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Abstract

We present a baseline system for model-
ing textual entailment that combines deep
syntactic analysis with structured lexi-
cal meaning descriptions in the FrameNet
paradigm. Textual entailment is approx-
imated by degrees of structural and se-
mantic overlap of text and hypothesis,
which we measure in a match graph. The
encoded measures of similarity are pro-
cessed in a machine learning setting.1

1 Introduction

In this paper, we present a baseline system for ap-
proaching the textual entailment task as presented
in the PASCAL RTE Challenge. This task in-
volves complex examples from unrestricted do-
mains, a challenge for deep semantics-based pro-
cessing. Similar to previous work (Dagan et al.,
2005) we explore semantically informed approxi-
mations of textual entailment. As shown by (Bos
and Markert, 2005), fine-grained semantic analysis
and reasoning models can yield high precision, but
are severely restricted in recall. The architecture we
present is open for extension to deeper methods.

We assess the utility of approximating entail-
ment in terms of structural and semantic overlap of
text and hypothesis, combining wide-coverage LFG

1This work has been carried out in the project SALSA,
funded by the German Science Foundation DFG, title PI
154/9-2. We thank Katrin Erk and Sebastian Pado for providing
and supporting the Fred and Rosy systems and Alexander Koller
for his contributions and for implementing the FEFViewer.

parsing with frame semantics, to project a lexical se-
mantic representation with semantic roles. We com-
pute various measures of overlap to train a machine
learning model for entailment.

In Section 2, we describe the linguistic resources
and our system architecture. In Section 3, we
present our approach for modeling similarity of text
and hypothesis in a match graph. In Section 4, we
report on our machine learning experiments, the re-
sults in the RTE task, and provide some error anal-
ysis, including discussion of typical examples that
show the strength and weaknesses of our approach.
We conclude with a discussion of perspectives.

2 Base Components and Architecture

2.1 Basic Analysis Components

Our primary linguistic analysis components are the
probabilistic LFG grammar for English developed
at Parc (Riezler et al., 2002), and a combination
of systems for frame semantic annotation : two
probabilistic systems for frame and role annotation,
Fred and Rosy (Erk and Pado, 2006) and a rule-
based system for frame assignment, called Detour
(to FrameNet) (Burchardt et al., 2005), which uses
WordNet to address coverage problems in the cur-
rent FrameNet data. In addition we use the Word
Sense Disambiguation system (Banerjee and Peder-
sen, 2003) and mappings from WordNet to SUMO
(Niles and Pease, 2003) to assign WordNet synsets
and SUMO ontological classes to main predicates.

2.2 Frame Semantics

Frame Semantics (Baker et al., 1998) models the
lexical meaning of predicates and their argument



Role Example
SELLER BMW bought Rover from British Aerospace.
BUYER Rover was bought by BMW, which financed

[. . . ] the new Range Rover.
GOODS BMW, which acquired Rover in 1994, is now

dismantling the company.
MONEY BMW’s purchase of Rover for $1.2 billion was

a good move.

Figure 1: Frame COMMERCE GOODS-TRANSFER.

structure in terms of frames and roles. A frame de-
scribes a conceptual structure or prototypical situa-
tion together with a set of semantic roles that iden-
tify participants involved in the situation. FrameNet
currently contains more than 600 frames with al-
most 9000 lexicalizations (word-frame pairs). Fig-
ure 1 displays examples involving the frame COM-
MERCE GOODS-TRANSFER.

Frame-semantic analysis is especially interesting
for the task of recognizing textual entailment if we
aim at robust, yet high-quality measures for seman-
tic overlap. Frames provide normalisations over di-
verse surface realizations (lexicalisation, verb vs.
nominalisation, etc.), including variations in argu-
ment structure realisation (cf. Fig. 1). Thus, we can
determine semantic similarity based on lexical se-
mantic meaning, combined with measuring similar-
ity of argument structure at a high level of abstrac-
tion. Moreover, the coarse-grained frame structures
make it possible to assess the core meaning of a sen-
tence (“what is it about?”) in a shallow analysis,
separated from the pitfalls of deep, structural analy-
sis of scope, modality, etc.,which must be treated by
other components, or can be selectively introduced,
as will be illustrated for the case of modality.

2.3 Enriched Frame Semantic Representations

As displayed in Figure 2, LFG-based syntactic anal-
ysis is integrated with frames and roles assigned by
Fred, Detour and Rosy, as well as WordNet synsets
and SUMO concepts, to yield an f-structure with
frame-semantic projection (Frank and Erk, 2004),
including conceptual class assignments.2

Additional rules introduce frames and concepts
based on named entities recognized in LFG parsing
(companies, political offices etc.), as well as extrath-

2The integration and semantics projection is defined using
the XLE rewrite system of (Crouch, 2005).
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FEF: Frame Exchange Format

Figure 2: Architecture of linguistic analysis

ematic semantic roles (TIME, LOCATION, REASON,
etc.) for corresponding adjunct types in f-structure.
As a heuristic device to establish co-referential links,
we collect possible antecedent referents for pronom-
inals. Finally, we identify various types of modal
contexts, introduced by negation, modals, condition-
als or future tense, which allows us to detect text-
hypothesis pairs that preclude entailment.

The resulting structures are converted to a Frame
Exchange Format (FEF), a flat predicate repre-
sentation comprising syntactic and semantic analy-
sis. Table 1 displays the FEF for (1). The parts
printed in bold show information from different lev-
els for the predicate manufacturer: f-structure node
f(5), semantics projection to node s(61) which is
labled with the frame MANUFACTURING (with roles
PRODUCT and MANUFACTURER) plus a projection
to ontological information (s(71)), WordNet synset
and SUMO super-class in this case. A FEFViewer
(Figure 3) displays the major elements of the graphs.

(1) Mercedes-Benz is a German car manufacturer.

Figure 3: FEFView for example (1).



normalized f-structure
with syn-sem projections

frames, roles and ontological
info (WordNet/SUMO)

xcomp(f(0),f(5)).
tense(f(0),pres).
stmt type(f(0),declarative).
pred(f(0),be).
mood(f(0),indicative).
dsubj(f(0),f(1)).
pred(f(1),’Mercedes-
Benz’).
num(f(1),sg).
subj(f(5),f(1)).
pred(f(5),manufacturer).
num(f(5),sg).
mod(f(5),f(11)).
det type(f(5),indef).
adjunct(f(5),f(7)).
pred(f(7),’German’).
atype(f(7),attributive).
adjunct type(f(7),nominal).
adegree(f(7),positive).
pred(f(11),car).
num(f(11),sg).

sslink(f(1),s(67)).
sslink(f(5),s(61)).
sslink(f(7),s(66)).
sslink(f(11),s(60)).

frame(s(60),’Vehicle’).
vehicle(s(60),s(60)).
descriptor(s(60),s(66)).
rel(s(66),’German’).

frame(s(61),’Manufacturing’).
product(s(61),s(60)).
manufacturer(s(61),s(67)).
rel(s(67),’Mercedes-
Benz’).

ont(s(60),s(72)).
ont(s(66),s(73)).
ont(s(61),s(71)).

wn syn(s(71),’manufacturer#1’).
sumo sub(s(71),’Corporation’).
milo sub(s(71),’Corporation’).

wn syn(s(72),’car#n#1’).
sumo sub(s(72),’Transp˜Device’).
milo sub(s(72),’Transp˜Device’).

wn syn(s(73),’german#a#1’).
sumo inst(s(73),’Nation’).
milo syn(s(73),’Germany’).

Table 1: FEF for example (1).

2.4 Overall RTE Architecture

Our RTE system architecture comprises the follow-
ing steps: We compute LFG f-structures with ex-
tended frame semantics projections for text and hy-
pothesis pairs. We identify their structural and se-
mantic similarities and represent them in a match
graph. From text, hypothesis, and match graph we
extract features that characterize their syntactic and
semantic properties, as well as various proportional
measures that can be relevant for establishing or re-
jecting entailment. These features are fed into a Ma-
chine Learning system for training on the develop-
ment set and testing on the test set.

3 Computing Semantic Overlap

We approximate textual entailment by statistical pre-
diction on the basis of measurements for structural
and semantic overlap between text and hypothesis.

3.1 Matching Text and Hypothesis

In the graph matching process we compute the over-
lap of the f-structures with semantics projection for
text and hypothesis which we record in a match

graph. The latter consists of matched predicates and
features from both input graphs. We distinguish var-
ious (sub)types of matches, in order to selectively
extract features for the learning phase.

Node (predicate) matching. Node matching rules
match nodes for identical syntactic predicates and
frames. We also allow matches for predicates that
are semantically related on the basis of WordNet.
To prevent overgeneration, WordNet-based match-
ing is restricted to predicates that are related by an
edge in the match graph. Further, the respective
synsets have to be closely related in terms of Word-
Net path distance (<3). Using (heuristically de-
fined) antecedent sets for pronouns, we allow special
types of predicate matches for pronouns and non-
pronominal predicates in text and hypothesis.

In addition, we allow matches between frame
nodes that are known to be related by FrameNet
frame relations, such as inheritance, or those that
are considered related by the Detour system, mea-
suring frame distance on the basis of WordNet.

Feature (edge) matching. Feature matches are re-
stricted to features that connect matching nodes, or
those that take identical atomic values. The lin-
guistic nature of these edges ranges from morpho-
syntactic features in LFG f-structure, such as NUM,
PERS, over grammatical functions ((deep) subject,
(deep) object, adjunct, oblique, complement, etc.),
to frame semantic roles in the semantic projection.

Modality contexts. Besides finding matches for
similar nodes and edges, some rules are intended
to detect semantic dissimilarity in terms of incom-
patible modality types. We normalise the different
modal contexts to five basic types: conditional, sub-
junctive, diamond, box and negation. An example of
incompatible modalities is the pair: A pet must have
rabies protection confirmed by a blood test – A case
of rabies was confirmed.

3.2 Feature Extraction

The features we extract from the text, hypothesis
and match graphs to train a machine learning model
for textual entailment can be classified according
to their (i) nature in terms of level of representa-
tion (lexical, syntactic, semantic), (ii) degree of con-
nectedness in matching, (iii) source (text, hypothesis



1. No. of predicate matches relative to hypothesis.
2. No. of frame (Fred, Detour) matches relative to hypoth-

esis.
3. No. of role (Rosy) matches relative to hypothesis.
4. Match graph size relative to hypothesis graph size, in-

cluding syntactic, semantic, ontological information.

Table 2: Feature Set for Submitted Test Runs

All tasks IE IR QA SUM dev set
run 1 59.0 49.5 59.5 54.5 72.5 61.1
run 2 57.8 48.5 58.5 57.0 67.0 59.8

Table 3: RTE 2006 results.
test set dev set

run 1 54.6 51.2
run 2 53.3 54.3

Table 4: RTE 2005 data.

or match graph), and (iv) proportional relation (hy-
pothesis/text, match/hypothesis ratio).

Lexical features count the number of lexical
items, syntactic features record the number of LFG
predicate matches, including pronominal and co-
referential matches in the match graph, and syntac-
tic feature matches. Semantic features distinguish
between those frames and roles that were assigned
by the Fred, Detour and Rosy systems, and those
that were successfully interfaced with LFG analy-
ses.3 We further distinguish semantic node matches
of different types as discussed above (e.g. identical
or semantically related frames, modal properties).
Finally, we compute the number and size of con-
nected clusters in the match graph, as well as their
size in relation to that of the hypothesis graph.

4 Experiments and Results

4.1 Training and Classification

Feature selection. We experimented with various
learners and the attribute selection module of Weka
(Witten and Frank, 2005). Many learners (evalua-
tors) selected features that seem intuitively impor-
tant. However, also unintuitive features, such as
the number of predicates in the hypothesis graph,
showed up as high-valued features, which could be
due to idiosyncrasies in the development set. We
chose to submit a run that is based on a small and

3A number of frames and roles could not be ported from
Fred and Detour onto the f-structure due to mismatches in lem-
matisation/tokenisation and fragmentary or failed parses.

intuitively plausible feature set which led to constant
results on a number of classifiers. This feature set is
listed in Table 2.

Results. We submitted two runs for different clas-
sifiers from Weka, using the feature set from Table 2.
For run 1, we used a simple conjunctive rule classi-
fier. It generated a single rule measuring predicate
and frame matches relative to the hypothesis:

(frames m relto h ≤ 0.954546) and
(preds m relto h ≤ 0.485294)
⇒ rte entails = 0

For run 2, we used the LogitBoost4 classifier from
Weka’s meta classifers which used features (1.), (2.)
and (4.) in its iteration steps. Table 3 lists the results
on the current task (Table 4 on the RTE-2005 data).

4.2 Discussion of Results and Error Analysis

The conjunctive rule of run 1 imposes a medium and
high threshold, respectively, on predicate and frame
matches, as criteria for rejection. So, the system ac-
cepts high degrees of semantic similarity based on
frames, joint with medium degree overlap at the syn-
tactic predicate level to model entailment.

This is in accordance with the view that frame se-
mantics models “aboutness”, on the basis of coarse-
grained conceptual meaning, as opposed to veridi-
cality as it is modeled by truth-conditional seman-
tics. This is further confirmed by the results for the
different RTE tasks (Table 3): we obtain higher ac-
curacy for SUM (and IR), as opposed to QA and IE,
which (in the RTE setting) need deeper modeling in
terms of veridicality. Run 2, which uses the more
“informative” feature set of Table 2 performs only
slighly worse than run 1, and better on QA.

True positives. Table 5 lists typical examples of
true positives. Entailment is triggered by high se-
mantic overlap between hypothesis and match graph
in terms of matching predicates, frames, and f-
structure. In ex. 602 frames establish a semantic
match for predicates without a syntactic match: the
verb purchase and the nominal purchase are both as-
signed the frame COMMERCE BUY.

Missing or non-matching frame assignments can
be compensated by WordNet relatedness: in ex.

4LogitBoost performs additive logistic regression using the
classifier DecisionStump.



True positives
103 T: Everest summiter David Hiddleston has passed away in an avalanche of Mt. Tasman.

H: A person died in an avalanche.
129 T: In one of the latest attacks, a US soldier on patrol was killed by a single shot from a sniper in northern Baghdad, the

military said yesterday.
H: A sniper killed a U.S. soldier on patrol in Baghdad with a single shot.

602 T: The system of government purchases of food under the U.N. Oil-for-Food Program was alleged to have many abuses.
H: A government purchases food.

626 T: An earthquake has hit the east coast of Hokkaido, Japan, with a magnitude of 7.0 Mw.
H: An earthquake occurred on the east coast of Hokkaido, Japan.

True negatives
233 T: The goal of preserving indigenous culture can hardly be achieved by a handful of researchers and curators at museums

of ethnology and folk culture.
H: Indigenous folk art is preserved.

322 T: Even today, within the deepest recesses of our mind, lies a primordial fear that will not allow us to enter the sea without
thinking about the possibility of being attacked by a shark.

H: A shark attacked a human being.

Table 5: Examples from RTE 2006.

103, die is matched with pass away although the lat-
ter has not been assigned a frame. Active-passive
diathesis as in ex. 129 is resolved on the f-structure
level where we normalize to deep subject and ob-
ject. As seen in ex. 626 and 129, due to proportional
measures of overlap, we also obtain good results for
longer hypotheses.

True negatives. 27% of justified rejections in-
volve mismatches of modality, while only 11.9% of
all sentences contain modal contexts. The algorithm
for construction of the match graph rejects predicate
(and feature) matches if the predicates (features) are
embedded in inconsistent modal contexts. Thus,
mismatching modalites are reflected in two ways:
by (distinct) modality features in text and hypothe-
sis, and in terms of reduced size of the match graph.
Ex. 233 and 322 are true negatives where predicate
matches of the underlined predicates are blocked.

Error analysis for base components. LFG pars-
ing yielded 99% coverage for the test set. 24% of
the sentence pairs involved a fragmentary parse. For
these, we rely on non-LFG-integrated frame and role
assignments by Fred, Rosy and Detour. To assess
the impact of losses in syntactic analysis, enriched
semantic representations and the resulting overlap
measures, we restricted the test set to pairs without
fragmentary parses, which yielded an improvement
of 1-3% for various learners and feature sets.

Overall, the system assigned 14326 frames and
13325 roles, including 3199 frames and 1736 roles

added by default rules. In average, 8.9 frames per
sentence and 1.1 role per frame. We identified losses
in the interface that projects frames and roles to
the LFG (10% for frames, 38.9% for roles) that
are due to failed or partial parses, but also to re-
maining differences in tokenisation and lemmatisa-
tion. Losses in porting frame and role assignments
to LFG are compensated by the fall-back to non-
assigned frames and roles, yet they do have an im-
pact on the graph connectedness measures.

Sparse features. From a machine learning view,
the size of the development corpus is very small.
Features that do not occur in the majority of sen-
tence pairs are neglected by the machine learning
systems. Currently, we have many high-frequency
features that measure similarity (e.g. predicate and
frame overlap), but only few and low-frequency fea-
tures that identify dissmimilarity, such as mismatch-
ing modalities. Therefore, the learners have a ten-
dency to reject too little: 29.5% false positives as
opposed to 12.75% false negatives.

False positives and negatives. False positives of-
ten involve dissimilar non-matching main predicates
within larger match graphs. In line with the above
observation of sparse features for dissimilarity, we
see potential for improvement by including specific
dissimilarity measures between non-matching nodes
in otherwise connected match graphs.

A related problem we observed for nodes in the
match graph that are e.g. closely connected in the



hypothesis graph, but match with far distant parts of
the text graph, as in ex.198: 4.4 million people were
executed in Singapore – Some 420 people have been
hanged in Singapore[. . . ]. That gives the country of
4.4 million people the highest execution rate.. For
such configurations, we could introduce weights that
reflect the relative distance of matching node pairs
in the text and hypothesis graphs, measured in terms
of f-structure or frame structure path distance. This,
we hope, could help the learner to establish further
criteria for rejection.

Inferences on partial structures. Our architec-
ture is open for extension to deeper methods. We
have started to integrate inferences on partial struc-
tures in order to bridge partial non-matching text and
hypothesis graphs: e.g., joins(x1, y1) in the text
graph supports the hypothesis member of(x2, y2),
for matching node pairs (x1/x2, y1/y2). In the graph
matching process, inferences of this type introduce
special types of matches, which can be exploited by
the learner directly, or indirectly, through the ensu-
ing extension of the match graph. However, due to
the small, manually crafted rule set, this feature was
not yet effective. The next step is thus to identify and
integrate suitable, large-scale resources for infer-
ences, both lexical and based on world-knowledge.

5 Conclusions and Perspectives

We presented a baseline system for textual entail-
ment that is based on “informed” features for struc-
tural and semantic overlap between text and hypoth-
esis. The system’s performance is on a par with the
best systems in last year’s RTE Challenge. We con-
sider this to demonstrate the usefulness of a frame-
based approach to textual entailment – combined
with deep syntactic analysis and further components
that complement aspects of semantic modeling not
covered in frame semantics.

We identified various possibilities for further im-
provement. The current bias towards positive en-
tailment judgments can be compensated by intro-
ducing more negative features that measure the dis-
tance – semantic or constructional – between ma-
terial involved in partial match graphs. More gen-
erally, starting from the determination of structural
and semantic overlap, or similarity, we can now im-
prove the modeling of dissimilarity. The detection

of incompatible modalities has proved rather effec-
tive, but can be further extended to lexically induced
modalities (e.g. possibility of, alleged, promise).

The usage of an integrated syntactic-semantic-
ontological representation supports the integration
of selected deeper and fine-grained methods for se-
mantic analysis.
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