guage, which can be used to search for syntactic structures in tree-
banks. The SALSA project at Saarland University1 has added frame
semantic annotation to Release 1 of the TIGER corpus, which has sub-
sequently been released as the SALSA corpus (Burchardt et al., 2006a).
It is stored using the TIGER/SALSA XML format (Erk and Padó, 2004),
which extends TIGER-XML by new elements for the annotation of
frame semantics. In this section, we will describe the structure and
features of frame semantic annotation.

The SALSA corpus uses the frame descriptions from versions 1.2
and 1.3 of the Berkeley FrameNet project (Ruppenhofer et al., 2006),
but also extends it with a number of new frames which are specific to
German, and therefore not part of the English frame net.

4.1.1 New Annotation Elements

The annotation of frame instances forms a new structural layer on top
of the existing syntax annotation. Each instance forms a small tree
on its own, with a fixed depth and fixed node types on each level.
The root is the frame instance itself, which has one exactly target (or
frame-evoking element, fee) and any number of roles (or frame ele-
ments, fe). fee and fe nodes reference syntactic material, which can
consist of terminals t and nonterminals nt. They form the connection
layer between the semantics and syntactic annotation. The generalized
structure of a single frame annotation is shown in fig. 4.1.

FRAME

FEE FE 1 ... FE n

T/NT 1 ... T/NT n T/NT 1 ... T/NT n ...

Figure 4.1: Annotation structure of a frame instance

1 http://www.coli.uni-saarland.de/projects/salsa/

21

http://www.coli.uni-saarland.de/projects/salsa/


22 design of the query language extension

The syntax part of the annotation graph is not modified by the new
structural layer and still a single-rooted tree with ordered leaves, as in-
troduced in the previous chapter. If the new frame semantic elements
from a TIGER/SALSA XML corpus are removed, it becomes a normal
TIGER-XML corpus.

Frames

A frame node has several features, with the name being the most im-
portant one. Using this feature, a frame instance can be connected to
its formal description in the frame database, which contains the lexi-
cal units, additional ontological information on the frames and sample
sentences.

Although frames have unique numerical IDs, their names are used
as the globally unique identifiers. The SALSA corpus makes use of
frames from several different FrameNet versions, across which unique-
ness of IDs cannot be guaranteed. The name is also used in the frame-
to-frame relationships, which are part of the frame database.

A frame can also have flags, which are assigned by annotators and
mark the presence certain linguistic phenomena such as metaphors.

Frame-Evoking Elements

A frame is evoked by the occurrence of one of its associated lexical
units in the annotated sentence. The nodes from the syntax graph that
make up the lexical unit are referenced by the target node in the frame
instance.

While the target is always a single concept, it can happen that it is
realized by several phrases whose terminals are non-contiguous. In
German, this occurs when the frame is evoked by a finite particle verb,
as shown in fig. 4.2.

Gorbatschow griff Jelzin erneut öffentlich an .
NE VVFIN NE ADJD ADJD PTKVZ $.

Speaker Victim

angreifen1-salsa

SB HD OA MO MO SVP

S

Gorbachev again publicly attacked Yeltsin.

Figure 4.2: Example of a frame-evoking element with two referenced nodes

The target element has a feature lemma, which contains the normal-
ization of the words which evoked the frame. In the graph from fig. 4.2,
the lemma is angreifen. A simple single-word lemma will usually be
an element of the list of lexical units in the frame database. They are
not limited to verbs, but can also be nouns or adjectives.

In some cases, the frame-evoking element is a complex idiomatic
phrase, also called multi-word units, as shown in example 4.1.

(4.1) Wann [der Waffenstillstand]accord in Kraft treten treten1-salsa

soll, wurde zunächst nicht mitgeteilt.



4.1 annotation of frame semantics 23

It was not said when [the ceasefire]accord is supposed to come
into effect treten1-salsa.

Each multi-word unit has a normalized form, which is taken as the
value for the lemma. The syntactic head of the multi-word unit is
annotated in the feature headlemma. In example 4.1, the normalization
of the lemma is “treten in Kraft”, its head is “treten”. If the lemma
is simple, the head is the same as the lemma and is omitted from the
annotation.

Roles

The main feature of a role is its name, which is also part of the frames’
list of roles in the frame database and only these roles are allowed to
be instantiated on a frame. In the example in fig. 4.2, the roles speaker

and victim of the frame angreifen1-salsa are filled.
Just like frame-evoking elements, roles reference syntactic material.

If a role is not filled by any material, it is not added to the annotation,
even if it is assumed to be instantiated by default. Similar to frame
nodes, roles can carry flag values.

Splitwords

As mentioned in section 3.2.2, the TIGER corpus formalism does not
have any direct means to encode the structure of morphologically com-
plex words. Compound nouns, for example, are realized as a single
terminal. In some cases, it happens that only a part of the compound
is referenced by a target or role. Example 4.2 contains such a sentence.
Since TIGER does not provide any means to reference substrings of
features, it is not possible to represent this phenomenon in the annota-
tion.

(4.2) [Ein 18jähriger Deutscher]victim war dabei [durch einen
[Messer]instrumentstich]cause getötet killing worden.

During this, [an 18-year-old German]victim had been
killed killing by [a [knife]instrument stab]cause.

In order to annotate the role victim in the sentence from example 4.2,
the graph needs to contain additional information about the structure
of the t node “Messerstich”.

This is provided by non-exhaustive morphosyntactic annotation of
complex terminals, called splitwords. While TIGER/SALSA XML puts
this annotation into the semantics parts, it is strictly part of the syntax
annotation. It introduces new nodes below the terminals, which can
be referenced by roles or targets just like any other syntactic node.

4.1.2 Underspecification

In some cases, annotators may be unsure as to which frame should be
used for a given target, or which role a certain phrase fills. In this case,
underspecification blocks are introduced. These blocks are sets of either
only frame or role nodes. It is not annotated whether a certain block
is to be interpreted as a conjunction or a disjunction of its elements.



24 design of the query language extension

4.2 integration into the query language

In this section, we reintegrate the elements from TIGER/SALSA XML
frame semantics annotation into the query language. In some cases,
representation is problematic or can be realized in several different
ways. In all cases, we based our design decisions on the following
guidelines:

1. A syntax-only query on a corpus with frame semantic annotation
must yield the same results as if the corpus consisted of only
syntactic annotation.

2. Any extension or change to the query language should integrate
as seamlessly and with as few extensions as possible, to limit the
amount of additional knowledge a user has to acquire in order
to use the new elements.

3. The introduction of new types and relations may not interfere
with the existing parts of the query language, i. e. an implemen-
tation should not have to radically change its behavior based on
the presence of frame semantics annotation in the corpus.

The complete extension of the query language, with all new node
types and their features, new node relation constraints and predicates
will be summarized in section 4.3.

Definitions

When we define new node relation constraints and their applicable
types, we use the following syntax:

ltype1 R rtype1| . . . |ltypen R rtypen

A relation constraint definition is a disjunction of atomic definitions,
because a constraint can be defined on different pairs of types. R is the
operator symbol which represents the constraint in the query language,
usually without any modifiers. Example definitions for the basic rela-
tions described in chapter 3 are shown in table 4.1. The root type is
frec and in the original language, refers to the union of terminals and
nonterminals.

relation definition

Dominance nt > frec

Precedence t . t

Secondary edge frec >~
frec

Table 4.1: Type definitions for syntactic relations from chapter 3

For predicates, we use a similar syntax. A predicate P is applicable
to a node type type and can have a number of additional arguments ai.
So far all predicate arguments are integer numbers, but new predicates
could also take string arguments.

P(type,a1, . . . ,an)



4.2 integration into the query language 25

4.2.1 Node Types for Frame Semantics

We need to extend the type system of nodes in annotation graphs.
Since all new node types are feature records as well, frec remains at
the root of the type hierarchy. The fact that their features are fixed by
the annotation format and not part of the corpus definition is only in-
teresting for an implementation, but not important for the type system
itself.

Restructuring the Syntactic Types

In TIGER, all node types are syntactic types. In order to make a fun-
damental distinction between syntax and semantics annotation nodes
possible, we create a new type syntax, derived from frec, and use it as
the new supertype for t and nt. With this change alone, the definition
of dominance becomes nt > syntax.

Integration of Splitwords

As already said in section 4.1, splitwords are a new type of annotation
that contain the possibly incomplete structural analysis of complex
terminals. Parts of splitwords can be referenced from both roles and
targets.

Most splitwords are compounds, which is a productive formation
process in German and part of the morphology rather than the syntax.
With regard to the semantic annotation, word parts behave exactly like
terminals or nonterminals, and are only annotated when needed. This
justifies to integrate them into the syntax part of the graph.

A straightforward solution for integration is to convert terminals
with several parts into nonterminals and add their parts as new termi-
nals below them. This approach has several problematic implications:

1. Word parts have a feature set that is completely different from
terminals. If word parts are converted into terminals, the name
of the feature containing the surface string needs to be guessed
(word would be a safe choice) or specified by the user.
Since TIGER requires all features of a node to be defined, the
remaining features must be inferred, which is only possible in
some cases. Morphological features of a compound word are de-
termined by its head, which is not annotated explicitly and im-
plementation can only try to guess it based on the surface strings.
This still leaves the morphological features of the modifiers un-
filled, which have to be filled using an electronic dictionary.
While this could be possible for some features like the POS tag,
an implementation needs to know the exact semantics of each
feature in each corpus, which is infeasible.

2. The conversion of terminals into nonterminals removes all fea-
tures and makes it impossible to query for the original terminal
string, which has to be added as a new feature on the nonter-
minal. More importantly, this change introduces nonterminals
whose interpretation differs from all other nt nodes, since they
do not represent linguistic phrases but complex words. This cer-
tainly breaks the third design rule.

3. The new terminals and nonterminals “leak” into the syntactic
structures and possibly create new matches for certain queries.
This is in violation with the first design rule.



26 design of the query language extension

A safer way is to create a new node type for word parts as a subtype
of syntax. This node type is called part and contains only the fea-
tures defined in the annotation. This leaves the question unanswered
whether word parts should be integrated into the dominance hierar-
chy. If we want them to be part of it, we need to change the definition
of dominance to allow t nodes to have children. Again, this violates
the design guidelines, because it involves far-reaching modifications
of the existing language.

Instead of trying to find a workaround for this problem, it is im-
portant to look at the arguments why word parts should be in the
dominance hierarchy. In general, we can assume words to be opaque
with regards to syntactic structure. Linguistic phrases and parts of
morphologically complex words do not interact directly, therefore it is
not needed to have a direct relation between them or put them into the
same annotation layer.

FREC

T NT

(a) Original node
type hierarchy

FREC

SYNTAX

DNODE PART

T NT

(b) New type hierarchy, syn-
tax types only

Figure 4.3: The old and new hierarchies of the syntax node types

Based on the previous arguments, we introduce a new type dnode

(short for dominance node2), which is a subtype of syntax and the su-
pertype of all nodes which can be part of the syntactic dominance
hierarchy. The relationship between a terminal and its splitwords is a
special morphological relation and realized using a new basic node re-
lation. Figure 4.3b contains the graphical representation of the revised
type system so far.

Node Types for Semantic Annotation

Similar to the syntax type, we introduce a new type semantics, de-
rived from frec, as the base type of all new node types for frame
semantics annotation.

Since each frame has exactly one corresponding target element, one
could argue that frames and targets should be merged into a single
node. In the annotation format, target elements do not even have their
own IDs, hence frame instances and targets cannot be separated from
each other. But even given this strong connection, there are several rea-
sons to keep frames and targets as two separate nodes with different
types in the annotation graph:

2 We did not use the more adequate name domnode, because “DOM” is a common
acronym for Document Object Model, a model for structured documents like XML,
which also features nodes.



4.2 integration into the query language 27

• Targets behave the same way like roles, since they connect the
frame instance to syntactic material. The fact that the connection
has a different interpretation is aptly represented by roles and
targets having different types.

• If the target is a separate node, a frame only has child nodes
which connect it to syntactic material. Otherwise, its children
nodes are a mixture of syntax and semantics node.

• A frame can be evoked by a number of different lexical units,
which means there are many different concrete target realizations
for the same frame.

• Frames and targets have an associated semantic type. Although
the new frames introduced by the SALSA corpus do not have
semantic types and consequently are not used in the SALSA cor-
pus, the two values could theoretically conflict in a corpus which
has this kind of information. If the target is merged with the
frame node, these values need to be put into different features.
Even more confusing, it yields a node with two different seman-
tic types.

We therefore introduce a new type frame for frame instances and
new types fe for roles and fee for targets. The latter two types have a
different feature set and a different interpretation with regard to their
containing frame instance. But as argued earlier, both node types are
members of frames and reference syntactic material. This is the rea-
son for the introduction of a new intermediate type synsem (short for
syntax-semantics connector), from which we derive fe and fee, instead
of making them a direct subtype of semantics. This new type allows
for more concise definitions of the new node relation constraints. Fig-
ure 4.4 contains the full extended type hierarchy as developed in this
section3.

FREC

SYNTAX SEMANTICS

DNODE PART

T NT

SYNSEM FRAME

FE FEE

Figure 4.4: The final extended type hierarchy

4.2.2 Syntactic Considerations

All features in a TIGER corpus have to be defined for a specific node
type, usually called the domain of the feature. So far there was no
need to allow features with the same name for different node types—
if a feature was applicable to t and nt, it could simply be defined for
the root type frec.

3 This type hierarchy is identical to the node type hierarchy in the implementation, cf. sec-
tion A.3.3.



28 design of the query language extension

With the introduction of the new node types, avoiding name clashes
among the features is more difficult. The set of features used by the
frame semantics annotation is fixed and, in contrast to syntax nodes,
not defined in the corpus metadata. The way feature values for nodes
are annotated is also different from syntax nodes. In the syntax part,
annotation elements simply carry whichever features were defined ear-
lier. For semantics elements, the feature values are assigned based on
the annotation structure, changing them means changing the imple-
mentation. In the SALSA corpus, we would therefore have a name
clash between the feature lemma on t nodes and feature with the same
name on fee nodes.

It is theoretically possible to retroactively add feature definitions for
the new types to the corpus definition, although there is no way to
connect them to the semantics annotation. This alone, however, does
not avoid the problem of name clashes. The problem can be solved by
requiring the features of semantics nodes to have a special prefix, and
making it illegal for freely defined features from the corpus metadata
to begin with this string. This effectively introduces name spaces, and
makes feature names longer and more difficult to remember.

In order to use elegant and fitting feature names on the new types,
we extend the feature system such that two types are now allowed to
have a feature with the same name, as long as none is the supertype
of the other type.

Allowing features with the same name on different node types can
lead to additional matches given certain queries, which is in conflict
with the first design guideline. In the SALSA corpus for instance, the
query in example 4.3 will now return matches for both terminals and
frame-evoking elements. In order to constrain the result set, explicit
type constraints need to be added, as shown in example 4.4.

(4.3) [lemma="run"]

(4.4) [lemma="run" & T]

These type constraints are strictly optional and node descriptions
can refer to both syntactic and semantic types. This is unwanted be-
havior, since apart from all nodes being feature records, there is little
behavior shared between syntax and semantics. The query language
does not gain any power by allowing to mix fundamentally different
node types, it only becomes more confusing. Any new relation con-
straints between semantics and syntax nodes, as well as the existing
ones, are not affected by this, simply because the nodes cannot occur
in the same place.

Because of this, and the design guideline that any extension does
not change result sets for queries concerning the syntactic material
only, we need to find another query syntax. Adding the requirement
for seemingly superfluous type constraints to queries is a burden on
the user, who should not have to be familiar with the intricacies of the
underlying type system.

In order to overcome this problem, but also to support users with
visual cues when writing queries that combine syntactic and seman-
tic material, we extend the syntax of TIGER. Node descriptions with
a type that is a subtype of semantics must be surrounded by curly
braces instead of square brackets. In example 4.5, it is clear that the
node description can only match an fee and not a t node.



4.2 integration into the query language 29

(4.5) {lemma="run"}

We say that the upper type boundary of nodes described with [] is
syntax, of the one of {} is semantics. This is equivalent to adding a
top-level type constraint to node descriptions based on the surround-
ing brace type. Assuming that <> is brace type for node descriptions
with the upper type boundary frec, the two queries in example 4.6 are
equivalent to each other, as are the two in example 4.7. The different
brace types are reduced to syntactic sugar4.

(4.6) [lemma="run"]

<SYNTAX & (lemma="run")>

(4.7) {lemma="run"}

<SEMANTICS & (lemma="run")>

If a user writes a query in which frame semantics nodes are refer-
enced with square brackets (or vice versa), the implementation can
spot the mistake by checking the types of the features used in the de-
scription against the upper type boundary and fail with a meaningful
error message.

4.2.3 Basic Node Relations

To allow expression of queries on the structure of the new annotation
elements in TIGER/SALSA XML, we define several new basic relation
constraints. The information for the constraints can be read off directly
from the annotation.

Frame Structure

To describe the structure of a frame annotation (cf. fig. 4.1), we need to
introduce two new basic relation constraints.

Definition 1 (Frame Member) frame > synsem

A synsem node is a member of a the frame node.

Definition 2 (Syntactic Material) synsem > syntax

A syntax node is referenced by a synsem node, the connection layer between
syntax and frame semantics.

We decided to reuse the operator symbol ‘>‘ in both cases because
it can be intuitively understood as a dominance.

Underspecification

A new relation is also needed to state that two nodes are part of the
same underspecification block.

Definition 3 (Underspecification) frame ∼ frame|fe ∼ fe|fee ∼ fee

Two nodes with exactly the same subtype of semantics the are both members
of the same underspecification block.

4 While this neutral node description syntax does not exist, the different brace types are
in fact converted to upper type boundaries in the actual implementation.



30 design of the query language extension

In this case, we decided against reusing an existing operator. The
sibling constraint ‘$‘ might be the closest fit, because it is symmetri-
cal and expresses membership in a common structure, but we reserve
this operator as a derived relation constraint for membership of two
synsem nodes in the same frame. Further, we do not want to reuse a
symbol which represents a derived constraint for syntax nodes as a
basic constraint on semantics nodes.

The constraint for secondary edges does not fit, because secondary
edges are directed and do not provide a symmetric relation. We also
reserve the possibility to extend secondary edges to arbitrary nodes,
not just between two nodes of type dnode.

The definition states that all semantic types can be part of an un-
derspecification block now, although only blocks for frame and fe are
annotated. Underspecification on the frame always implies that the
targets of the two frames reference the same syntactic material. If un-
derspecification constraints are used with two fee nodes, the constraint
checks if the containing frames are in an underspecification relation.

It is tempting to simplify the definition to semantics ∼ semantics.
This, however, is not possible, because an underspecification block can
only contain nodes with the exact same type. The definition correctly
requires the same types on both sides.

Splitwords

The result from section 4.2.1 was to introduce a new relation constraint
between complex terminals and their parts. We use the symbol ‘<‘ as
the operator.

Definition 4 (Part-of) part < t

A part node is a part of the terminal t

The symbol choice reflects that the relation between a t and its parts
is similar to dominance, but not part of the regular dominance hierar-
chy.

4.2.4 Non-Local References

A frame instance is always annotated in the same sentence as its target
element, so the frame node and the fee connected to it will always be
in the same graph. In contrast to that, the syntactic material referenced
by the roles does not always fall into the boundaries of a single sen-
tence, since they may reference syntactic material from adjacent graphs
(cf. Ruppenhofer et al., 2006, sec. 3.2.5). In example 4.8, the role manu-
facturer exclusively references material from the preceding sentence,
but a single role can also have syntactic material from several graphs.
Example 4.9 shows that a role may also reference a complete graph.

(4.8) [Das Unternehmen]manufacturer produzierte einschließlich
Fremdfertigung mehr als 20 000 Fahrzeuge. Im Jahr zuvor
waren [19 348 Autos]product vom Band gerollt manufacturing.

[The company]manufacturer produced 20 000 cars, including
external production. In the previous year, [19 348 cars]product

left the assembly line manufacturing.



4.2 integration into the query language 31

(4.9) [Der US-Delegationsleiter John Kornblum]speaker

reagierte statement mit den Worten: “[Wir sind nicht bereit, 100

Tage zu warten, absolut nicht]message.”

[US delegation chief John Kornblum]speaker reacted statement,
saying: “[We are not willing to wait 100 days, absolutely
not.]message.”

Overall, non-local references are quite rare, only 206 of 40,020 graphs
in the SALSA corpus show at least one occurrence. Most external roles
belong to graphs that contain quoted or indirect speech. The relatively
high frequency of this phenomenon is explained by the fact that the
text is taken from newspaper articles. Table 4.2 gives more detailed
statistics about non-local references in the 20,727 frame instances of
the SALSA corpus.

type count

Non-local 216

Local 41,126

Total 41,324

(a) fe→syntax edges

type count

Non-local + local 93

Non-local only 123

Local only 39,937

Total 40,153

(b) Position of fe material

Table 4.2: Statistics on fe nodes and references to syntactic material in the
SALSA corpus

So far, there is no node relation constraint in the TIGER language
that connect nodes from several graphs. Even for secondary edges,
which could be used to model anaphoric relations between phrases in
different sentences, non-local references are not supported5 and imple-
mentations of TIGER can make the fundamental assumption that all
constraints are between two nodes of the same graph. If constraints
between two nodes of different annotation graphs were to be allowed,
the execution model of a query evaluation implementation would have
to be fundamentally redesigned.

In the next section, we will discuss possible solutions and their rel-
ative merits. The final query language extension only include predi-
cates to check for the presence or absence of non-local references on fe

nodes, any information on the referenced syntax nodes is discarded.

Integration Approaches

For a possible extension of query evaluation that allows non-local ref-
erences from fe to syntax nodes, we assume, based on the statistics
from table 4.2, that non-local references are very rare and only occur
in a small fraction of all corpus graphs. Local evaluation of queries
remains the default; only when an external reference is actually en-
countered, the context of the query is extended to cover the externally
referenced material. Otherwise, the evaluation context is the single

5 The index of the secondary edges in the original implementation can only handle graph-
local secondary edges (cf. Lezius, 2002a, pp. 194ff).



32 design of the query language extension

graph as described in the corpus. A query like the one given in exam-
ples 4.10 and 4.11 then can contain a non-local reference between #fe

and #n.

(4.10) Find all frame elements which contain an np that transitively
dominates a pp.

(4.11) #n:[cat="NP"] >* #p:[cat="PP"] & #fe:{FE} > #n

Normally, the order in which constraints are checked against the
graph does not matter for the actual result, and implementations are
free to reorder them to improve execution speed. If the evaluation
context can be extended gradually, all constraints which may introduce
non-local references need to be evaluated up front. If any of them
actually has a reference to a node in another graph, the evaluation
context needs to be extended to contain this graph as well.

In example 4.11, the structure #n >* #p might exist in a graph gn,
however if #fe contains a reference to nodes from the graph gn−1,
checking for it in gn first is premature.

The extension also removes the possibility of using an inverted in-
dex of node features to reduce the number of graphs to be checked
early in the evaluation phase. Since all node variables are bound by
implicit existential quantifiers (cf. section 3.3.5), a graph which does
not contain any node with category pp can never be a match for the
query in example 4.11. In the presence of non-local references, this as-
sumption is invalid, since the node may now occur in any other graph.
This results in a significant increase of the number of graphs that need
to be checked.

For more efficient query evaluation, information about graphs which
are connected by non-local references can be precomputed. The query
evaluation must be changed accordingly to take this information into
account. On the other hand, users cannot assume any more that all
nodes in a query are local to the same graph. In the query from ex-
ample 4.12, the frame elements #f1 and #f2 could end up being in
different graphs, if they have non-local references.

(4.12) #f1:{FE} > #n1 & #f2:{FE} > #n2 & #n1 . #n2

While such a result is formally correct, it is also very confusing and
unexpected. Since node locality should not be given up lightly as
the default, one might think about explicitly allowing non-locality of
constraints using a modifier and otherwise not considering them non-
local references.

Provisional Support

Although extending TIGER to support references between nodes in
different graphs allows for modeling and querying many other phe-
nomena as well, we consider this extension to be outside the scope of
this work and will revisit the integration approaches from the previ-
ous section in future work, because such a change requires extensive
changes to the query formalism as well as the implementation. The
impact of this decision is lessened by the infrequence of non-local ref-
erences in the SALSA corpus.

In the query language extension we implement in this work, non-
local references are going to be dropped from the annotation structure



4.2 integration into the query language 33

while the corpus is prepared for query evaluation. In order to provide
at least some provisional support and representation of this annotation,
a flag is set on the modified fe node which can be queried with two
new predicates:

• has_external(fe): True iff the fe node has at least one non-local
reference in the original annotation

• no_external(fe): True otherwise

4.2.5 Frame-to-Frame and Role Relationships

Ruppenhofer et al. (2006, Chapter 6) defines a list of relations which
describe the semantic connections between frames and optionally their
roles. By linking a new frame to already existing ones, these frame-to-
frame relations are meant to improve the comprehensibility of frames
and increase robustness in the interaction between frame nets for dif-
ferent languages, cf. section 1.1.2.

reflexive asymmetric asym . & transitive

CoreSet Subframe+ Inheritance+

Excludes Using+

Requires See_also+

ReFraming_Mapping+

Inchoative_of+

Causative_of+

Is_Superseded_By-salsa

Modifies-salsa

Table 4.3: Frame-to-frame relations in SALSA

Table 4.3 gives an overview of all frame-to-frame relations which are
defined in the frame database distributed along with the SALSA cor-
pus. It is important to note that the formal of the relations properties
differ. Some are reflexive, since they only define relations among the
roles of a single frame, while all other ones are asymmetric, with some
allowing transitivity, too.

These properties are not part of the formal description, but for a
better overview, we have added them in the table. Some of the asym-
metric frame relations also define relations between roles, which is
indicated by a little + symbol following the name.

Before we discuss the applicability of individual frame-to-frame re-
lations in the extended query language, it is important to note that
these relations are defined for abstract frames, not frame instances. Al-
though we sometimes use the terms interchangeably, the distinction is
fundamental in this case.

Because of the difference between abstract frame descriptions in the
database and concrete frame instances in the annotation, it is question-
able at best to introduce new node relations for frame-to-frame rela-
tions. The exceptions where a new relation constraint between frame
instances is most useful are those frame-to-frame relations that de-
scribe discourse structure. An example of that is Precedes, which is not
part of the SALSA frame database. A constraint for this relation will



34 design of the query language extension

also introduce non-local references, since the linked frame instances
can and will most likely occur in different graphs. The problems of
non-local references have been discussed extensively in section 4.2.4.

Inheritance

An important and well-populated frame-to-frame relation is inheri-
tance, which defines a hierarchy from general to more specific frames.
A small excerpt from the frame hierarchy is shown in fig. 4.5. It states
that the frame Building inherits from Intentionally_create, which
itself inherits from Intentionally_act.

Intentionally act

c Act

c Agent

nc Manner

nc Means

nc Place

nc Purpose

nc Time

Intentionally create

nc Components

c Creator

c Created_entity

nc Depictive

nc Instrument

nc Manner

nc Means

nc Place

nc Purpose

nc Time

Building

c Agent

c Components

c Created_entity

nc Depictive

nc Instrument

nc Manner

nc Means

nc Place

nc Purpose

nc Result

nc Time

Figure 4.5: An excerpt from the inheritance hierarchy defined by the frame-to-
frame relations6

Thick arrows encode inheritance of frames (Generic→Specific), thin ones
inheritance of roles. Roles marked with c are core roles, nc roles are periph-
eral.

Since searching for frames given a more general frame is an interest-
ing feature, we want to include a mechanism to support queries like
the one in example 4.13.

(4.13) Return all graphs which contain instances of a frame that inherits
from intentionally_act.

The name of a frame is already a feature of the node, and using
the name and the inheritance relations from the frame database, an
implementation can build a hierarchy of frames to evaluate these kind
of queries. Given the small hierarchy in fig. 4.5, the result set of the
query in example 4.13 contains the instances of all three frames.

We need to extend the syntax for node descriptions to include a
new comparison method for feature values, additionally to string and
regular expression literals. Since this syntax is needed for semantic
types as well, we will discuss it separately in Section 4.2.7.

The inheritance hierarchy also defines relations between the roles of
two frames, as indicated in the excerpt. The hierarchy of roles will

6 Inspired by the FrameGrapher tool,
http://framenet.icsi.berkeley.edu/FrameGrapher/

http://framenet.icsi.berkeley.edu/FrameGrapher/


4.2 integration into the query language 35

be included into the extended query language, to support queries for
roles similar to 4.13. In this context, it is important to recall that two
roles with the same name in different frames do not refer to the same
entity. If they did, some frame hierarchies would introduce cycles in
the role hierarchies, e. g. agent→creator→agent in the hierarchy
from fig. 4.5. To avoid this problem, role names need to be disam-
biguated transparently.

Core Sets

Each frame can have one or more core sets of roles (Ruppenhofer et al.,
2006, sec. 3.2.2.1). If any of the elements of one core set is present on
a frame instance, the frame is considered complete. For example, the
frame bringing has the two possible core sets {source, path, goal}
and {agent, carrier}. If any role from one of the sets is annotated for
a given frame instance, the semantic valence of the frame is satisfied,
i. e. the event is described in its entirety, although not all core roles
occur. It is unusual that all members of a core set are annotated, but
possible.

The CoreSet relation is a reflexive relation, since it is only concerned
with the roles of a single frame. We introduce two new predicates for
frames:

• has_coreset(frame): True iff any member of at least one core
set has been annotated on a frame instance

• no_coreset(frame): True otherwise

We disregard that fe nodes can be checked for membership in a
core set, a good approximation can already be achieved by using the
coretype feature to be introduced on roles, cf. section 4.3.1. If the use
case for exact membership in core sets arises, such predicates can be
added.

Excludes and Includes

Excludes and Includes are both reflexive relations on frames which de-
scribe the dependencies between roles. While both can be realized
with new basic relations, they would also both need predicates in case
the role in- or excluded is not present on the frame instance, which
is the default case for Excludes. Because of the comparatively small
importance of the feature, we do not include it. Again, we point out
that they can be included given the use case.

4.2.6 Other Frame Relations

None of the other frame relations listed in table 4.3 are included in
the query language. Most of them do not provide any helpful fea-
tures for the query language, define only very few actual relations or
are only of interest to corpus or frame net authors. All of them re-
quire the introduction of new constraint relations or modifications of
the node description syntax and therefore provide very little gain in
query power for a moderate increase of language and implementation
complexity.

As already mentioned, all these relations are defined on frames, not
on frame instances, and only frame instances are members of the do-
main of the extended TIGER query language. Relations between the



36 design of the query language extension

types of frames have to be encoded in a different way, should they be
part of the query language, as in the example of inheritance.

4.2.7 Type Hierarchies for Feature Values

All node types for frame semantics have a feature for their semantic
type. Semantic types are organized in a small ontology and describe
possible fillers for roles and formal properties of frames. Similar to the
frame and role hierarchies, it is natural to query for all roles whose
semantic type is derived from a given type.

As mentioned in section 4.2.5, we need a new syntax element for
type literals in feature constraints, which signals that a value is to be
interpreted as a base type and not as a literal string like in query 4.14,
which only matches the exact type sentient.

(4.14) {FE & semtype="Sentient"}

The original TIGER language definition already contains support for
type literals in node descriptions. If, for instance, the two POS tags NE

and NN are defined to have the type noun, it is possible to write a
query like the one in example 4.15

7.

(4.15) [pos=noun]

We decided against using this syntax8 and instead introduce our
own. If a feature value must inherit from a given feature, based on the
hierarchy of feature values, a string on the right hand side of a feature
constraint has to be enclosed in square brackets. It is also possible to
use negation on the feature, in which case only types which are not
subtypes are a match. A query is shown in example 4.16.

(4.16) {FE & semtype=[Sentient]}

There are several reasons for using a new syntax element:

• The type noun in example 4.15 is defined in an external type
hierarchy. In our case, the feature values themselves (like sen-
tient) are types and organized in a hierarchy.

• Using completely undecorated strings, as shown in example 4.15,
provides very little visual cues to distinguish type from normal
string literals. Simply dropping the quotation marks does, in our
opinion, not reflect the change in interpretation.

• Similar to regular expression literals, the change of which fea-
ture value is considered a match is reflected by a variation of the
surrounding elements. This is simply a new manifestation of an
abstract syntactic pattern present in the language.

An implementation has to make sure that type literals are used only
in constraints for features which are in a hierarchy, otherwise it must
fail with an error message. It also needs to obtain the feature hierar-
chies, since they are not included in the corpus definition, and store
them to be able to resolve type queries at runtime.

7 Taken from section 8.2 of the online TIGERSearch manual at http://www.ims.

uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/QueryLanguage_Types_

Definition.html
8 As to this point, this syntax is not supported in our implementation.

http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/QueryLanguage_Types_Definition.html
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/QueryLanguage_Types_Definition.html
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/QueryLanguage_Types_Definition.html


4.2 integration into the query language 37

4.2.8 Backwards Compatibility

It was part of our design guidelines not to break backwards compat-
ibility with the syntax part of TIGER and we need to revisit the way
empty node variables, i. e. variables that are not attached to any node
description, are handled.

The goal of the new node description syntax introduced in sec-
tion 4.2.2 was to prevent a mixture of syntax and semantics nodes in
the same variable. While it is not possible to write node descriptions
with the upper type boundary frec, it is possible to leave nodes com-
pletely undefined by only using a node variable, effectively achieving
the same.

For all constraints and predicates, associated node types are known.
An implementation can use type inferencing to identify the exact type
of an “empty” variable, to ensure that syntax and semantics nodes
are kept separate. This type inference fails in some cases, since we de-
cided to reuse the operator symbol ‘>‘, originally for dominance in the
syntax part, for the frame semantics annotation as well. Example 4.17

shows a query where the type inferencer fails to identify variables as
either having syntax or semantics types only.

(4.17) #a > #b

In the extended query language, example 4.17 has the following in-
terpretations:

1. Find all nt nodes which dominate another dnode.
2. Find all frame nodes which contain a synsem node.
3. Find all synsem nodes which reference a syntax node.

In the original TIGER query language, only the first item is a valid
interpretation and our design guidelines specifically required the ex-
tensions not to introduce any changes to the result sets of syntax-only
queries, which can be interpreted as syntax-only.

The reuse of operator symbols has caused a violation of said rule,
but we reused operators in accordance with the second design rule,
which requires the changes to the query language to be as small as
possible. To keep the operators, we have to introduce one additional
rule for the type inferencer, which will keep backwards compatibility
with syntax-only queries at the expense of increased verbosity in some
queries including frame semantics:

Type Inference Rule 1 If and only if, after considering all sources of type
information (constraints, features, predicates), the set of possible types for a
variable #v still includes at least one subtype of syntax and one subtype of
semantics, then the implementation should assume that #v is a subtype of
syntax.

This makes it impossible for the query in example 4.17 to have any-
thing but the first interpretation. If another interpretation is required,
the node types of the variables have to be fixed using type constraints,
as shown in examples 4.11 and 4.12.

4.2.9 Final Remarks

Syntax of formal, especially programming languages, is always a del-
icate matter and tends to lead to fundamental arguments over seem-
ingly unimportant details. We do acknowledge that our decision to



38 design of the query language extension

introduce a new brace type for frame semantics nodes might be seen
as controversial and a further extension of TIGER to include a new
kind of annotation would run short of new brace types.

Another decision we made early in the design phase, to reuse con-
straint operators for new basic node relations, forced us to integrate a
new implicit rule in the type inferencer to keep backwards compatibil-
ity could be criticized, too.

We justify these decisions by the fact that our extension to the query
language is a pragmatic inclusion of new features in order to allow
working with existing resources. A query language that completely
formalizes multi-level annotation and non-local references and does
not need special rules for backwards compatibility requires a change
in the annotation format, the object model and the query syntax. This
is very well outside the scope of our work.

4.3 summary of the extensions

This section contains the complete and definitive description of the
query language extension to handle annotation of frame semantics as
contained in the TIGER/SALSA XML format used for the SALSA cor-
pus. It covers the extensions introduced in the design section, intro-
duces several derived relation constraints and redefines existing query
language elements to cover frame semantics annotation as well. This
section serves as the basis of the implementation outlined in chapter 5.

A condensed version of this overview is included in appendix B,
which is supposed to serve as a quick reference of the extensions when
writing queries.

4.3.1 Features

For all new features added by TIGER/SALSA XML, we list the formal
properties and describe how their values are obtained from the corpus.

Common Features

Two features are defined for the type semantics. Since this is the
supertype for all nodes in frame semantics annotation, its features are
inherited by the more specific types.

All semantic nodes have a feature flag. Flags are strings which are
used to mark the existence of linguistic phenomena. Since no authori-
tative list of flags is given in the corpus metadata, the feature is treated
like an open-class feature and values are taken directly from the corpus
annotation. In TIGER/SALSA XML, targets cannot have flags. There-
fore, fee nodes from corpora encoded in this format will never have
this feature filled with a value.

The feature semtype is present on all nodes, too. Since the SALSA
corpus distribution does not include the hierarchy of semantic types,
the one included in the Berkeley FrameNet distribution should be used
instead. Only the types which are listed in this hierarchy are valid
feature values, semtype is treated like a closed-class feature from the
corpus metadata.

The semantic types are not directly included in the annotation but
available in the frame database. When a corpus is prepared for query
processing, semantic nodes need to be enriched with this information.



4.3 summary of the extensions 39

If the frame database does list a semantic type for an element, the sem-
type feature is set to the type void, which is provided by the implemen-
tation. Undefined semantic types are dropped from the annotation
and produce a warning. This feature can be used with the new type
literals; for a sample usage, see the query in example 4.16.

Frames

Nodes with the type frame have the feature frame, which contains the
name. The list of valid frame names is defined by the descriptions
in the frame database, all other names are considered to be an error
in the annotation. Based on the inheritance relations defined in the
frame database, the frame feature also supports the use of type literals,
as shown in example 4.18.

(4.18) {frame=[Rewards_and_Punishment]}

Frame-Evoking Elements

Frame-evoking elements, type fee, have two additional features, lemma
and head. The features are filled by the lemma and head lemma given
in the annotation. Both features are treated as open-class. Although
the frame database specifies a list of possible lexical units for each
frame, reconstructing it from the annotation might not be possible in
all cases. The list can be incomplete, especially with regard to English
frames reused by the SALSA project.

As mentioned in section 4.1.1, the head is only given if the lemma is
a complex string. If the head lemma is empty, the lemma is takes as
the value for both features.

Frame Elements

Two more features are defined for frame elements, type fe. The feature
which identifies a frame element is role. The description of a frame
lists all possible roles, but since different frames can have roles with
the same name, role named are made unique internally. The unique
role names then form the list of valid feature values. If the role name
is not found in the frame database, it is treated as a mistake in the
annotation and dropped from the node.

The disambiguation of role names happens transparently for the
user, the result set of query 4.19 will contain all graphs that contain
a frame instance with a role named Event. If only roles from a certain
frame should be matched, a constraint on the containing frame has to
be added, as shown in example 4.20.

(4.19) {role="Event"}

(4.20) {frame="Death"} > {role="Event"}

The role feature supports usage of type literals, too, the hierarchy of
roles is given by the hierarchy of frames.

The second feature is coretype, which describes the coreness of a role
with regard to its containing frame, i. e. whether a role usually must be
annotated in a frame instance, or simply serves as a modifier. The core
types of roles are defined in the frame descriptions. Although there is
no list of valid core types in the frame database, the implementation
only accepts these four core types:



40 design of the query language extension

• Core
• Peripheral
• Extra-Thematic
• Core-Unexpressed

Like the semtype feature, the core type is added to fe nodes during
corpus preparation.

Word Parts

part nodes have the single feature part, which is taken directly from
the splitword annotations in the corpus. Because this feature contains
surface material, it is open-class.

4.3.2 Relation Constraints

Additionally to the basic relations that describe the structure of frame
annotations, we introduce new derived constraints which allow more
compact expression of certain queries. All constraints support nega-
tion using the standard ‘!‘ prefix modifier.

Frame Members

Syntax: frame > synsem

The frame member constraint is true if a synsem node is annotated
in a frame node. A query is given in example 4.20.

Negation of the constraint suffers from the limitations discussed in
section 3.3.5, but since our implementation contains support for simple
universal quantification discussed in the same section, it is possible to
search for frame instances that do not contain a specific role. The result
set of the query in example 4.21 contains only instances of the frame
death in which the cause role is not filled.

(4.21) {frame="Death"} !> %s:{role="Cause"}

Frame Siblings

Syntax: synsem $ synsem

Similar to the sibling constraint for dnodes, the derived frame sib-
lings constraints is used for testing whether two synsem nodes occur
in the same frame. Using this constraint, the query in example 4.22

can be shortened to 4.23 without changing the result set.

(4.22) #f:{FRAME} > {role="Speaker"} & #f > {role="Message"}

(4.23) {role="Speaker"} $ {role="Message"}

Syntactic Material

Syntax: synsem > syntax

This constraint can be used to check for the syntactic material di-
rectly referenced by a target or a role, which is defined in the cor-
pus annotation. Similar to the dominance constraint on syntax nodes,
the constraint behavior can be changed using a number of modifiers,
which can all be negated.



4.3 summary of the extensions 41

Da die Verbreitung der Kernenergie überall auf großen Widerstand stoße , führe an Öl , Kohle und Gas kein Weg vorbei .
KOUS ART NN ART NN ADV APPR ADJA NN VVFIN $, VVFIN APPR NN $, NN KON NN PIAT NN PTKVZ $.

Responding_entityAction Response

stossen1-salsa

HD SVPSB

NK NK

MO

AC NK

CJ CJ CD CJ

MO

CP MO HDMO

AC NK NK

SB

NK NK AG

NK NK

S

NP

PP

CNP

S

PP

NP

NP

Figure 4.6: Match for the first common ancestor constraint from the query in
example 4.25

>∗ true if the syntax node is contained somewhere in the syntactic
material, i. e. is either directly referenced or dominated by a di-
rectly referenced syntax node.

>n same as above, but the distance between the synsem and the
syntax node must be exactly n.

>n ,m same as above, but the distance between the synsem and the
syntax node must lie between n and m inclusive.

From this basic relation, we derive a constraint that uses frame

nodes on the left-hand side, resulting in frame > syntax. This con-
straint is true if the syntax node is referenced by the target or any
role of the frame node. Example 4.24 shows a query which matches
all graphs in which a terminal with the lemma string “Katze” occurs
anywhere in a frame instance.

(4.24) {FRAME} >* [lemma="Katze"]

First Common Ancestor

Syntax: nt ^ semantics

The first common ancestor constraint is a combination of dominance
and frame membership. It is met if an nt node is the lowest (as
seen from the root node) node which transitively dominates all syntax

nodes referenced in a frame, target or role. For this constraint, part

nodes take the same position in the tree as the t node they belong to.

(4.25) [NT] ^ {frame="stossen1-salsa"}

Figure 4.6 shows a graph that is a match for query in example 4.25,
the node which corresponds to [NT] is highlighted.

Underspecification

Syntax: frame ∼ frame|fe ∼ fe|fee ∼ feea

The underspecification constraint checks if two nodes are members
of the same underspecification block. In the case of negation, the con-
straint is satisfied either if the nodes are in different underspecification
blocks or at least one is not part of such a block at all.



42 design of the query language extension

Part-of

Syntax: part < t

The part-of relation connects a complex terminal of type t with its
parts. Usually, only words which contain parts that are referenced in
synsem nodes are annotated as splitwords. This constraint therefore is
of little help for morphological queries.

4.3.3 Predicates

Section 4.2 already introduced several predicates for the new node
types. We also include a list of derived predicates and extend existing
ones to cover the new node types as well. For most predicates, both
positive and negative versions need to be defined, since TIGER does
not include negation at the topmost expression level.

Arity

The predicate for arity of a node is extended to cover all new node
types as well, which is in accordance with the usage of arity in graph
descriptions, as discussed in section 3.2.3.

Coresets

For frame nodes, two predicates exist which can be used to check if
any or no core set of roles has been instantiated completely. The two
predicates are:

• has_coreset(frame)

• no_coreset(frame)

Non-local References

Non-local references from synsem to syntax nodes in other graphs
are not supported, but two predicates can be used to check whether
the original annotation contained any references of this kind that have
been dropped:

• has_external(synsem)

• no_external(synsem)

The predicates do not distinguish between synsem nodes that have
only non-local and those that have some local references, too. Exam-
ple 4.26 show a query that matches fe with only non-local references,
which are not counted towards the node arity.

(4.26) #f:{FE} & has_external(#f) & arity(#f, 0)

Underspecification

Checks for membership in the same underspecification block can al-
ready be done using the new constraint ∼, however no possibility ex-
ists to express that a certain node does not belong to any underspeci-
fication block at all. It should also be possible to state that a node is
underspecified without the need to introduce another node variable.
Two new predicates are added to address these requirements:



4.4 result 43

• uspec(semantics)

• spec(semantics)

uspec is simply an abbreviation of the underspecification constraint.
Its counterpart spec cannot be expressed using the negated constraint
because of the implicit existential quantification, which is the reason
for its inclusion.

4.4 result

With the definitions of node types and relations describing frame anno-
tation structure, we can revisit the query from section 1.3 which served
as the original motivation for the extension:

(4.27) Find all sentences where the role topic in the frame statement is
realized by a PP with the preposition “über”.

To formulate this query, we need four of the new elements:

1. Find all instances of topic:
#r:{role="Topic"}

2. Find all instances of statement:
#f:{frame="Statement"}

3. Role is a member of frame:
#f > #r

4. Role is fully realized by a syntax node:
#r > #pp & arity(#r, 1)

Putting all these parts together with the original syntax query frag-
ment from example 1.9, we get the query in example 4.28, which is a
correct formalization of example 4.27.

(4.28) {frame="Statement"} > #r:{role="Topic"} &

#pp:[cat="PP"] >AC [word="über"] &

#r > #pp & arity(#r, 1)

To relax the constraint on the syntactic material of the topic role, it
is possible to drop the arity constraint. In this case, the role might have
several more references.

Hotels und Gaststätten klagen über knauserige Gäste
NN KON NN VVFIN APPR ADJA NN

Speaker Topic

Statement

HDSB

CJ CD CJ

OP

AC NK NK

S

CNP PP

Figure 4.7: The annotated graph for the sentence from example 1.8



44 design of the query language extension

Figure 4.7 shows the annotation graph of the sentence in example 1.8
with the nodes bound to the variables in query 4.28 filled, which
demonstrates the ability of the extended language to express queries
as required in section 1.4.1.



5I M P L E M E N T A T I O N O F T H E E X T E N S I O N

In this chapter, we will introduce the general architecture of our
query evaluator implementation. In the architectural overview,
we explain key algorithms and show where the new query lan-
guage elements from chapter 4 are plugged into the existing hier-
archy.

In the second part of the chapter, we show how the frame se-
mantic annotations from TIGER/SALSA XML corpora are pre-
processed, which kind of information is put into the index used
for query evaluation and how this data is used in the constraint
checks.

The descriptions in this chapter are as language-agnostic as
possible. A walk-through of the implementation is given in ap-
pendix A.

5.1 architecture of the query evaluator

The new query elements for frame semantics annotation occur in differ-
ent parts of our TIGER query evaluation engine. For an understand-
ing of the implementation requirements, it is necessary to have an
overview of the different subsystems in the query module and to know
how these systems interact to create the result set for a TIGER query—
the process which we refer to as query evaluation. An important part of
the evaluation is the corpus index, which contains a representation of
the corpus that is optimized for searching and which is created prior
to any other operation.

5.1.1 The Corpus Index

TIGER-XML and its derivative allow a moderately compact and ef-
ficient representation of annotated corpora as XML document trees.
XML is a generic and flexible markup language, originally for narra-
tive documents, but it also became the quasi standard for structured
data in recent years1. There are libraries for XML handling written
for almost all modern general-purpose programming languages, and
a large number of programs and tools.

The huge popularity of XML has also lead to its wide spread adop-
tion in the NLP community, and many formats for storage of linguisti-
cally annotated text similar to TIGER-XML have been developed, like
GrAF (Ide and Suderman, 2007), PAULA-XML (Dipper, 2005), EX-
MARalDA (Schmidt, 2001), MMAX2 (Müller, 2006), XCES (Ide et al.,
2000) or the NITE XML toolkit (Carletta et al., 2003), some of which
are also queryable and have been discussed in 2

The technological ecosystem that grew around XML since its intro-
duction in 1998 also contains a general-purpose query language for
XML documents (XQuery) and a language for querying nodes in doc-
ument trees (XPath). It is possible to extend XPath to cover linguistic

1 Although recent developments have lead to the introduction and adoption of more com-
pact markup languages like JSON.

45



46 implementation of the extension

queries on XML documents encoding annotated text (Bird et al., 2005;
Bird and Lee, 2006).

In the case of TIGER-XML corpora, using either query language di-
rectly is highly problematic. As explained earlier, TIGER annotation
constitutes a graph with crossing edges, a structure which cannot be
directly represented in the hierarchical structure of XML. TIGER-XML
stores the graphs in a flat representation and makes use of the tree
nature of XML for structuring of the corpus only, not for storing hier-
archical annotation.

XML is also a very verbose formalism and TIGER-XML corpora are
usually large. In canonicalized form2, the SALSA corpus needs 144

MiB of storage. Storing this XML tree completely in-memory needs
huge amounts of RAM, and parsing XML documents is a very time-
consuming process.

In order to avoid these problems and to provide efficient evaluation
of queries, TIGER-XML corpora are preprocessed and the actual work
is done on a corpus index. This index contains the complete original
annotation, but in a much more condensed representation, which is
not designed for data interchange. For each node, information is pre-
computed to allow fast checking of relation constraints. This makes
it possible to implement dominance checks, which have to be tested
using a path search in the original annotation graph, as a simple se-
quence comparison operation. The corpus index is created only once,
which usually takes several minutes, and stored along with the origi-
nal corpus files.

Index Contents

The corpus index consists of several major parts which are used at the
different stages of query evaluation:

• Feature Definitions
Feature domains, lists of values and formal properties.

• Inverted Features Indices
A lookup table which lists all nodes with a certain feature value,
similar to a full-text index for texts.

• Node Data
For each node in the corpus, a list of precomputed values for con-
straint and predicate checking. The actual fields in these entries
depend on the concrete type of the node.

5.1.2 Overview

So far, we have used the term query evaluation through the work with-
out defining it properly. By evaluation, we refer to searching each
graph in a corpus index for the structure described by a TIGER query
and identifying all distinct combinations of nodes that fulfill the con-
straints of the query. This process generates a result set, which contains
all matches that were found in the corpus. For each match, the follow-
ing information is given:

• the unique identifier of the graph the structure was found in
• for each variable defined in the query, the unique identifier of

the node which was bound to it.

2 Canonical XML Version 1.0, http://www.w3.org/TR/XML-c14n.html

http://www.w3.org/TR/XML-c14n.html


5.1 architecture of the query evaluator 47

The process of searching the corpus index for matches involves sev-
eral steps:

1. Parsing the query
2. Query analysis
3. Node candidate retrieval
4. Relation constraint checking
5. Result set creation

Each step is handled by its own sub-module, apart from the last
two, which are merged. The sub-modules are oblivious of the inner
workings of the preceding or following steps and only depend on the
input data structures and the corpus index.

In the upcoming sections, we will visit each step briefly and explain
its in- and outputs. A walkthrough of all these steps with a sample
query is given in section 5.3.

5.1.3 Query Parsing

In the first step, the query string must be parsed into an internal data
structure that can be easily processed and modified by later stages. In
programming language and compiler theory, such a representation is
usually called abstract syntax tree (AST). It abstracts away from the con-
crete textual representation, which includes insignificant white space,
newlines or features which can be expressed in several different ways
and represents it using a tree data structure with typed nodes for differ-
ent syntactic elements. In this sense, an AST contains a normalization
of the material found in the query string, but in a data structure which
can be processed and modified more easily.

The query parser itself only checks for the well-formedness of the
query, but no checks regarding the validity are done. This makes the
parser completely independent from the corpus index.

5.1.4 Query Analysis

After the well-formedness of a query has been established and an AST
created, it needs to be tested for validity. This is only possible in the
context of a corpus; if the query contains an undefined feature, for
example, it is invalid and evaluation therefore impossible.

In section 4.2.7, we also mentioned that the implementation has to
make sure that type literals in feature constraints are only used for
those features that define a hierarchy, which is also enforced in this
step. Query analysis also introduces variables for those node descrip-
tions that were not bound previously, thus making sure that each node
can be referred to by a name during the evaluation phase.

The most important part of the analysis is the type checking, which
tests if the features, constraints and predicates used for each variable
allow a match at all, or introduce a conflict which prevents any match.
This makes it possible to distinguish between queries which simply do
not have any match, because the structure they describe never occurs
in the corpus, or queries that cannot occur, because the structure they
describe is impossible.

An invalid structure is shown in the query in example 5.1. The inter-
section of the node types t and nt is empty, no node can exist which
has both types at the same time. This is in contrast to example 5.2,



48 implementation of the extension

where the type constraint for dnode is superfluous, because it is al-
ready implied by the more specific type nt.

(5.1) [T & NT]

(5.2) [DNODE & NT]

The type checking also has to inspect the constraints and compare
them against their abstract type definitions. The query in example 5.3
is invalid, because a frame cannot contain another frame. The relation
constraint frame > frame is undefined.

(5.3) {frame="Cure"} > {frame="Healer"}

Type Inference

The type, or set of types if the node description contains a disjunction,
for each node variable has to be determined by combining all sources
of type information,which are the features and type constraints used in
the node descriptions, the predicates and the relation constraints. Type
inference is especially important for empty node descriptions, because
they can refer to any node in the graph, and any kind of information
inferred about such nodes can drastically decrease the time needed to
evaluate the query.

For each disjunct of a node description, the initial type is identified
by creating the intersection of type constraints and feature domains.
The intersection of two types a and b is always the more specific one
(cf. fig. 4.4 for the type hierarchy). If the two types are not in an in-
heritance relation, the intersection is empty and the disjunct is marked
as invalid. If all disjuncts are invalid, the query is reported as invalid,
otherwise the invalid parts are discarded silently. If the variable does
not have any node description, the type defaults to frec.

These types are combined with the type definitions of the predicates
applied to the node variables, if any. The last step involves checking
the types against the definitions of the relation constraints. If after this
step, the set of possible types for a variable still contains one subtype
of syntax and one subtype of semantics, the special rule for breaking
these ties is applied, cf. section 4.2.8. At the end, if the set of possible
types for any variable is empty, the query is rejected as invalid.

Query Objects

For the actual evaluation, predicates and relation constraints are in-
stantiated. In both cases, the parser only checked the well-formedness,
but not if the combination of modifiers on a constraint was valid, if all
arguments for a predicate were specified or if a predicate name was de-
fined at all. The analysis module uses the registries of predicates and
relation constraints and return concrete implementations, i. e. objects
which contain the concrete code for the evaluation.

Each node variable is represented by a node query data structure,
which combines its type, the associated node description, which is
extracted from the AST, and all predicates. This data structure is used
by the node candidate retrieval. The relation constraints along with the
left and right operand variables are passed to the constraint checker.



5.1 architecture of the query evaluator 49

5.1.5 Node Candidate Retrieval

For each node variable, all matching nodes from the whole corpus are
searched. This is done by joining the feature constraints and predi-
cates3 into a single index query. The results for the single node vari-
ables have to be grouped together based on the graph. Since each
node variable is bound by an existential quantifier, only those graphs
for which each variable has at least one matching node are considered
in the relation constraint checking phase. Relation checks are com-
putationally expensive, the algorithm therefore tries to minimize the
number of possible candidates for each node variable.

No changes are necessary to support new features in a corpus. Since
feature definitions are part of the corpus index and not hard-coded,
they just need to be added during the preprocessing phase. Because
features are just string values, any new feature does not need spe-
cial handling. In contrast to that, new predicates need an explicit
implementation, since it is tightly coupled to the structure and type-
dependent interpretation of the node data entries. The instantiation is
generic, any predicate simply has to be registered under its name, it
can then be created during the query analysis step.

Type Literals

The only extension which involves a substantial change to the node
retrieval are the type literals in feature constraints, since they constitute
a novel way of matching a feature value against a constraint. The
query analysis module has made sure that type literals are only used
for features which define a hierarchy, but the feature values cannot
be checked using exact string matching any more, as there are many
different feature values which fulfill the constraint.

If a type literal is encountered, the transitive closure over all children
of the given value has to be created. In the query in example 5.4, all
frames that inherit from event node should be matched. For this, the
hierarchy of frames is needed, which is read from the frame database
and stored in the corpus index during the preprocessing.

(5.4) {frame=[Event]}

The actual search for matching nodes needs to be modified in such
a way that any number of matching feature values can be specified,
without hurting efficiency. In our implementation, there is a generic
way of finding node candidates based on a list of values rather than
a single value. This code was originally used for regular expression
literals only, but could be generalized with little effort.

5.1.6 Result Set Creation

Relation constraint checking and result set generation are handled in
a single step. After all matches have been identified, the result set
creation is trivial and simply involves putting the results into a data
structure that is more convenient for further processing.

Under the simplifying assumption that all node variables have the
same number of candidates, there are nm possible matches for a query

3 Type constraints like [T] are handled as predicates internally.



50 implementation of the extension

in a graph, with n being the number of node variables and m the aver-
age number of candidates per node. Relation constraint checking is the
most complex part of the query evaluation pipeline, and therefore the
one which usually takes longest. The individual checks as well as the
algorithm are well-optimized and also contain heuristics to minimize
the number of checks that need to be performed.

The simplistic algorithm for constraint checking is short and follows
a generate-and-test pattern. For the node candidates of a given graph,
all possible combinations of assignments to node variables need to be
done, since a node variable can only be bound to one node at the
time. On each of these assignments, the relation constraint checks are
performed. A particular assignment of nodes to variables that satisfies
all constraints is considered a match and added to the result set.

The constraint checking algorithm is largely oblivious of the inter-
nals of individual constraints. Each relation constraint has a set of for-
mal properties, which are used to improve evaluation efficiency, but
the internal workings of the relation and which fields from the node
data entries it needs is of little importance to the algorithm. Just as
in the predicate handling, we need to implement the new constraints,
or extend existing ones in case of operator reuse. They are associated
with the specific AST nodes which are used to represent the opera-
tors in the query string. No changes to the core of the result building
algorithm are needed for the new constraints.

Evaluation Order and Parallelism

Node candidate retrieval and result building is done for one graph at a
time instead of processing the whole corpus in a single step. This has
the advantage that matching graphs can be reported to a user as soon
as possible. If a query takes very long to evaluate or the connection
between the user and the query server has a high latency4, a result can
be presented as soon as the first match is found. This improves subjec-
tive performance and interactivity, at the expense of not knowing the
final size of the result set in the beginning.

Since graphs are independent of each other, the checks of relation
constraints can be performed in parallel. On computers with several
independent processors or processor cores, the whole corpus is split
into n equally large parts5 and the query is evaluated on each part in
parallel, resulting in a substantial speed improvement.

5.2 preprocessing frame semantics annotation

The corpus index is fundamental to efficient evaluation of even the
most simplistic queries. Since it is a process which only needs to be
done once, it almost always pays off to spend more time during the
index creation and precompute more information, which just needs to
be accessed instead of computed on-the-fly during evaluation.

The corpus index creation is graph-based. After the corpus metadata
have been parsed and all features are known, each graph is processed
by a number of steps:

1. Convert the graph description from the XML corpus file into a
data structure.

4 When using a web query frontend, for instance.
5 n should be proportional to the number of available CPUs.



5.2 preprocessing frame semantics annotation 51

2. Enrich the annotation graph with external features.
3. Index the feature values.
4. Precompute node data for constraints and predicates.

The data structure used during the preprocessing is a directed graph
which contains all nodes with their features and encodes the relation
as typed edges. It is not used during evaluation, but still needed for
graph rendering.

For the frame semantics annotation, the features coretype and sem-
type have to be added to the respective nodes from the frame database,
which is done in the second step. The feature value indexing algorithm
is independent of the actual features, it simply covers all available fea-
tures on each node. Because of that, the introduction of new nodes for
frame semantics does not involve any changes to this part.

5.2.1 Precomputed Information

The structural information in the graph needs to be converted into a
representation that allows efficient checks of relation constraints and
predicates during evaluation. This representation is stored in the node
data.

Each entry in the node data index, whether for syntax or semantics

nodes, contains a field which encodes its exact type. This field is used
for type constraints in node descriptions. In the remainder of the sec-
tion, we will explain the other data fields for semantics nodes.

Frame Numbers

In order to evaluate the constraint frame > synsem and its derivative
synsem $ synsem, each frame receives a numeric ID which is unique
within a single graph. It is stored in the entries of the frame and all its
direct synsem children. The relation constraints for frame membership
and frame siblings evaluate to true if the node operands on both sides
have the same frame ID.

Underspecification Blocks

Each underspecification block receives a unique ID. This ID is stored
in the entries of all nodes that are members of the block, usually only
two. All nodes that are not part of any block at all receive a reserved
value, which signals the absence of underspecification.

The underspecification constraint can then check if both operands
have the same block ID, which has to differ from the reserved value.
In the predicates, the block ID of the node is simply compared to the
reserved value. If both are equal, spec is true, otherwise it is false.
uspec is the negation of these results.

Node Addresses

The preprocessing for relations between synsem nodes and their syn-
tactic material relies on the way the dominance relation constraint is
implemented. Each node in a graph is assigned a unique address,
which is derived from the path between the root node and itself. The
Gorn address of a node (Gorn, 1967) is created by the following algo-
rithm:



52 implementation of the extension

• The address Gr of the root node r is the empty address ().
• All non-root nodes receive a numeric identifier in, which has to

be unique at least among all its siblings.
• The address of a node n is found by concatenating the address
Gm of its parent node m with in, i. e. Gn = Gm ⊕ (in)

Since the syntax part of the graph is a tree, there is only one such
address for each node. The identifiers in are assigned to nodes based
on their position in the list of child nodes, but they do not have an
interpretation by themselves. Examples of Gorn addresses are shown
in the graph in fig. 5.1.

( )

(0) (1)

(0, 0) (0, 1)

(0, 0, 0) (0, 1, 0) (0, 1, 1)

Figure 5.1: Nodes with Gorn addresses

The addresses are stored in the node data entries for dnodes and
used by the various dominance constraints. Equations 5.5 and 5.6 show
the definitions for transitive and direct dominance between two nodes
n,m based on their Gorn addresses.

dom(n,m) = Gn v Gm ∧ |Gm| − |Gn| == 1 (5.5)

dom∗(n,m) = Gn v Gm ∧ |Gn| < |Gm| (5.6)

|G| is the length of the address G, with |()| == 0, v the string prefix
operator and () the trivial prefix of any string.

For the relations between semantics and syntax nodes, we want to
reuse this addressing scheme. However, it is not possible to include
the frames and synsem nodes into the address hierarchy and give them
their own Gorn addresses, because for each of the syntax nodes in a
frame, this introduces a new path to reach it from the root and thus
an alternative Gorn address. If a node can be represented by several
different addresses, the checks for dominance as presented earlier do
not work any more. Furthermore, we have to account for one synsem

node having references to any number of syntax nodes.
Our solution to this problem is to give each synsem node entry an

address-list field that contains the Gorn addresses G0, . . . Gi of all refer-
enced nodes. The addresses are stored as a tuple (P, {S0, . . . ,Si}) of the
longest prefix P that is common to all addresses and the set of suffixes
S for the individual nodes. The original addresses can be reconstructed
by concatenation, for instance G0 = P⊕ S0.

A demonstration of this storage scheme is given below. The list of
three addresses in example 5.7 is compressed to the value in exam-
ple 5.8.



5.3 query evaluation example 53

(5.7) (1, 0, 1, 2), (1, 0, 1, 3), (1, 0, 1, 4, 5)

(5.8) ((1, 0, 1), {(2), (3), (4, 5)})

If a synsem node has just a single reference, the set of suffixes only
contains the empty suffix address ().

This form of storage has several advantages over just listing the in-
dividual addresses:

• In the general case, the compressed version can be stored more
efficiently than the concatenation of addresses

• The prefix P is also the address of the node that is the lowest
common ancestor of all nodes. It can be used directly by the
nt ^ semantics constraint.

The generalizations of eqs. 5.5 and 5.6 for references between a
synsem node n and a syntax node m is given in eqs. 5.9 and 5.10,
where Pn and Sn refer to the prefix and suffix set of node n.

ref(n,m) = ∃S(S ∈ Sn ∧ Pn ⊕ S = Gm) (5.9)

ref∗(n,m) = ∃S(S ∈ Sn ∧ Pn ⊕ S v Gm) (5.10)

To cover the case of frame nodes on the left hand side of the op-
erator, the address-list field contains the Gorn addresses of all syntax
nodes referenced by a role or the target, the algorithms do not need to
be changed.

Core Sets and Non-local References

Each node data entry also contains the flags entry, which is a bit field.
The exact interpretation of the individual bits depends on the node
type. For frame nodes, the preprocessing stores if any of the core sets
from this frame’s formal description is satisfied. The implementations
of the predicates has_coreset and no_coreset check if this specific bit
in the flag field is set when they are evaluated.

For fe nodes, the preprocessing includes a search for non-local ref-
erences. Any edge with a target node that is from another graph is
replaced by a special node ID6 and for the predicates has_external

and no_external, a bit in the flags field is set.

5.3 query evaluation example

In this section, we will demonstrate the different stages of query eval-
uation by means of the query found in section 4.4, repeated in exam-
ple 5.11. This query will be evaluated on the graph from fig. 5.2, which
contains a single match.

(5.11) {frame="Statement"} > #r:{role="Topic"} &

#pp:[cat="PP"] >AC [word="über"] &

#r > #pp & arity(#r, 1)

For better reference, all nodes in the example graph are numbered.
In the following text, any numeric node variable like #1 or #25 refers
to the corresponding node in fig. 5.2.

6 While non-local references are not considered in the queries, they still need to be kept
in one form or another for the graph rendering.



54 implementation of the extension

Oppositionspolitiker #7 äußerten #9 sich #10 besorgt #13 über #16 diese #17 von #21 Aristide #22 angeheizte #23 Form #24 der #25 Selbstjustiz #26 . #27
NN VVFIN PRF ADJD APPR PDAT APPR NE ADJA NN ART NN $.

Topic #14Message #12

Statement #3

Speaker #6 Message #4

Statement #2

SB HD OA MO

HD MO

AC NK NK AG

NK NK

NK

HDSBP

AC NK

S #1

AP #11

PP #15

NP #18

AP #19

PP #20

Politicians of the opposition expressed their concern about this form of vigilantism encouraged by Aristide.

Figure 5.2: A graph containing a match of the query in example 5.11

5.3.1 Query Preparation

In the query preprocessing, all node descriptions in the original query
are bound to a variable and separated from the constraints. If no such
variable exists yet, a new one is created. The type inferencer (cf. sec-
tion 5.1.4) determines the most specific type possible for each variable,
based on the domains of the features used in the node descriptions.
This results in the node descriptions shown in table 5.1.

variable type node query

#f frame {frame="Statement"}

#r fe {role="Topic"} & arity(#r, 1)7

#pp nt [cat="PP"]

#w t [word="über"]

Table 5.1: The node descriptions and variables of query example 5.11

The relation constraints, shown in example 5.12, are disambiguated
using the inferred types of their operand variables, which are listed in
parentheses following the original operator symbol.

(5.12) #f >(FRAME,SYNSEM) #r &

#pp >(NT,DNODE)AC #w &

#r >(SYNSEM,SYNTAX) #pp

The types in the constraints do not list the effective types of node
variables as in table 5.1, but the types from the constraint definitions
from section 4.3.2.

5.3.2 Node Queries

In the next stage, the feature indices are used to find all graph nodes
that match the given feature constraints and predicates defined for a
node query. When a graph has at least one matching node for each
variable, a data structure is created that contains all candidates in this
graph and handed over to the constraint checker. The node candidates
for the sample graph are given table 5.2.

7 Predicates are handled during node candidate retrieval, cf. section 5.1.5.



5.3 query evaluation example 55

i variable nodes

1 #f #2, #3

2 #r #14

3 #pp #15, #20

4 #w #16

Table 5.2: Results from the graph in fig. 5.2 for the node queries in table 5.1

5.3.3 Result Set Generation

Based on the node candidates, the relation constraint checker has to
find those assignments of actual nodes to variables that satisfy all the
relation constraints in the query (cf. example 5.12). With C being the
node candidate retrieval function mapping variables vari to sets of
nodes, there are

j∏
i=1

|C(vari)| = 2 · 1 · 2 · 1 = 4 (5.13)

possible assignments of nodes to variables given the results from
the previous section. For each of the four assignments, all relation con-
straints have to be evaluated. The results of this step are summarized
in table 5.3, which lists the assignment of nodes to variables and the
result for each relation constraint check given this particular assign-
ment. The last column contains the overall results, which is just the
conjunction of all previous truth values in the same row. If this value
is true, the assignment constitutes a match for the original query.

assignment constraint checks match

#f #r #pp #w #f > #r #r > #pp #pp >AC #w

1. #2 #14 #15 #16 F T T F

2. #3 #14 #15 #16 T T T T

3. #2 #14 #20 #16 F F F F

4. #3 #14 #20 #16 T F F F

Table 5.3: Relation constraint check results for all possible variable assign-
ments, based on table 5.2

The individual constraint checks are carried out using the node data
entries from the corpus index. The frame membership constraint #f >

#r uses frame numbers (cf. section 5.2.1), the relation constraints #r >

#pp and #pp >AC #w are both based on Gorn addresses, employing eqs.
5.9 and 5.5 from section 5.2.1 respectively.

The final results in the last column of the table state that of all possi-
ble assignments, only no. 2 fulfills all conditions of the query in exam-
ple 5.11. The PP “über diese . . . Form der Selbstjustiz” (#15) is referenced
by the role topic (#14) in the frame statement (#3). This match is
reported to the user and presented with an according highlighting of
the nodes.



56 implementation of the extension

5.4 efficient query evaluation

5.4.1 Constraint Checks

On closer inspection of table 5.3, some of the problems in efficient
match finding become evident. Though the sample graph has a com-
parably small number of possible solutions, several constraints need
to be checked more than once. There are only 6 unique relation con-
straints to be evaluated, shown in 5.4.

n constraint operands result

1. #f > #r #2, #14 F

2. #3, #14 T

3. #r > #pp #14, #15 T

4. #14, #20 F

5. #pp >AC #w #15, #16 T

6. #20, #16 F

Table 5.4: Unique relation constraints based on the nodes in table 5.2

In a naïve implementation, all constraints are evaluated for each as-
signment. This results in 12 checks, twice as many as needed. While in
this case, the difference might be hardly noticeable, it can quickly be-
come a problem. Even a single variable that has many candidates leads
to combinatorial explosion of the possible assignments. Therefore, an
efficient implementation has to make sure that constraint checks are
only done once and results are cached for later checks.

The actual order in which relation constraints are evaluated is irrele-
vant for the final results, because it is simply a conjunction of truth val-
ues. An intelligent ordering of unique relation constraint checks, how-
ever, can lower the number of overall checks and improve the speed of
result set generation.

In the example at hand, only one of then relation checks 4 and 6

has to be carried out. After either, it is obvious hat binding #20 to #pp

cannot possibly satisfy all constraints, independent of the outcome of
other constraints involving #20. Any assignment containing it can be
disregarded completely, which reduces the number of required unique
constraint checks further from 6 to 5. This is largely a heuristic im-
provement and it is up to the query optimizer to find a good ordering.

5.4.2 Node Ordering

Since annotation graphs, with or without frame semantic annotation,
are directed and acyclic, it is possible to order the nodes using topo-
logical sort. A topological ordering of the nodes VG in a graph G is
a permutation p of all nodes in which any node j is preceded by all
nodes i that it can be reached from by a directed path using the edges
EG of G (Weissstein8).

Internally, each node i of an annotation graph is represented by
an integer ni ∈ N, the node ID. In the XML corpus file, each node

8 Topological Sort: http://mathworld.wolfram.com/TopologicalSort.html

http://mathworld.wolfram.com/TopologicalSort.html


5.4 efficient query evaluation 57

has a unique textual identifier ti ∈ Σ∗, with Σ being the set of valid
characters for XML name tokens9. The bijective mapping function
τ : Σ∗ × G → N assigns the integers ni based on a topological or-
dering, using the equivalence

px = i⇔ ni = x (5.14)

that is, the element po = i receives the number ni = 0, until nj = m

for node pm = j.
In the original annotation graph G, edges are typed with the rela-

tion they represent, just as individual nodes carry a type. For the
topological sort, this type information is not needed, instead we want
to consider some derived relations when creating the topological or-
dering. Therefore, a new augmented graph G ′ is created from on G,
with VG ′ ≡ VG, discarding all type information. The edges EG ′ are
created according to the edge insertion rule 1.

Edge Insertion Rule 1 For each pair of nodes i, j ∈ VG for which any of
the following relation constraint holds, add a directed edge (i, j) to EG ′ :

• nt > dnode

• t . t

• synsem > syntax

• frame > synsem

• nt ^ semantics

The algorithm for topological sorting is well-known and can be
found in standard algorithms textbooks like Cormen et al. (2001).

Given the algorithm and a graph created by rule 1, example 5.15

contains one valid topological ordering of the nodes #15, #16, #20 and
#21 from the graph in fig. 5.2. #16, #20 and #21 are reachable from #15

by (transitive) dominance and #21 is reachable from #16 by transitive
precedence.

(5.15) #15, #20, #16, #21

With node IDs being assigned in topological order, it is possible to
avoid checking certain relation constraints in the first place. For all the
node relations that were used to create EG ′ in rule 1, no check needs
to be performed if the number ni of the node i on the left-hand side
of the operator is greater than nj of the node j on the right-hand side,
since it will only fail trivially. If no other node k such that ni < nk

exists, i can never be a part of a valid assignment and does need not
be considered as a candidate for variable binding at all, reducing the
number of possible combinations early on.

For the example at hand however, the topological sort from exam-
ple 5.15 does not offer any benefit. ni < nj is only a necessary con-
dition on two nodes i, j for all of the relations listed above, but not
a sufficient one—the dominance constraint between #20 and #16 still
needs to be checked. In order to make the topological sort also catch
cases like this, we add a second rule:

Edge Insertion Rule 2 For all nodes i, j, k ∈ G, if the terminal i immedi-
ately precedes the leftmost terminal successor k of a nonterminal j, add the
edge (i, j) to EG ′ .

9 NMTOKEN: http://www.w3.org/TR/REC-xml/#NT-Nmtoken

http://www.w3.org/TR/REC-xml/#NT-Nmtoken


58 implementation of the extension

Together, rules 1 and 2 produce the desired topological sort in exam-
ple 5.16. #20 can be reached from #16 via #17 and #19.

With this ordering, we never need to consider #20 as a valid can-
didate for #pp. A dominance constraint with #20 on the left and #16

on the right can never be true since #16 has a lower topological order
and hence a lower ID. It is also the only candidate for #w, therefore an
assignment with #20 cannot fulfill all relation constraints. This elimi-
nates combinations 3 and 4 from table 5.3, further reducing the number
of unique constraint checks from 5 to 4.

(5.16) #15, #16, #20, #21

Every relation constraint contains information about constraints on
the topological ordering of its operands. If such constraints exist, they
can be applied during the node candidate retrieval, since they only
depend on the node ID. At the point when constraint checks are to be
carried out, a lot of candidates that only result in trivial failures are
already removed.

Care has to be taken when defining these topological constraints,
especially in the presence of modifiers. Negation of relation constraints
usually prevents their application, for the same reason why dominance
constraints still need to be checked when topological constraints are
fulfilled. In the case of the negated transitive dominance ‘!>*‘, a node
i on the left, j on the right-hand side with ni > nj is sufficient for the
constraint to be true, but not necessary.

Efficiency Gains

The improvement achieved by enforcing topological constraints greatly
depends on the relation constraints used in a query. One advantage,
however, is that they follow the “You don’t pay for what you don’t use”-
principle—if topological constraints exist, they are applied; if not, then
apart from an additional comparison operation to check for their pres-
ence, no additional work needs to be done. This comes at the price of
slightly increasing the time needed for corpus preprocessing, because
the augmented graph G ′ has to be created and its nodes sorted. Since
corpus preprocessing is done only once, this is not a problem, as was
argued earlier.

In case they do apply, the reduction in relation constraint checks
varies greatly. To get an impression of the possible savings, we took
queries 1–4 from Lai and Bird (2004)10 and executed them on the
TIGER corpus twice, without and with enforcing constraints on topo-
logical ordering of node operands. The test queries are:

Q1 [cat="S"] >* [word="sah"]

Find all sentences with the word “sah”.
Q2 [cat="S"] !>* %w:[word="sah"]

Find all sentences that do not contain the word “sah”.
Q3 [cat="NP"] >@r [pos="NN"]

Find all NPs that have a noun as their rightmost terminal successor.
Q4 #vp:[cat="VP"] >* #v:[pos=/V.+/] &

#vp >* #np:[cat="NP"] & #vp >* #pp:[cat="PP"] &

#v . #np & #np >@r #nr & #nr . #pp

Find all VPs that contain a verb, an NP and a PP immediately next to
each other in that order.



5.5 benchmarks 59

without TS with TS

query matches nodes checks nodes checks

Q1 62 160 109 129 78

Q2 72,328 72,441 109 72,441 109

Q3 79,673 273,393 432,760 256,590 394,246

Q4 41 168,093 253,375 44,230 65,407

Table 5.5: Effect of constraints on the topological ordering of nodes

The results are shown in table 5.5. The column under nodes lists the
numbers of distinct nodes bound to a variable at least once during eval-
uation, the column checks shows the number of relation constraints
that were evaluated.

The huge effect on Q4 is largely due to the occurrence of the uncon-
strained node variable #nr. Initially, all terminals from a graph match
this description, but using topological constraints, the number of can-
didates can be reduced significantly. While the savings observed for
Q4 are much better than average, Q3 represents the amount of reduc-
tion that can generally be expected.

5.5 benchmarks

Running a meaningful benchmark for our system is difficult, since
there is no other system with the same or at least comparable set of
features readily available. To provide a basis for comparison, we bench-
marked both TIGERSearch 2.1.1 and the current development version
of our code using queries Q1, Q3 and Q4 from the previous section.

The test were done on a Intel Core 2 Duo T7500, 2.2 GHz with 2 GiB
RAM, running on Linux-x86 with kernel 2.6.28. TIGERSearch was ex-
ecuted with the newest available version of Java, OpenJDK 6b14

11, us-
ing the extended corpus indexing features. Our code was executed on
Python 2.5.4, the modules written in C99

12 compiled with GCC 4.3.3.
In order to keep the numbers comparable, we did not use the option
of evaluating queries on several CPUs in parallel, which is available in
our system. The resulting times are shown in table 5.6a.

To demonstrate the evaluation time when frame semantic annota-
tion is involved we benchmarked our query module by evaluating five
queries that contain different aspects of the extended query language
on the SALSA corpus, the results are shown in table 5.6b.

S1 {FE} >* #h:[word="Manager"]

Find all roles that contain the word “Manager”.
S2 #f1:{FRAME} != #f2:{FRAME} &

#f1 > #fe1:{FEE} & #f2 > #fe2:{FEE}

& #fe1 > #x & #fe2 > #x & #f1 >* #u & #f2 >* #u:[NT]

10 The TIGER queries given in the paper are wrong and were rewritten.
11 TIGERSearch itself comes bundled and insists on being run with an outdated Java 1.4

VM—a misguided restriction which we removed in order to allow it to benefit from the
improvements found in newer JVM versions.

12 These modules are optional, but increase the speed of core algorithms.



60 implementation of the extension

query original new

Q1 0.4 0.3

Q3 12.4 9.9

Q4 10.8 5.7

(a) Comparison of query run times
in TIGERSearch (original) and our
work (new)

query time matches

S1 0.06 33

S2 11.2 7318

S3 0.3 779

S4 0.3 27

S5 1.6 20

(b) Time needed for evaluating queries
in frame semantic annotation

Table 5.6: Results of the query benchmarks
All times given in seconds, average of three runs

Find words or syntactic categories which are the target of different se-
mantic frames or which have more than one role, each role belonging to
a different frame.13

S3 {frame=[Intentionally_act]} > {role=[Agent]}

Find all roles that inherit from agent as elements of frames that inherit
from intentionally_act.

S4 {frame="Statement"} > #r:{role="Topic"} &

#pp:[cat="PP"] >AC [word="über"] & #r > #pp

& arity(#r, 1)

Find all sentences where the role topic in the frame statement is
realized by a PP with the preposition “über”.

S5 {FRAME} > #t:{FEE} & #t > [pos="ADJA"]

Find all frames which are evoked by an adjective.

The benchmark results in table 5.6 are not final, because the query
evaluation algorithm is still developed and improved, especially with
regards to better parallelization. All tables show the amount of time
needed to obtain the complete result set. As mentioned earlier, re-
sponse times can be improved by returning the first match as soon as
possible.

5.6 further reading

A detailed overview for the preprocessing of syntactic annotation is
given in Lezius (2002a) and Mettler (2007), along with implementa-
tions for all syntactic constraints. Lezius also describes query normal-
ization, which involves conversion into Disjunctive Normal Form, a
transformation of boolean expressions such that disjunction only oc-
curs that the top level.

In the explanation of the query evaluation process, we only covered
existentially quantified variables. Universal quantification introduces
some substantial changes, especially since variables bound by a univer-
sal quantifier may not appear in a graph that is a match. A description
of the modifications is given in Marek et al. (2008).

13 TIGER version of example 2.3.



6S U M M A R Y & O U T L O O K

In this chapter, we summarize the contribution developed in this
thesis and discuss possible directions of future research, both for
greater expressivity in query languages and improved efficiency
by exploring new techniques for indexing and parallelization.

6.1 summary

This thesis describes the design and implementation of an extension
for the TIGER query language that allows searching over frame se-
mantic and syntactic annotation, while the original formalism only
supports queries over syntax. The original motivation was that queries
like the one shown in example 6.1 were not expressible until now.

(6.1) Find all sentences where the role topic in the frame statement is
realized by a PP with the preposition “über”.

Some experimental studies, using the SALSA corpus, on queries
combining syntactic with semantic relation constraints were carried
out by Heid et al. (2004), but no further work had been done to this
date, making it impossible to use queries for linguistic exploration of
this corpus.

In this work, we define several new node types and relations to ex-
press queries on sentences with frame semantic annotation. Together
with the query language elements of Lezius (2002a), it is possible to
write TIGER queries that formalize the structures described in exam-
ple 6.1.

A TIGER query is created from typed descriptions for individual
nodes (words, phrase and now frames, roles and targets as well) and
relation constraints between these nodes (dominance and precedence
in syntactic annotation). Node descriptions for syntax nodes are sur-
rounded by square brackets ([]). In order to make descriptions of
semantic nodes visually distinct, we decided to enclose them in curly
braces ({}). This makes sure that queries that mix both kinds of nodes
are easily understandable simply by looking at nodes, without requir-
ing authors to remember feature names for the different node types.

Frame semantic annotation defines a second structural layer on top
of the syntactic structure. Frames can contain arbitrarily many roles
and have exactly one target. Each role and target can reference any
number of nodes from the syntax and behave in the same way, since
they serve as a connection layer between the frame and its semantic
material. Because of this, the types of roles (fe) and targets (fee) inherit
from a common base type synsem. The important new node relations
are:

• a synsem is member of a frame
• a syntactic node is referenced by a synsem

In order to limit the size of the extended query language, both new
relations use the dominance operator >.

61



62 summary & outlook

In contrast to syntax nodes, whose features can be freely defined in
TIGER corpora, the features of the newly introduced node types for
frame semantics are fixed by the annotation data format. We define
the features for all new node types, some of which are taken from
the formal frame descriptions distributed together with the SALSA
corpus.

All new language elements can be used in conjunction with the ex-
isting elements and the new relations provide a means to connect se-
mantic and syntactic queries. Example 6.2 shows the formalization of
the query from example 6.1.

(6.2) #pp:[cat="PP"] >AC [word="über"] &

#f:{frame="Statement"} & #r:{role="Topic"} &

#f > #r &

#r > #pp & arity(#r, 1)

This query uses the new node description syntax for frame semantic
nodes when querying for statement frames and topic roles (line 2),
the new basic relations for membership of roles in frames (line 3) and
for references from roles to syntactic material (line 4). Existing predi-
cates like arity are also valid for the new node types (line 4).

6.1.1 Minor Query Language Features

Frames are not defined in isolation; so called frame-to-frame relations
can be used to define a complex network of frames. The most impor-
tant relation is inheritance between frames (Commerce_pay is a kind
of Giving). It is important to note that these relations are defined on
abstract frames, not on concrete frame instances and thus cannot be
expressed using node relation operators like > for dominance. We in-
troduce a new literal in the feature constraints, which matches features
according to an externally defined hierarchy.

The annotation format used by the SALSA corpus also allows for
the underspecification of frames or roles, which can be interpreted
as either a conjunction or disjunction. This annotation is represented
using a new basic node relation and can be used in queries, too.

6.1.2 Implementation

All new language features have been added to our implementation of
the TIGER query language, which was written within the TreeAligner
project (Volk et al., 2007). Our code uses several novel approaches in
query evaluation, like parallel computation and new kinds of prepro-
cessing not found in TIGERSearch by Lezius (2002a). It also contains
limited support for universal quantification introduced in Marek et al.
(2008), which makes it both more expressive and, in many cases, faster
than the original implementation while still having a comparably small
code base.

6.2 future work

The query module provides a good basis for further extension and re-
search in exploratory corpora analysis, linguistic annotation and also
more advanced topics like graph indexing and concurrent program-
ming.



6.2 future work 63

6.2.1 New Kinds of Annotation

In the scope of this work, it was not possible to properly model non-
local references, i.e. relations between nodes contained in different
graphs (cf. section 4.2.4). Further work should be done to extend the
object model and remove the graph locality restriction, without sacri-
ficing efficiency.

With generalized non-local references, it is also possible to annotate
and query anaphoric relations. Moreover, graphs (sentences) them-
selves should be first-class members of the object model, to allow anno-
tation on top of graphs, like rhetorical structure. Graphs as elements
in the query language can also be used to address the problems of
no-longer implied node locality in the presence of relation constraints
introducing non-local references, cf. section 4.2.4. Several unified ob-
ject models already exist (often only in the form of annotation storage
formats, cf. sections 2.1 and 5.1.1), whose applicability needs to be
evaluated.

Multilinguality

Currently, only syntactic nodes can be aligned in parallel corpora cre-
ated with the TreeAligner. Padó (2007) projected frame semantic anno-
tation by using parallel corpora, based on automatic phrase alignment.
Further work should include alignment of frame semantic structures
as well as syntactic ones. An extension of the alignment constraints
from Mettler (2007) should also cover these alignments.

6.2.2 Quality Assurance

Our implementation already comes with two query test suites, cf. sec-
tion A.4. However, to ensure correct and fast evaluation of all possible
queries, we need to extend our test suites and make sure to cover
all language features. Availability of a large body of tests also helps
further development, since other interested researchers can adopt our
code, modify it and use our test cases to ensure that no regressions
have been introduced.

6.2.3 Efficiency & Scalability

As shown in section 5.5, our implementation is already faster than
TIGERSearch in some cases. In other cases, TIGERSearch needs con-
siderably less time for query evaluation. This is explained by the SQL
database we use as the corpus index. While using a database made
the implementation of the corpus index much easier, a full SQL en-
gine has many features our system does not need and also introduces
an additional programming language.

Custom Indices

Some of our benchmarks have shown that in simple queries, as much
as 75% of the time needed is spent in database code which is out of
our control. Because of our very specific usage pattern (no updates, no
aggregate queries, no function calls), we expect that a custom-written
index will yield considerable gains in query evaluation speed.



64 summary & outlook

Scalability

The time needed for evaluation of queries on corpora of the size of
TIGER or SALSA is already acceptable, ranging from a few millisec-
onds to almost one minute. However, if we want to be able to handle
corpora 10× or 100× as large, we have to improve efficiency. Query
evaluation is linear with regard to corpus size, we need real algorith-
mic improvements over the current state and not just marginally faster
implementations of current algorithms.

Better Concurrency

The usage of parallel processing in our implementation is still in a
very early state. While for complex queries, parallelism does lead to a
decrease of query evaluation time, for simple queries, its overhead is
still higher than its savings.

In future work, we would like to explore new kinds of parallelism,
both Python-specific (e.g. stackless PyPy1) and general (e.g. CUDA2).

Advanced Indexing Techniques

The corpus index is mostly based on features, structural information
is represented only by topographically sorted nodes (cf. section 5.4.2).
In order to create better indices, we want to investigate the usefulness
of graph indexing techniques like Yan et al. (2004) developed in the
bioinformatics research community. DDDquery (cf. section 2.2.4), for
example, was implemented within the “Research Network Linguistics
– Bioinformatics”3 at HU Berlin. Computational Linguistics and Bioin-
formatics often face similar problems and we are convinced that both
sides can benefit from more cooperation and exchange of ideas.

1 http://codespeak.net/pypy/dist/pypy/doc/stackless.html
2 http://www.nvidia.de/object/cuda_home_de.html
3 http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/

forschung/forschungsverbund_ling_bioinf

http://codespeak.net/pypy/dist/pypy/doc/stackless.html
http://www.nvidia.de/object/cuda_home_de.html
http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/forschung/forschungsverbund_ling_bioinf
http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/forschung/forschungsverbund_ling_bioinf


AA G U I D E T O T H E I M P L E M E N T A T I O N

In this appendix, we will give a brief overview of the source code
which this thesis is based on. We will explain which classes and
modules are involved in the different stages of query evaluation
and give technical background information on how to start using
the query evaluation module.

a.1 introduction

As was already mentioned in section 1.4.2, our implementation of the
TIGER corpus query language has originally been written searching
parallel treebanks in the TreeAligner and still is distributed as a part
of it. The original work is described in Mettler (2007). Since then, the
code has been redesigned and rewritten from scratch, with a special
focus on extensibility and rigorous testing.

The code is written in Python1, a general-purpose high-level pro-
gramming language. Among its key strengths are the strong, dynamic
type system, support for multiple programming paradigms and the
large standard library. Python is supported on all major desktop com-
puting platforms and Python code can be ported between different
systems with little or no effort.

Dependencies

The minimum Python version needed is 2.5, it should be possible to
run the code unchanged on any later 2.x version. The external depen-
dencies for the query module are:

• PyParsing
A library that allows the definition of recursive-descent parsers
directly in Python code
URL: http://pyparsing.wikispaces.com/

• setuptools
An extension for Python’s integrated build system with better
support for package data files
URL: http://peak.telecommunity.com/DevCenter/setuptools

Some dependencies are optional, since they speed up certain parts
of the evaluation but do not add any functionality:

• multiprocessing
A library with better support for parallel computing in Python
URL: http://code.google.com/p/python-multiprocessing/

• lxml
A library implementing the standard ElementTree interface2 for
handling XML documents, but with a validating parser
URL: http://codespeak.net/lxml/

1 http://www.python.org
2 http://docs.python.org/library/xml.etree.elementtree.html

65

http://pyparsing.wikispaces.com/
http://peak.telecommunity.com/DevCenter/setuptools
http://code.google.com/p/python-multiprocessing/
http://codespeak.net/lxml/
http://www.python.org
http://docs.python.org/library/xml.etree.elementtree.html


66 a guide to the implementation

• pysqlite2
Updated and improved versions of the sqlite3 module included
in Python 2.5, a module for accessing the embedded relational
database SQLite
URL: http://pysqlite.org/

Graphical User Interfaces

The only graphical user interface for the query evaluator so far is the
TreeAligner, which only supports queries on parallel treebanks. This
user interface is written using PyGTK2

3. A web interface for corpus
query evaluation is currently in development and available as a proto-
type.

Source Code Access

The version of the code described in this chapter is available as a down-
load4. Barring fixes for critical bugs and compatibility updates, the
code in this archive will always reflect the state of the TIGER imple-
mentation as described in this thesis.

a.2 package layout

The complete source code is stored under the directory STA, which is
a Python package5. This package contains six major subpackages:

• Alignment: STA.align
Code for handling parallel corpora with syntactic alignments

• TreeAligner application: STA.app
Graphical user interface classes

• Graph rendering: STA.drawing
A class for device-independent rendering of TIGER graphs

• Frame database: STA.framenet
Loading of FrameNet distribution files

• TIGER: STA.tiger
TIGER corpus parser, corpus index creation and access, annota-
tion graph data structure and query evaluation

• Utilities: STA.utils
Mixed utility functions and classes.

Some statistics on the code in the package STA.tiger, which is the
only one we are concerned with in this appendix, are shown in ta-
ble A.1.

a.2.1 API Documentation

The parts of the code whose interfaces are already stabilized have in-
line documentation, but many core algorithms are still subject to fre-
quent changes and therefore only have source code comments. Stand-

3 http://www.pygtk.org/
4 http://diotavelli.net/files/msc/code.tar.gz
5 Packages are simply file system directories with Python modules.

http://pysqlite.org/
http://www.pygtk.org/
http://diotavelli.net/files/msc/code.tar.gz


A.3 query evaluator architecture 67

type n %

Code 4,239 64.12

Documentation 1,769 26.76

Comments 157 2.37

Empty 446 6.75

Total 6,611 100.00

(a) Total lines of code

type number

Modules 28

Classes 158

Methods 514

Functions 90

(b) Structural elements

Table A.1: Code statistics

alone versions of the documentation in different formats can be created
with Sphinx6. When it is installed, the command

$ python setup.py build_sphinx

can be used to create HTML files. The output will be written to the
directory build/sphinx/html.

a.3 query evaluator architecture

The architecture of the query evaluator implementation closely follows
the one outlined in section 5.1.2:

1. Query parsing
2. Query analysis
3. Node candidate retrieval
4. Relation constraint checking, result generation

In the following sections, we will explain which modules and classes
each step uses and which data structures are exchanged between the
different classes. All code is part of the STA.tiger.query package,
accessible in the directory STA/tiger/query.

Using the query evaluator outside the context of the TreeAligner is
trivial and example code for opening corpora, with or without frame
semantic annotation, is given in tools/treebanks.py.

a.3.1 The High Level Interface

modules:

• STA.tiger.query.evaluator

TigerQueryEvaluator is a façade class that encapsulates the process
of evaluating a query. Together with the result builder, it provides the
only external interface of the query module. A query string can be
evaluated using the method TigerQueryEvaluator.evaluate.

The most important functionality of the this class is to provide the
evaluator context, which is the same for all queries on the same corpus.
The evaluator context bundles access to the corpus index and metadata
and also is used to decouple the query analysis from evaluation. This
technique is called Inversion of Control (IoC).

6 http://sphinx.pocoo.org/

http://sphinx.pocoo.org/


68 a guide to the implementation

a.3.2 The Query Parser

modules:

• STA.tiger.query.ast

• STA.tiger.query.parser

The parser for the TIGER query language is defined in Python code,
without having to rely on external syntax definitions and parser gen-
erators. Instead, the grammar and parse actions are written directly
in the code by combining various basic parser building blocks. Each
parsing rule has an associated parsing action, which is used to build
the abstract syntax tree.

Each element of the query language is represented by an AST node
class in the module STA.tiger.query.ast. The classes representing
AST nodes are organized in a hierarchy with the common abstract
base class _Node7. AST nodes are created directly in grammar rules:

def regex_literal():

regex = pyparsing.QuotedString("/")

return regex.setParseAction(

lambda s, l, token: ast.RegexLiteral(token[0]))

In this rule, a string with / as the quote symbol is defined which is
supposed to be put into a RegexLiteral AST node. A complete syntax
tree for the query in example A.1 is shown in listing A.1.

(A.1) {role="Topic"} > [cat="PP"]

The root of a query AST is always a TigerQueryExpression node.
This node always has a single child, which can be any toplevel ele-
ment of a TIGER query. Usually, this is a conjunction, but in exam-
ple A.1, the only toplevel element of the query is a dominance relation
constraint, represented by the DominanceOperator on l. 2 of listing A.1.
The operator AST node has two children, its left and right operands. In
this case, both are node descriptions, which will be replaced by node
variables during the preprocessing. The arguments on ll. 11–13 are the
operator modifiers, which are simply initialized to their default values
in this case.

As already mentioned in section 4.2.2, the different brace types sur-
rounding node descriptions are represented as upper type boundaries
in NodeDescription AST elements. Curly braces for frame semantics
elements are mapped to NodeType.SEMANTICS (l. 6), square brackets
for syntax nodes to NodeType.SYNTAX (l. 10).

1 TigerQueryExpression(

DominanceOperator(

NodeDescription(

FeatureConstraint(

’role’, StringLiteral(u’Topic’)),

6 NodeType.SEMANTICS),

NodeDescription(

FeatureConstraint(

’cat’, StringLiteral(u’PP’)),

NodeType.SYNTAX),

7 In Python, using leading underscores is a convention to signal that a class or method is
“private” and not for external use.



A.3 query evaluator architecture 69

11 op_range=(1, 1),

negated=False,

label=None))

Listing A.1: Abstract Syntax Tree of the query in example A.1

a.3.3 Query Analysis

Modules:

• STA.tiger.query.ast_utils

• STA.tiger.query.ast_visitor

• STA.tiger.query.factory

• STA.tiger.query.nodes

The main class for analyzing query ASTs and converting them to
query objects is STA.tiger.query.factory.QueryFactory. Its method
from_ast takes a complete parse tree like the one from listing A.1 and
extracts all node descriptions from it (cf. section 5.3.1). For each node
description, an instance of STA.tiger.query.nodes.NodeQuery, which
bundles together the variable, description and the type of a node is
created.

The enumeration class STA.tiger.graph.NodeType contains the hier-
archy of valid node types as shown in fig. 4.4 on page 26. Initially, the
type of a variable is set to the upper boundary from the AST nodes,
the effective type is determined by the query factory. To determine the
type of a single node description, it uses the class NodeTypeInferencer
from the same module, which combines feature domains and type
constraints into a single node type, or fails with an error if that is not
possible.

For each abstract predicate and relation operator AST node like
DominanceOperator in listing A.1 one line 2, the concrete implemen-
tations are instantiated using the factory classes

• STA.tiger.query.predicates.PredicateFactory

• STA.tiger.query.constraints.ConstraintFactory

Each factory class contains a mapping from AST node classes or
predicate names to concrete implementation classes, which contain
the code for query evaluation. This additional layer of indirection
decouples representation and preprocessing of queries from the ac-
tual evaluation in later stages. This technique limits the extent of
changes incurred by adding new features. In the case of new predi-
cates, the query language grammar and the AST nodes do not have to
be changed at all. New predicates can be registered in the predicate
factory and will be instantiated by the query factory.

The query factory returns a result builder instance, using the evalua-
tor context method create_result_builder. The concrete implementa-
tion depends on the feasibility of parallel computing and the presence
of relation constraints or top-level disjunctions.

a.3.4 Node Candidate Searching

Modules:

• STA.tiger.query.nodesearcher



70 a guide to the implementation

• STA.tiger.query.predicates

The evaluator context is also used to retrieve the instance of the node
searcher class STA.tiger.query.nodesearcher.NodeSearcher for a cor-
pus index. All feature constraints of a node query are compiled into
a single SQL query and evaluated on the corpus index. The node
searcher also handles non-string literals like regular expressions or
types and finds the matching features for those constraints.

The implementations of all predicates are contained in the module
STA.tiger.query.predicates. Each one contributes a small snippet
to the final SQL query statement, which usually defines an additional
condition on the node data entry (cf. section 5.1.1).

The core class of the node candidate retrieval joins the result sets all
node queries, STA.tiger.query.nodesearcher.GraphIterator. This
class the single node candidates, groups them by graphs and applies
any topological constraints on the node IDs (cf. 5.4.2). The algorithm
is conceptually simple but very important for the time required for
evaluating a query. Because of that, it has been reimplemented in a C
extension module. This extension module is optional, but makes some
queries up to 30% faster8.

a.3.5 Relation Constraint Checking

Modules:

• STA.tiger.query.constraints

• STA.tiger.query.result

The module STA.tiger.query.result contains several different im-
plementations of classes for result set generation:

• SimpleBuilder

Used for queries without any constraints, simply enumerates all
possible variable assignments.

• ResultBuilder

The default result builder.

• ParallelResultBuilder

The result builder used for parallel query evaluation, which splits
the corpus in n parts and runs n worker processes.

• DisjunctionResultBuilder

The builder used when toplevel disjunctions are present, which
are evaluated as separate queries.

• ParallelDisjuctionResultBuilder

In the presence of toplevel disjunctions, the worker processes are
not run on corpus index parts, instead each disjunct is run on
the whole corpus in its own worker process.

All builders that need to perform relation constraint checks use
the class STA.tiger.query.result.ConstraintChecker. This class con-
tains the core algorithm for efficient constraint checking as sketched in
section 5.4.1, implemented in the following methods:

8 When using a single processor for evaluation, the gains for parallel processing are a little
lower.



A.3 query evaluator architecture 71

• ConstraintChecker._filter_nodes:
Evaluates all constraints on the node candidates, successively fil-
ters out nodes which cannot satisfy all constraints and stores the
node pairs which satisfy the constraints.

• ConstraintChecker.extract:
Based on the remaining node candidates and the pairs of valid
combinations, creates all valid variable assignments.

The result builder also provides the query context. In contrast to the
evaluator context, whose life cycle is bound to the corpus itself, a query
context exists only as long as the result builder. Its role is comparable,
since it provides access to the corpus index using IoC.

The classes for evaluating the different relation constraints are de-
fined in the module STA.tiger.query.constraints. They all derive
from the common base class Constraint and define a number of prop-
erties:

• Predicates
Each relation constraint can introduce more predicates for its
operands. For example, labeled dominance adds a predicate for
the label, which is stored in the node data entry. The predicates
are used by the node searcher.

• Topological Constraint
Defines a constraint (cf. 5.4.2) on the topological order of the
the two operand nodes l, r; one of (nl < nr, nr < nl, undef ).
Topological constraints are applied by the node searcher.

• Data Fields
Lists the names of the fields from the node data entries needed
for evaluation, used for minimizing the amount of data read from
the database.

• Match Limits
Some constraints can have only a single match if one of the
operands is fixed. In immediate dominance for instance, for one
right operand (child node) only one node, if at all, can make
the constraint true, because a node only has one parent. The
other direction does not hold, since one parent node can have
any number of immediate children.

e example query

1 : X [NT] > [DNODE]

1 : 1 [T] . [T]

X : 1 [NT] >@l [T]

X : X [NT] >* [DNODE]

Table A.2: Match limits between operands of different constraints

Table A.2 shows the four different types of match limits along
with example relation constraints. A match limit expression is of
the form a : b, with a,b ∈ {1,X}. If by replacing either a or b
(but not both) by 1, the match limit expression of a constraint R
becomes 1 : 1, a match limit can be applied.



72 a guide to the implementation

If a was replaced, then as soon as there is a pair of nodes (i, j)
that satisfies R, no other pair (i,k) can be a solution and i does
not have to be considered for further tests, vice versa if b was
replaced.

In the case of the expression being 1 : 1 without replacement, it
is even possible to disregard both nodes for further tests, but
support for this is not yet implemented in the relation constraint
checker.

The builder STA.tiger.query.result.ParallelResultBuilder uses
the multiprocessing module to evaluate queries on several graphs in
parallel. Due to technical restrictions in the standard Python imple-
mentation, only one thread can execute Python code at the same time9.
multiprocessing supports parallelization by creating several Python
processes, but provides an interface similar to Python threads. The
result builder in this case creates as many child Python processes as
available processors, each of them working on a part of the corpus.
Since individual graphs are independent of each other, the parallel re-
sult builder just takes the output of each child process and returns the
concatenation of all result sets.

a.4 quality assurance

While developing the query evaluator, we have put specific emphasis
on the availability of extensive test suites to ensure high code quality
and simplify maintenance. The distribution contains two types of auto-
mated test suites that cover the full feature set of the implementation.

a.4.1 Unit Tests

The low-level unit tests are white-box tests which are used for test-
ing each component (at a sensible granularity) in isolation. The tests
use nose10, an enhanced unit testing framework, and pmock11, a mock
object library. The unit tests can be executed with

$ python setup.py test --quiet

...

...

...

Ran 506 tests in 5.665s

OK

Unit tests ensure that all code units function in isolation, according
to their intent and documentation. The ability to test classes on their
own requires loose coupling between the individual parts of the code,
which further facilitates good design.

a.4.2 Integration Tests

The high-level integration tests are end-to-end black-box tests that have
no knowledge about implementation details or which code units are

9 Global Interpreter Lock, cf. the CPython documentation.
10 http://somethingaboutorange.com/mrl/projects/nose/
11 http://pmock.sourceforge.net

http://docs.python.org/c-api/init.html#thread-state-and-the-global-interpreter-lock
http://somethingaboutorange.com/mrl/projects/nose/
http://pmock.sourceforge.net


A.4 quality assurance 73

involved in running the tests. The integration tests for the query mod-
ule open a corpus, evaluate a query and check if the result sets contains
the expected number of graphs and matches.

For the integration tests to run, the SALSA and TIGER corpora must
be present. The paths to the corpus files must be set in corpora.cfg,
which can be created using the template misc/corpora.cfg.in. If the
paths are correct, the test suites can be executed using the query_tool

script, which also automatically creates corpus indices:

$ ./query_tool test all

Running test suite ’semantics’

...

Running test suite ’basic’

...

Tests: 38

Passed: 38

Failed: 0

Time: 45.46s

The advantage of integration tests is that problems in the interaction
between different parts of the code can be found, or problems which
only occur under very rare circumstances. The disadvantage is that
in case of a failure, the part of code that actually caused the failure
is unknown and has to be determined by the means of debugging,
tracing or simply reading the code.

When a bug is found during integration testing, usually a unit test
is written that triggers the bug before fixing it in the code. This not
only simplifies testing the bug fix, but also makes sure that no future
changes introduce any regressions for this particular fix.





BQ U I C K R E F E R E N C E

Node Types for Frame Semantics and their Relations

FREC

SYNTAX SEMANTICS

SYNSEM

FRAME>

$

FE FEE~ ~

>

~

Figure B.1: Node types and relations.
Leaf nodes are filled, node relation are shown as edges labeled with the
operator symbol and a diamond arrow pointing at the right operand.

Features

type feature description Hierarchy

semantics flag Linguistic phenomena

semtype Ontological type X

frame frame Frame name X

fe role Role name X

coretype Importance of role

fee lemma Lemma of lexical unit

head Head of the lemma phrase

part part Word part

75



76 quick reference

Relation Constraints

definition description example

frame > synsem Element in frame {frame="Cure"} > {role="Healer"}

synsem $ synsem Elements in same frame {role="Goods"} $ {role="Buyer"}

synsem > syntax Syntactic material {role="Context"} > [cat="S"]

frame >∗ syntax Syntactic material {frame="Telling"} >* [word="Radio"]

nt ^ semantics First common ancestor [cat="NP"] ^ {FRAME}

frame ∼ frame Underspecified frames {frame="Statement"} ~ {FRAME}

fe ∼ fe Underspecified roles {role="Speaker"} ~ {role="Medium"}

fee ∼ fee Underspecified targets {FEE} ~ {FEE}

part < t Part of [PART] < [pos!="NN"]

Predicates

predicate description

spec(semantics) Node is not underspecified

uspec(semantics) Node is part of an underspecification block

has_external(fe) Non-local references on role

no_external(fe) No non-local references on role

has_coreset(frame) At least one core set of frame complete

no_coreset(frame) Frame has no complete core sets



B I B L I O G R A P H Y

Baker, Collin F., Charles J. Fillmore and John B. Lowe (1998). The
Berkeley FrameNet Project. In Proceedings of COLING-ACL 1998, pp.
86–90. (Cited on page 2.)

Baumann, Stefan, Caren Brinckmann, Silvia Hansen-Schirra, Geert-
Jan M. Kruijff, Ivana Kruijff-Korbayová, Stella Neumann and Elke
Teich (2004). Multi-dimensional Annotation of Linguistics Corpora
for Investigating Information Structure. In A. Meyers, ed., Proceed-
ings of the HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation,
pp. 39–46. Boston, MA, USA. (Cited on page 7.)

Bird, Steven, Yi Chen, Susan B. Davidson, Haejoong Lee and Yifeng
Zheng (2005). Extending XPath to Support Linguistic Queries. In
Workshop on Programming Language Technologies for XML (PLAN-X),
pp. 35–46. Long Beach, California. (Cited on pages 11, 13, and 46.)

Bird, Steven and Haejoong Lee (2006). Designing and Evaluating an
XPath Dialect for Linguistic Queries. In Proceedings of the 22nd Inter-
national Conference on Data Engineering. (Cited on pages 13 and 46.)

Blackburn, Patrick, Claire Gardent and Wilfried Meyer-Viol (1993).
Talking about Trees. In Proceedings of the 6th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, pp. 21–29.
Utrecht, The Netherlands. (Cited on page 13.)

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius and
George Smith (2002). The TIGER Treebank. In Proceedings of the
First Workshop on Treebanks and Linguistic Theories, TLT 2002. Sozopol,
Bulgaria. (Cited on pages 3 and 13.)

Brants, Thorsten, Roland Hendriks, Sabine Kramp, Brigitte Krenn, Cor-
dula Preis, Wojciech Skut and Hans Uszkoreit (1997). Das NEGRA-
Annotationsschema. Technical report, Universität des Saarlandes,
Saarbrücken, Germany. (Cited on page 15.)

Brants, Thorsten, Wojciech Skut and Hans Uszkoreit (1999). Syntac-
tic Annotation of a German Newspaper Corpus. In Anne Abeillé,
ed., ATALA sur le Corpus Annotés pour la Syntaxe Treebanks, pp. 69–76.
Paris, France. (Cited on page 15.)

Burchardt, Aljoscha, Katrin Erk, Anette Frank, Andrea Kowalski, Se-
bastian Padó and Manfred Pinkal (2006a). The SALSA Corpus: A
German Corpus Resource for Lexical Semantics. In Proceedings of
the Fifth International Conference on Language Resources and Evaluation,
LREC 2006. Genoa, Italy. (Cited on pages 2, 3, 7, 21, and 83.)

Burchardt, Aljoscha, Katrin Erk, Annette Frank, Andrea Kowalski and
Sebastian Padó (2006b). SALTO – A Versatile Multi-Level Annota-
tion Tool. In Proceedings of the Fifth International Conference on Lan-
guage Resources and Evaluation, LREC 2006. Genoa, Italy. (Cited on
page 3.)

77



78 bibliography

Carletta, Jean, Jonathan Kilgour, Tim J. O’Donnell, Stefan Evert and
Holger Voorman (2003). The NITE object model library for han-
dling structured linguistic annotation on multimodal data sets. In
Proceedings of the EACL Workshop on Language Technology and the Se-
mantic Web (NLPXML-2003). Budapest, Hungary. (Cited on pages 8

and 45.)

Charniak, Eugene (1997). Statistical Parsing with a Context-Free Gram-
mar and Word Statistics. In Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI ’96), pp. 598–603. (Cited on page 7.)

Chiarcos, Christian, Julia Ritz and Manfred Stede (2008). Investigating
non-canonical constructions in context: Efficient corpus annotation
and retrieval. In Angelika Storrer, Alexander Geyken, Alexander
Siebert and Kay-Michael Würzner, eds., Text Resources and Lexical
Knowledge, Companion Volume, pp. 1–8. Berlin, Germany: Mouton de
Gruyter. (Cited on pages 9 and 10.)

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clif-
ford Stein (2001). Introduction to Algorithms, chapter 22.4: Topologi-
cal Sort, pp. 549–552. MIT Press and McGraw-Hill, second edition.
(Cited on page 57.)

Dipper, Stefanie (2005). XML-based Stand-off Representation and Ex-
ploitation of Multi-level Linguistic Annotation. In Proceedings of
Berliner XML-Tage (BXML) 2005, pp. 39–50. Berlin, Germany. (Cited
on pages 10 and 45.)

Dipper, Stefanie, Michael Götze, Uwe Küssner and Manfred Stede
(2007). Representing and Querying Standoff XML. In Georg Rehm,
Andreas Witt and Lothar Lemnitzer, eds., Proceedings of the GLDV-
Frühjahrstagung. Tübingen, Germany. (Cited on pages 10 and 11.)

Dipper, Stefanie, Erhard Hinrichs, Thomas Schmidt, Andreas Wagner
and Andreas Witt (2006). Sustainability of Linguistic Resources. In
Erhard Hinrichs, Nancy Ide, Martha Palmer and James Pustejovsky,
eds., Proceedings of the LREC 2006 Satellite Workshop on Merging and
Layering Linguistic Information. Genoa, Italy. (Cited on page 7.)

Erk, Katrin, Andrea Kowalski, Sebastian Padó and Manfred Pinkal
(2003). Towards a Resource for Lexical Semantics: A Large German
Corpus with Extensive Semantic Annotation. In Proceedings of the
ACL 2003, pp. 537–544. (Cited on page 3.)

Erk, Katrin and Sebastian Padó (2004). A powerful and versatile XML
format for representing role-semantic annotation. In Proceedings of
the Fourth International Conference on Language Resources and Evalua-
tion, LREC 2004. Lisbon, Portugal. (Cited on pages 4, 6, and 21.)

Evert, Stefan and Holger Voormann (2003). NQL – A Query Language
for Multi-Modal Language Data. Technical report, IMS, University
of Stuttgart, Stuttgart, Germany. (Cited on page 8.)

Faulstich, Lukas C. and Ulf Leser (2005). Implementing Linguistic
Query Languages Using LoToS. (Cited on page 11.)

Fillmore, Charles J. (1976). Frame Semantics and the Nature of Lan-
guage. In Annals of the New York Academy of Sciences: Conference on
the Origin and Development of Language and Speech, volume 280, pp.
20–32. (Cited on page 1.)



bibliography 79

Fillmore, Charles J. (1985). Frames and the semantics of understanding.
Quaderni di Semantica, IV(2):pp. 222–254. (Cited on page 1.)

Gorn, Saul (1967). Explicit Definitions and Linguistic Dominoes. In
John F. Hart and Satoru Takasu, eds., Proceedings of the Systems
and Computer Science Conference at University of Western Ontario, pp.
77–115. Toronto, Canada: University of Toronto Press. (Cited on
page 51.)

Götze, Michael and Stefanie Dipper (2006). ANNIS: Complex Multi-
level Annotations in a Linguistic Database. In Proceedings of the 5th
Workshop on NLP and XML (NLPXML-2006), pp. 61–64. Trento, Italy.
(Cited on page 10.)

Heid, Ulrich, Holger Voormann, Jan-Torsten Milde, Ulrike Gut, Katrin
Erk and Sebastian Padó (2004). Querying both time-aligned and
hierarchical corpora with NXT search. In Proceedings of the Fourth
International Conference on Language Resources and Evaluation, LREC
2004. Lisbon, Portugal. (Cited on pages 8, 12, and 61.)

Ide, Nancy, Patrice Bonhomme and Laurent Romary (2000). XCES:
An XML-based encoding standard for linguistic corpora. In Pro-
ceedings of the Second International Language Resources and Evaluation
Conference. Paris: European Language Resources Association. (Cited on
page 45.)

Ide, Nancy and Keith Suderman (2007). GrAF: A Graph-based Format
for Linguistic Annotations. In Proceedings of the Linguistic Annotation
Workshop, pp. 1–8. Prague, Czech Republic: Association for Compu-
tational Linguistics. (Cited on page 45.)

Koehn, Philipp (2005). Europarl: A Parallel Corpus for Statistical Ma-
chine Translation. In MT Summit 2005. (Cited on page 7.)

König, Esther and Wolfgang Lezius (2003). The TIGER Language – A
Description Language for Syntax Graphs, Formal Definition. Tech-
nical report, IMS, University of Stuttgart, Stuttgart, Germany. (Cited
on page 19.)

Lai, Catherine and Steven Bird (2004). Querying and Updating Tree-
banks: A Critical Survey and Requirements Analysis. In Proceedings
of the Australasian Language Technology Workshop. (Cited on pages 10,
19, and 58.)

Lezius, Wolfgang (2002a). Ein Suchwerkzeug für syntaktisch annotierte
Textkorpora. Ph.D. thesis, IMS, University of Stuttgart, Stuttgart, Ger-
many. (Cited on pages v, 3, 5, 13, 19, 31, 60, 61, and 62.)

Lezius, Wolfgang (2002b). TIGERSearch – Ein Suchwerkzeug für
Baumbanken. In Proceedings of KONVENS 2002. Saarbrücken, Ger-
many. (Cited on pages 3 and 13.)

Lüdeling, Anke, Thorwald Poschenrieder and Lukas C. Faulstich
(2004). DeutschDiachronDigital – Ein diachrones Korpus des
Deutschen. In Jahrbuch für Computerphilologie, pp. 119–136. Pader-
born, Germany: Mentis. (Cited on page 10.)



80 bibliography

Marcus, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert Mac-
Intyre, Ann Bies, Mark Ferguson, Karen Katz and Britta Schasberger
(1994). The Penn Treebank: Annotating Predicate Argument Struc-
ture. In HLT ’94: Proceedings of the workshop on Human Language Tech-
nology, pp. 114–119. Morristown, NJ, USA: ACL. (Cited on page 7.)

Marek, Torsten, Joakim Lundborg and Martin Volk (2008). Extending
the TIGER Query Language with Universal Quantification. In Ange-
lika Storrer, Alexander Geyken, Alexander Siebert and Kay-Michael
Würzner, eds., Text Resources and Lexical Knowledge, pp. 3–14. Berlin,
Germany: Mouton de Gruyter. (Cited on pages 19, 60, and 62.)

Mettler, Maël B. (2007). Parallel Treebank Search - The Implementation
of the Stockholm TreeAligner Search. C-uppsats, Stockholm University,
Stockholm, Sweden. (Cited on pages 5, 60, 63, and 65.)

Müller, Christoph (2005). Simplified MMAXQL: An Intuitive Query
Language for Corpora with Annotations on Multiple Levels. In
Claire Gardent and Bertrand Gaiffe, eds., Proceedings of the Ninth
Workshop on the Semantics and Pragmatics of Dialogue (SEMDIAL), pp.
151–154. Nancy, France. (Cited on page 9.)

Müller, Christoph (2006). Representing and accessing multi-level an-
notation in MMAX2. In Proceedings of the 5th Workshop on NLP and
XML (NLPXML-2006): Multi-Dimensional Markup in Natural Language
Processing, pp. 73–76. Trento, Italy. (Cited on pages 9 and 45.)

Ohara, Kyoko Hirose, Seiko Fujii, Hiroaki Saito, Shun Ishizaki, Toshio
Ohori and Ryoko Suzuki (2003). The Japanese FrameNet Project: A
Preliminary Report. In Proceedings of Pacific Association for Computa-
tional Linguistics (PACLING’03), pp. 249–254. Halifax, Canada. (Cited
on page 3.)

Padó, Sebastian (2007). Cross-Lingual Annotation Projection Models for
Role-Semantic Information. Ph.D. thesis, Saarland University, Saar-
brücken, Germany. (Cited on page 63.)

Palmer, Martha, Daniel Gildea and Paul Kingsbury (2005). The Propo-
sition Bank: An Annotated Corpus of Semantic Roles. Computational
Linguistics, 31(1):pp. 71–106. (Cited on pages 2 and 7.)

Rehm, Georg, Richard Eckart, Christian Chiarcos and Johannes Dellert
(2008a). Ontology-Based XQuery’ing of XML-Encoded Language
Resources on Multiple Annotation Layers. In Proceedings of the Sixth
International Conference on Language Resources and Evaluation, LREC
2008. Marrakech, Morocco. (Cited on page 11.)

Rehm, Georg, Oliver Schonefeld, Andreas Witt, Christian Chiarcos
and Timm Lehmberg (2008b). SPLICR: A Sustainability Platform
for Linguistic Corpora and Resources. In Angelika Storrer, Alexan-
der Geyken, Alexander Siebert and Kay-Michael Würzner, eds., Text
Resources and Lexical Knowledge, Companion Volume, pp. 85–96. Berlin,
Germany: Mouton de Gruyter. (Cited on page 11.)

Rogers, James and K. Vijay-Shanker (1992). Reasoning with Descrip-
tions of Trees. In Proceedings of the Annual Meetings of the ACL.
Newark, DE, USA. (Cited on page 13.)



bibliography 81

Rohde, Douglas L. T. (2005). TGrep2 User Manual. MIT, Cambridge,
MA, USA. Available from http://tedlab.mit.edu/∼dr/Tgrep2/.
(Cited on page 13.)

Ruppenhofer, Josef, Michael Ellsworth, Miriam R. L. Petruck, Christo-
pher R. Johnson and Jan Scheffczyk (2006). FrameNet II: Extended
Theory and Practice. (Cited on pages 2, 21, 30, 33, and 35.)

Samuelsson, Yvonne and Martin Volk (2006). Phrase Alignment in
Parallel Treebanks. In Jan Hajic and Joakim Nivre, eds., Proceedings
of the Fifth Workshop on Treebanks and Linguistic Theories, TLT 2006, pp.
91–102. Prague, Czech Republic. (Cited on page 7.)

Schmidt, Thomas (2001). The transcription system EXMARaLDA: An
application of the annotation graph formalism as the Basis of a
Database of Multilingual Spoken Discourse. In Proceedings of the
IRCS Workshop On Linguistic Databases, 11-13 December 2001, pp. 219–
227. Philadelphia, PA, USA: Institute for Research in Cognitive Sci-
ence, University of Pennsylvania. (Cited on page 45.)

Stede, Manfred (2004). The Potsdam Commentary Corpus. In Proceed-
ings of the ACL-04 Workshop on Discourse Annotation. Barcelona, Spain.
(Cited on page 7.)

Subirats, Carlos and Hirokai Sato (2004). Spanish FrameNet and
FrameSQL. In Proceedings of the 4th International Conference on Lan-
guage Resources and Evaluation (LREC). Workshop on Building Lexi-
cal Resources from Semantically Annotated Corpora. Lisbon, Portugal.
(Cited on pages 3 and 5.)

Vitt, Thorsten (2005). DDDquery – Anfragen and komplexe Korpora.
Diploma thesis, Humboldt-Universität zu Berlin, Berlin, Germany.
(Cited on page 11.)

Volk, Martin, Joakim Lundborg and Maël B. Mettler (2007). A Search
Tool for Parallel Treebanks. In Proceedings of The Linguistic Annotation
Workshop (LAW) at ACL. Prague, Czech Republic. (Cited on pages 5

and 62.)

Weissstein, Eric W. (2009). Topological Sort. From MathWorld–
A Wolfram Web Resource. http://mathworld.wolfram.com/

TopologicalSort.html. (Cited on page 56.)

Yan, Xiafeng, Philip S. Yu and Jiawei Han (2004). Graph Indexing: A
Frequent Structure-based Approach. In Proceedings of SIGMOD 2004.
(Cited on page 64.)

http://mathworld.wolfram.com/TopologicalSort.html
http://mathworld.wolfram.com/TopologicalSort.html




colophon

Fonts and Layout

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino
and Euler type faces. The Type 1 PostScript fonts URW Palladio L and
FPL were used. The listings are typeset in Bera Mono, originally devel-
oped by Bitstream, Inc. as “Bitstream Vera”. Type 1 PostScript fonts
were made available by Malte Rosenau and Ulrich Dirr.

The layout is based on the classicthesis style © André Miede,
which is available for from CTAN as “classicthesis” and licensed un-
der the GNU GPL v2.

Figures

The logo “Neue Eule v2.10” on the titlepage is © Joachim Blum, avail-
able from Saarland University.

Figures 4.1, 4.3–4.5, 5.1 and B.1 were created with the program dot

from the Graphviz software package for graph visualization. Graphviz
was written by Emden Gansner et al. at at&t Research.

Figures 3.1, 3.2, 4.2, 4.6, 4.7 and 5.2 are based on sentences from
v1.0 of the SALSA corpus created by the SALSA II project at Saarland
University and described in Burchardt et al. (2006a). The figures were
created with the latest development version of the TreeAligner, © 2005–
2009 Joakim Lundborg and Torsten Marek.

Final Web Version (rev. 82) as of March 23, 2009 at 21:31.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/
http://www.rz.uni-saarland.de/services/server/drucker/unilogo/
http://www.graphviz.org
http://www.coli.uni-saarland.de/projects/salsa/corpus/
http://www.ling.su.se/dali/downloads/treealigner/index.htm

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Frame Semantics
	1.1.1 Frame Nets
	1.1.2 Multilinguality

	1.2 Resources for Frame Semantics
	1.2.1 Berkeley FrameNet
	1.2.2 TIGER & SALSA
	1.2.3 Other Projects

	1.3 Motivation
	1.4 Thesis Goals
	1.4.1 Requirements
	1.4.2 Implementation and Context
	1.4.3 Limitations
	1.4.4 Thesis Outline


	2 Related Work
	2.1 Multi-Level Annotation
	2.2 Multi-Level Searching
	2.2.1 NQL
	2.2.2 MMAXQL
	2.2.3 ANNIS
	2.2.4 DDDquery
	2.2.5 SPLICR

	2.3 Conclusion

	3 The TIGER Corpus Query Language
	3.1 Overview
	3.2 Corpus Description Language
	3.2.1 Feature Records
	3.2.2 Node Relations
	3.2.3 Graph Descriptions

	3.3 Query Language
	3.3.1 Complex Node Descriptions
	3.3.2 Constraint Modifiers
	3.3.3 Derived Relations
	3.3.4 Predicates
	3.3.5 Negation

	3.4 Further Reading

	4 Design of the Query Language Extension
	4.1 Annotation of Frame Semantics
	4.1.1 New Annotation Elements
	4.1.2 Underspecification

	4.2 Integration into the Query Language
	4.2.1 Node Types for Frame Semantics
	4.2.2 Syntactic Considerations
	4.2.3 Basic Node Relations
	4.2.4 Non-Local References
	4.2.5 Frame-to-Frame and Role Relationships
	4.2.6 Other Frame Relations
	4.2.7 Type Hierarchies for Feature Values
	4.2.8 Backwards Compatibility
	4.2.9 Final Remarks

	4.3 Summary of the Extensions
	4.3.1 Features
	4.3.2 Relation Constraints
	4.3.3 Predicates

	4.4 Result

	5 Implementation of the Extension
	5.1 Architecture of the Query Evaluator
	5.1.1 The Corpus Index
	5.1.2 Overview
	5.1.3 Query Parsing
	5.1.4 Query Analysis
	5.1.5 Node Candidate Retrieval
	5.1.6 Result Set Creation

	5.2 Preprocessing Frame Semantics Annotation
	5.2.1 Precomputed Information

	5.3 Query Evaluation Example
	5.3.1 Query Preparation
	5.3.2 Node Queries
	5.3.3 Result Set Generation

	5.4 Efficient Query Evaluation
	5.4.1 Constraint Checks
	5.4.2 Node Ordering

	5.5 Benchmarks
	5.6 Further Reading

	6 Summary & Outlook
	6.1 Summary
	6.1.1 Minor Query Language Features
	6.1.2 Implementation

	6.2 Future Work
	6.2.1 New Kinds of Annotation
	6.2.2 Quality Assurance
	6.2.3 Efficiency & Scalability


	A A Guide to the Implementation
	A.1 Introduction
	A.2 Package Layout
	A.2.1 API Documentation

	A.3 Query Evaluator Architecture
	A.3.1 The High Level Interface
	A.3.2 The Query Parser
	A.3.3 Query Analysis
	A.3.4 Node Candidate Searching
	A.3.5 Relation Constraint Checking

	A.4 Quality Assurance
	A.4.1 Unit Tests
	A.4.2 Integration Tests


	B Quick Reference
	Bibliography
	Colophon

		shlomme@gmx.net
	2009-03-23T21:32:46+0100
	Saarbrücken, Germany
	CAcert WoT User
	Original Author




