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Abstract. The growing size of electronically available text corpora like com-
panies’ intranets or the WWW has madeinformation accessa hot topic within
Computational Linguistics. Despite the success of statistical or keyword based
methods, deeper Knowledge Representation (KR) techniques along with “infer-
ence” are often mentioned as mandatory, e.g. within the Semantic Web context,
to enable e.g. better query answering based on “semantical” information. In this
paper we try to contribute to the open question how to operationalize semantic in-
formation on a larger scale. As a basis we take theframestructures of the Berke-
ley FrameNet II project, which is a structured dictionary to explain the meaning
of words from a lexicographic perspective. Our main contribution is a transfor-
mation of the FrameNet II frames into theanswer set programming paradigmof
logic programming.
Because a number of different reasoning tasks are subsumed under “inference”
in the context of natural language processing, we emphasize the flexibility of
our transformation. Together with methods for automatic annotation of text doc-
uments with frame semantics which are currently developed at various sites, we
arrive at an infrastructure that supports experimentation with semantic informa-
tion access as is currently demanded for.

1 Introduction

The growing size of electronically available text corpora like companies’ intranets or
the WWW has madeinformation accessa hot topic within Computational Linguistics.
Without powerful search engines like Google the WWW would be of much lesser use.
But there are obvious limitations of the current pure word-based methods. If one is e.g.
searching for information about BMW buying Rover one might enter a query like (1)
into a search engine.

(1) BMW buy Rover.

On inspection of some of the thousands of hits returned, two problems become visible:

Problem 1.Low Precision: Numerous irrelevant pages are returned like car sellers’
pages that mention the query words in unintended contexts.

Problem 2.Low Recall: Even if the search engine does some linguistic processing to
include results that are formulated e.g. in finite form (BMW buys Rover), relevant pages
using semantically similar words likepurchaseinstead ofbuyare missing.



There exist approaches that address problem 2. For example, some IR systems
use the WordNet [Fel98] lexicon to try synonymous words in queries, while other ap-
proaches use learning techniques to detect and utilize similarities between documents.
But apart from the fact that these systems rely heavily on redundancy among the text
collections to be searched, they mostly do not address problem 1 at all.

A principled method is to analyze documents (and queries) in terms ofsemantic
predicates and role relations. As we will explain in more detail in Section 2, the lin-
guistically motivatedframe structures of the Berkeley FrameNet II project [BFL98]
are a suitable theoretical means for such an analysis. How to operationalize such in-
formation on a large scale is still an open research question. In order to avoid the pit-
falls of the 1970’s KR attempts, we do neither propose a new representation language
nor a new formalization of “the world”. Instead, we take the frame structures of the
Berkeley FrameNet II project as a base and transform them into “logic”. This idea of
proposing logic for representing and reasoning on information stemming from natural
language texts is by no means new and has in fact been heavily investigated in com-
putational linguistics (CL) [HSAM93,BK00,dNBBK01,KK03,Bos04, e.g.]. In contrast
to the mainstream, which relies on monotonic logic KR languages, we put forward the
(nonmonotonic)answer set programming paradigmof logic programming. We exploit
“nonmonotonicity” primarily as a tool to realizedefault valuesfor role fillers. They
allow to reason with defeasible information, which can be retracted when additional
contextual information is provided, e.g. in incremental semantic interpretation.

Our main contribution is a transformation of the FrameNet II frames into normal
logic programs to be interpreted under the stable model semantics. We have chosen this
framework because of its good compromise between expressive power and computa-
tional complexity, its declarative nature and the availability of efficient interpreters for
large programs [NS96,EFLP00,Wer03].

Our approach goes beyond the formalization of FrameNet I in a description logic
in [NFBP02], as we are more concrete about “useful” inference basedreasoning ser-
vices. Together with methods for automatic annotation of text documents with frame
semantics that are currently developed at various sites, we arrive at an infrastructure
that addresses both problems mentioned above in a principled way. We emphasize the
modularity and flexibility of our approach, which is needed to support experiments in
our “soft” domain of reasoning on information from natural languages sources.

The rest of this paper is structured as follows. After recapitulating some notions
from logic programming, we summarize in Section 2 FrameNet, thereby focussing on
aspects relevant here. Section 3 is the main part: the translation of FrameNet frames to
normal logic programs. Section 4 contains some conclusions and points to future work.

Preliminaries from Logic Programming.We assume the reader familiar with basic con-
cepts of logic programming, in particular with the stable model semantics of normal
logic programs [GL88]. See [Bar03] for a recent textbook.

A rule is an expression of the formH ← B1, . . . ,Bm,not Bm+1, . . . ,not Bn, where
n ≥ m≥ 0 andH and Bi (for i = 1, . . . ,n) are atoms over a given (finite) signature
with variables. We assume the signature contains no function symbol of arity greater
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than 0 (i.e. the only function symbols are constants).3 A rule is implicitly universally
quantified and thus stands for all its (finitely many) ground instances. The operator
“not” is the default negation operator. Anormal logic program(or programfor short)
consists of finitely many rules. The programs derived below aredomain restricted4 or
can be turned into domain restricted form easily, so that systems like KRHyper [Wer03]
or smodels [NS96] can be applied to compute their stable models. Finally, the headH
of a rule may be the special symbol⊥, which is intended to mean “false”. We assume a
ruleA←⊥,not A, whereA is a nullary predicate symbol not occurring elsewhere (with
this rule, no stable model of any program can satisfy⊥).

2 FrameNet

The FrameNet project [BFL98] provides a collection of linguistically motivated so-
called framesthat describe typical situations and their participants5 and link these to
linguistic realizations. A word (or linguistic construction) thatevokesa frame is called
frame-evoking element(FEE). The participants (or roles) of the frame are calledframe
elements(FEs). These are local to particular frames.

Figure 1 shows two frames together with example sentences from the FrameNet
data. The frame ACQUIRE is described asA Recipient acquires a Theme.[. . . ] The
Source causes the Recipient to acquire the Theme.[. . . ]. This frame can be evoked by
FEEs likeacquire.v, acquisition.n, get.v, obtain.v.

The second example frameCOMMERCE GOODS-TRANSFER is described as the
frame in which [. . . ] the Seller gives the Goods to the Buyer (in exchange for the
Money).[. . . ]. The FEEs includebuy.v, purchase.v, purchaser.n, rent.v.

Frame: ACQUIRE

FE Example
RECIPIENT Hornby obtained his first

patent in 1901.
SOURCE You may get more money

from the basic pension.
THEME Weacquireda darts board.

Frame: COMMERCE GOODS-TRANSFER

FE Example
BUYER Jessboughta coat.
GOODS This young manrented the old

lady ’s room.
MONEY Patpaid14 dollars for the ticket.
SELLER Kim soldthe sweater.

Fig. 1.Example Frame Descriptions.

Disregarding some details we will present below, all of the following sentences
found on the WWW can be analyzed as instances ofCOMMERCE GOODS-TRANSFER

with BUYER BMW andGOODSRover.

(2a) BMW bought Rover from British Aerospace.
(2b) Rover was bought by BMW, which financed[. . . ] the new Range Rover.

3 With this (common) restriction, all reasoning tasks relevant for us are decidable.
4 Every variable occurring in a rule must also occur in some non-negated body atom (i.e. in one

of B1, . . . ,Bm in the above notation).
5 In linguistic terms one should speak ofpredicatesandsemantic roles.

3



(2c) BMW’s purchase of Rover for$1.2 billion was a good move.
(2d) BMW, which acquired Rover in 1994, is now dismantling the company.

Note that such an analysis solves problem 1 and 2 (from Section 1). First, it gener-
alizes over linguistic variations such as word class or active/passive voice: a query like
(1) would match documents containing any of these sentences (given frame annotation).
Second, the query would not match documents containing sentences like (3) because in
this case theBUYER role is filled withFord.

(3) Ford’s deal to buy Land Rover from BMW is completed.

Aim of FrameNet.The termframemight remind the reader of early approaches in AI
as well as CL that did not fully achieve their aim of modeling the world in terms of
conceptual structures. Repeating any “ad hoc” modeling is not the aim of FrameNet.
Instead, the aim of the FrameNet project is to provide a comprehensive frame-semantic
description of the core lexicon of English. The current on-line version of the frame
database contains almost 550 frames and 7,000 lexical entries with annotated examples
from the British National Corpus.

Frame Relations.Frames can be subdivided into two classes: “small” frames that have
a linguistic realization and “big” frames that are more abstract or script-like and serve
for structuring the resource. The frameCOMMERCIAL TRANSACTION described above
is in fact of the latter kind. It is (via another intermediate frame) related to twoper-
spectivizedframesCOMMERCE BUY andCOMMERCE SELL that do have realizations
in words likebuy.v, purchase.v, purchaser.nandprice.n, retail.v, sale.n, sell.v, respec-
tively. The latter two frames share only some FEs withCOMMERCIAL TRANSACTION.
E.g. BUYER andMONEY in the case ofCOMMERCE BUY. This modeling is based on
linguistic theory: sentences like (4) or (5) are linguistically complete in contrast to e.g.
(6).

(4) BMW buys Rover.
(5) Daimler-Chrysler sold Mitsubishi.
(6) * BMW buys.

In the latest FrameNet release, a number of relations between frames have been
defined and already partly been annotated. Of particular interest for us are the following:

Relation Example
Inherits From COMMERCE BY inherits from GETTING.
Uses COMMERCE BUY uses FEs BUYER and GOODS from COM-

MERCE GOODS-TRANSFER(but not e.g. MONEY).
[Is] Subframe of COMMERCIAL TRANSACTION has subframes COM-

MERCE GOODS-TRANSFERand COMMERCE MONEY-TRANSFER.

Inherits From: All FEs of the parent frame are inherited by the child frame, e.g. the
frameCOMMERCE BUY inherits the FEs RECIPIENT and THEME from GETTING

(modulo a renaming into BUYER and GOODS, respectively6).

6 To keep things simple, we ignore such renamings here. As will become obvious below, our
approach includes a renaming facility for roles which can easily be generalized to cover cases
like this.
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Uses: The Uses relation links a frame to related “background” frames. In most cases
it describes partial inheritance as in the example above whereCOMMERCE BUY

inherits only the FEsBUYER andMONEY from COMMERCIAL TRANSACTION.
Subframe of: The Subframe relation holds between a frame that stands for a complex

event and frames that describe (temporally ordered) sub-events.

These definitions are provided as glosses to human readers. Naturally, from a log-
ical or machine perspective, these specifications are comparatively vague. Our current
goal is not to provide once-and-for-all interpretations of these relations (and of roles).
Instead, we want to come up with a formalization that supports further research by al-
lowing to experiment with different interpretations. It is by no means obvious whether
e.g. a frame instance of a frameN that is a subframe of another frameM automatically
evokes an instance ofM or e.g.N’s siblings. Neither is there a global answer as to which
FEs may or must be filled given a concrete instance of a frame. Such decisions may well
differ among applications (Section 3.2 discusses some usage scenarios).

The question how natural language sentence are mapped into frame structures is
beyond the scope of this paper. It is the central issue of the SALSA project [EKPP03]
we are affiliated with.

3 Transformation of FrameNet to Logic Programs

This section contains our main result, the transformation of FrameNet frames to logic
programs. To initiate a running example, consider the COMMERCE BUY frame. This is
what FrameNet gives us about it:

Frame: COMMERCE BUY

Inherits From GETTING

FEs BUYER, GOODS

Subframe of –
Uses COMMERCE GOODS-TRANSFER

FEEs buy.v, lease.v, purchase.v, purchaseact.n, purchaser.n, rent.v

We find it easiest to describe our transformation by starting with a description logic
(DL) view of frames (see [BCM+02] for a comprehensive textbook on DL). A natural
DL definition – a TBox axiom – of the COMMERCE BUY frame (neglecting the “Uses”
relation) is as follows:

COMMERCE BUY ≡ GETTING

u ∃ COMMERCE BUY BUYER.> u ∃ COMMERCE BUY GOODS.>
u ∃ FEE.{buy.v, lease.v,purchase.v,purchaseact.n,purchaser.n, rent.v}

Some comments seem due: the role names, such as COMMERCE BUY BUYER are pre-
fixed now by the frame name they belong to. This reflects the mentioned local names-
pace property, which implies that the same role name used in different frames may
denote different relations.

Because of using the top concept>, roles may be filled with arbitrary elements —
FrameNet does notyetprovide more specific typing information.7

7 Recently, FrameNet has started to annotate semantic types to frames, FEs, and even FEEs. But
this task is far from trivial and the set of types is still preliminary.
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The range of FEE is an explicitly defined concept which consists precisely of the
stated strings. Such set expressions are available in some DLs.

Our transformation can basically be seen to follow the standard predicate logic se-
mantics of the indicated DL reading of frames. As a significant difference, however, the
existential quantifier are treated asintegrity constraints. Under this view, populating the
COMMERCE BUY class without, say, supplying a filler for the GOODS role will result
in an inconsistency, and the currently considered model candidate will be retracted. In
contrast, any DL reasoner would then fill the role with a Skolem term in order to satisfy
the role restriction. However, withdefault valuesas introduced in Section 3.2, the effect
of existentially quantified roles can be simulated to some degree.

The following description of our transformation is separated into three parts, each
one treating a different aspect.

3.1 Basic Frame Transformation

For the purpose of this paper, we describe a frame namedN as the setsIsA(N), FE(N),
Uses(N), andFEE(N), which are precisely the frame names listed as “Inherits From”
at N, the role names listed as “FE”, the frame names listed as “Uses”, and the strings
listed as “FEE”, respectively. Each set may be empty. In particular, ifFEE(N) is empty,
this indicates thatN is a “big” frame without linguistic realization.

We also need the following (recursive) definition. For a given frameN, FE?(N)
consists of all roles ofN, including the ones to be inherited. Formally, define

FE?(N) = FE(N)∪{FE?(M) |M ∈ IsA(N)} .

To describe our main transformation “basic”, we found it helpful to single out a certain
aspect, viz., mapping of specific roles between two framesN andM8:

Transformation: partialRoleMapping(N,M,FEs)
Input: N, M: frames names;FEs: set of role names
Output: the following rules:

(N⇒M)

For eachFE∈ FEsthe rule

M FE(x,y)← N(x),N FE(x,y)

(M⇒ N)

For eachFE∈ FEsthe rule

N FE(x,y)←M(x),M FE(x,y)

ThepartialRoleMapping transformation maps the fillers of roles of the frameN (if
present) to fillers of roles of the frameM, and vice versa. Such a mapping is needed
because of the local namespace property of roles of frames (as explained above). It
“translates” roles with the same names between frames by following the convention to
include in a role name the frame it belongs to. Based on this transformation, we can
now introduce the announcedbasic transformation.

8 Notational conventions:x,y,z denote object-level variables,italic font is used for schematic
variables of transformations, andsans serif font is used for names to be taken literally.
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Transformation: basic(N)
Input: N: frame name
Output: the following rules:

(⇒-direction (1))

For eachM ∈ IsA(N) the rule

M(x)← N(x)

(⇒-direction (2))

For eachFE∈ FE?(N) the rule

⊥← N(x),not some N FE(x)

(⇒-direction (3))

If FEE(N) 6= /0, the rule

⊥← N(x),not some N FEE(x)

(⇐-direction)

Let FE(N) = {FE1, . . . ,FEk}, for somek≥ 0.
Let IsA(N) = {M1, . . . ,Mn}, for somen≥ 0.

The rule

N(x)← some N FE1(x), . . . ,
some N FEk(x),
M1(x), . . . ,Mn(x),
some N FEE(x)

(If FEE(N) = /0, then the body atom
some N FEE(x) is omitted)

(Role inheritance)

For eachM ∈ IsA(N), the result ofpartialRoleMapping(N,M,FE?(M))

(Auxiliary definitions (1))

For eachFE∈ FE?(N) the rule

some N FE(x)← N FE(x,y)

(Auxiliary definitions (2))

For eachFEE∈ FEE(N) the rule

some N FEE(x)← N FEE(x,FEE)

Some comments: the⇒-direction (1)rule should be obvious. The⇒-direction (2)
rules express the integrity constraint viewpoint of existentially quantified roles. The
some N FE predicate used there is defined underAuxiliary definitions (1). There, in the
body atomN FE(x,y), the variablex stands for a frame instance (token) andy stands
for the role filler. The test for whether the roles are filled or not has to be done for
all roles, including the inherited ones. This explains the use ofFE?(N) there. The⇒-
direction (3)rules are similar to the rules under⇒-direction (2), this time testing for the
presence of a FEE filler (ifN prescribes FEEs at all); it uses the rules underAuxiliary
definitions (2). There, in the body atomN FEE(x,y), the variablex again stands for a
frame instance (token).

The⇐-direction rule derives that an individualx is an instance ofN if (i) all its
rolesFE(N) are filled (and alsoFEE(N) if present), and (ii)x belongs to all the frames
that N inherits from. Notice it is not necessary in the rule body to test ifall the roles
FE?(N) of N are filled forx, because the inherited onesmusthave been filled due to
(ii) when the rule is applied. TheRole inheritancerules map the role fillers of inherited
roles to role fillers for instances ofN, as explained. Notice that thepartialRoleMapping
transformation realizes this mapping in the converse direction, too. Indeed, because it
is applied to the inherited roles only, this is what is expected.

3.2 Default Values

Depending on the frame and concrete application, it may be useful tonot consider a
“missing” role filler as an indication of inconsistency in the current model candidate.
For instance, an utterance likeBMW bought[at high risk]. might well be taken to fill a
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COMMERCE BUY frame. In order to achieve consistency, the GOODSrole of the COM-
MERCE BUY instance populated by a linguistic text analysis component in reaction to
this sentence has to be filled, and a dummy value, say,unspecified FE could be used as a
substitute for a more specific, preferable one. This suggests to usedefault values. Fortu-
nately, default values can be incorporated without effort in our setting by the following
transformation.

Transformation: defaultValue(N,FE)
Input: N: frame name;FE: a role name
Output: the following rules, with the free predicate symboldefault N FE:

(Choice of fill with default value or not)

N FE(x,y) ← not not N FE(x,y),
N(x),
default N FE(x,y)

not N FE(x,y) ← not N FE(x,y),
N(x),
default N FE(x,y)

(Case of waiving default value)

⊥ ← N(x),
default N FE(x,y),
N FE(x,y),
N FE(x,z),
not equal(y,z)

The left rules represent an even cycle through default negations, similar as in the
propositional programA← not B, B← not A. For this program there are exactly two
stable models: one whereA is true andB is false, and one the other way round. Using
such even cycles as a “choice” operator is a well-known programming technique. Here,
it realizes two models, one whereN FE(x,y) is true, and one where it is false. The right
rule expresses that there cannot be a default value as a role filler in presence of another,
different (default) role filler9.

The transformation for default values is completed by the following two rules. They
express that there must be at least one role filler for the considered role:

⊥ ← N(x),
not some N FE(x)

some N FE(x)← N FE(x,y)

However, because these rules are readily obtained from thebasic transformation when
applied toN, they need not be generated and thus are excluded from the transformation.

Notice the resulting program does not include rules to define thedefault N FE pred-
icate. Such rules are external to the transformation and should be supplied to provide
default values as appropriate10. If none is supplied, then the rules obtained from the
defaultValue transformation are vacuously true and hence are insignificant for the re-
sult (the stable models). This suggests to apply thedefaultValue transformation along
with thebasic transformation, for all roles, and nothing will be lost.

The usefulness of our approach clearly depends on its flexibility to interact with
other components of a larger system. As the following considerations show, we expect

9 The “equal” predicate, which means syntactic equality, can be defined asequal(x,x)← .
10 A designated constant likeunspecified FE can be taken to supply a uniform default value by

adding factsdefault N FE(x,unspecified FE) for certain framesN and rolesFE.
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the defaultValue facility to be particularly important in this regard. In general, it is
flexible enough to express domain-independent, domain-dependent, frame-dependent,
or situation-dependent default values.

(1) If the application is such that the, say, GOODS role must be filled in order to mean-
ingfully process a COMMERCE BUY frame, then no default value should be supplied.

(2) Specific settings might allow for plausible default values. For instance, in a stock
market domain, a uniform default value could be supplied as

default COMMERCE BUY GOODS(x,share)← COMMERCE BUY(x) ,

whereshare is an instance of an appropriate frame representing shares.

(3) Consider again theBMW bought at high riskexample. The anaphora resolution com-
ponent of a NLP inference system11 might find out that eitherrover or chrysler would
be a suitable role filler for the GOODS role. This disjunctive information can be rep-
resented by the following two facts (supposee is an instance of the COMMERCE BUY

frame we consider):

default COMMERCE BUY GOODS(e, rover)←
default COMMERCE BUY GOODS(e,chrysler)← .

An analysis of the resulting program shows there are two stable models: one withrover
as the only GOODS role filler for e, andchrysler in the other model. The existence of
the two stable models thus represents the uncertainty about the role filler in question;
it has the same effect as disjunctively assigning the two fillers to the GOODS role (if
disjunction were available in the language).12.

(4) It may make sense to supply default values for more than one role. A sentence like
The purchase was risky.may give rise to populate a COMMERCE BUY frame where both
the BUYER and the GOODSrole are filled with, say, a default valueunspecified FE.

(5) The assumption that the FEEs listed in a frame is a linguistically exhaustive listing
might be too strong. For instance, instead of a FEE listed, some anaphoric expression
might be present. A possible solution is to include in the FEEs an additional element,
say,unspecified FEE that acts as a default value. The realization is through the default
value transformation applied toN and FEE,defaultValue(N,FEE) (thus treating FEE
as a role), and adding a ruledefault N FEE(x,unspecified FEE)← N(x) .

3.3 The Uses Relation

For a human reader, the Uses relation links a frame under consideration to other frames
that are relevant to understand the situation it describes. For example, to understand
a buying situation, one has to be aware of what a goods transfer situation is. From a

11 Anaphora resolution based on deductive methods is investigated e.g. in [BK00,dNBBK01].
12 This approach thus is in line with those logic-based approaches in computational linguistics

that represent a dialogue by a collection of models, which can be further pruned as more
information becomes available. See e.g. [KK03,Bos04] for recent work. As a difference, we
are working with anonmonotoniclogic instead of classical logic.
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formal perspective, it seems to mean a partial inheritance relation, where inheritance is
restricted to the roles common to a frame and a frame it is in the Uses relation with. We
propose the following transformation13:

Transformation: uses(N)
Input: N: a frame name
Output: the following rules:

(N⇒ Uses(N) (1))

For eachM ∈ Uses(N) the rule

M(x)← N(x)

(N⇒ Uses(N) (2))

For eachM ∈ Uses(N),
for eachFE∈ FE?(M)\FE(N) the rule

default M FE(x,unspecified FE)← N(x)

(Uses(N)⇒ N)

Let FE(N)\{FE?(M) |M ∈ Uses(N)}
= {FE1, . . . ,FEk}, for somek≥ 0.

Let Uses(N) = {M1, . . . ,Mn}, for somen≥ 0.

The rules

N(x)← some N FE1(x), . . . ,
some N FEk(x),
M1(x), . . . ,Mn(x),
some N FEE(x)

(If FEE(N) = /0, then the body atom
some N FEE(x) is omitted)

(Partial role inheritance)

For eachM ∈ Uses(N), the result ofpartialRoleMapping(N,M,FE?(M)∩FE(N))

This transformation treats the Uses relation in a similar way as thebasic transfor-
mation treats the Inherits From relation. The Uses relation also defines an inheritance
hierarchy of roles, in parallel to the Inherits From relation, however where only explic-
itly stated roles are inherited. These are precisely those roles inFE(N) that are also roles
of some conceptM thatN uses. The set{FE1, . . . ,FEk}mentioned underUses(N)⇒N
therefore is the complementary set of roles, those that arenot inherited. Only those have
to be tested for being filled, in analogy to what the rule under⇐-direction in thebasic
transformation does (see explanation there).

The rules underPartial role inheritanceare mappings precisely for the inherited
roles, individually for each frameM that N uses, i.e. the rolesFE?(M)∩FE(N). By
definition ofpartialRoleMapping, these roles are mapped also “upwards”, fromN to a
frameM that N uses. The remaining roles of such a frameM are the rolesFE?(M) \
FE(N), and for these roles default values are supplied by theN⇒ Uses(N) (2) rules.
Together, thus, and in conjunction with the rule underN⇒ Uses(N) (1), this has the
effect thatM will be populated with all roles filled wheneverN is populated. Finally,
notice that some definitions for rules mentioned can be skipped, because they are part
of thebasic transformation.

We would like to point out that the transformation for the Uses relation is not meant
to be conclusive. Experiments on real data may suggest a different treatment of the Uses
relation. It will also be interesting to devise suitable transformations of the Subframe
relation.

13 There is noprecisedescription of the Uses relation available yet. FrameNet is considering a
subdivision of this relation.
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3.4 Usage Scenarios

The transformations described so far are intended to be applied to the whole FrameNet.
More precisely, ifN is a set of frames, such as those of FrameNet II, then we consider
the logic programP(N ) =

S
N∈N basic(N)∪{defaultValue(N,FE) | FE∈ FE?(N)}∪

uses(N), possibly additionally equipped with default values for specific roles as dis-
cussed in Section 3.2 and additional facts stemming from linguistic text analysis com-
ponents. We have chosen to transform into normal logic programs, because its associ-
ated answer set programming paradigm provides a good compromise between expres-
sive power and computational complexity, its declarative nature and the availability of
suitable, state-of-the-art interpreter like KRHyper [Wer03] or smodels [NS96]14. These
systems are made to cope with programs far larger than the ones resulting in our case15.
They are capable of enumerating the stable models ofP(N ), which can be inspected
by other system components to determine the result of the overall computation.

In the usage scenarios we have in mind, “small” frames, those that have a linguistic
realization (i.e. those having a FEE property), shall be populated as a result of textual
analysis. By the way the transformation is defined, the information in these frame in-
stances is combined by transferring it up the Inherits from and Uses hierarchies, thereby
providing default values as needed. This way, explicitly presented knowledge shall be
completed to get more abstract views on it. To make this a little more concrete, probably
the most basic class of inference covers systematic syntax-near cases a (linguistic) au-
tomatic frame assignment system cannot cover. Take e.g. the following two sentences.

(7a) Mary promised to purchase a BMW.
(7b) Mary promised the purchase of a BMW.

The second sentence might in many cases be equivalent in meaning to the first sen-
tence. But most linguistic (syntactic) theories don’t have the means to describe this
equivalence. The problem is that the subject of this sentenceMary fills the subject po-
sition of the verbpromise. But Mary is also understood as subject of the verbpurchase
and (probably) as the actor acting in the event described by the nounpurchase. For the
verb case, linguistic theory has an answer in terms of subject sharing of so-calledsub-
ject control verbslike promise, offer, deny. Here, the subject of the control verb is know
to be identical with the subject of the embedded verb. But in the second sentence, there
is no embedded verb and nouns are not considered to have a subject.

In contrast, in a FrameNet analysis both, verb and noun evoke a COMMERCE BUY

frame. But as we argued only in the verb case, syntax based methods can fill the BUYER

role with Mary. Here, a defeasible inference could fill the respective role in the noun
case. This inference is defeasible because the sentence might continue as follows.

(8) Mary promised the purchase of a BMW by her husband before the vacations
start.

14 In particular, the resulting programs are domain-restricted, as required by these systems or can
easily be made conforming.

15 The number of rules inP(N ) is quadratic in|N |. The quadratic component derives from the
partialRoleMapping transformation, which, fortunately, results in very simple rules that can
be worked off deterministically.
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In such cases where an actual filler is available, the inference mechanism should fill
the respective role with that.

A more ambitious kind of inference is involved in the following example. The
phrase (9) is a real corpus example from a text talking about questions of possession in
the former GDR.

(9) Owner of two-family houses which have bought before 1989[. . . ].

For this example, automatic syntax-based methods would return two frames, POS-
SESSIONwith OWNER Owner of two-family housesand POSSESSIONtwo-family houses,
and COMMERCE BUY with BUYER which. Depending on the depth of the linguistic
analysis,whichmight have already been resolved toOwner of two-family houses. But
in any case, the GOODS of the COMMERCE BUY were empty. At this point an heuris-
tic inference could infer that the GOODS are the houses. If additional knowledge was
available about the relation of buying and possession (e.g. by FrameNet’s Causative
relation), this should be used here as well. Once again, the inference is defeasible as
the context might tell us that the text is about owner of two-family houses which have
bought, say a car, before 1989.

4 Conclusion and Outlook

In this paper we have argued that reasoning services on the basis of FrameNet’s frames
can satisfy the growing demand of integrating semantic information in order to improve
large scale natural language processing, such as document searching.

Our aim was to arrive at an infrastructure that supports testing different formaliza-
tions of the frame relations on a larger amount of corpus data. To this end, we gave
transformations of the lexicographic frame and frame relation definitions into a logic
programming setting, which we expect to be feasible also with respect to practical effi-
ciency considerations. Although our translation of the frames and frame hierarchy are in
the spirit of description logics, we have argued that both, the vague specification of the
frame relations and the defeasible character of the kinds of inferences we are interested
in do not lead naturally to characterization within description logics.

It has to be stressed that what we presented here is work in progress. The trans-
formations proposed are not too difficult to implement, and we will conduct a number
of pilot studies within different settings. Once e.g. the SALSA [EKPP03] project will
supply methods for automatic frame assignment to natural text, we have a basic archi-
tecture for semantics-based natural language processing as described in the introduction
of this paper. We are well aware that our system might undergo a number of changes
underway not only because the FrameNet resource itself is still developing.

The kinds of inference we want to model on the basis of what we present here
cannot be characterized by criteria such as soundness or completeness with respect to a
readily defined semantics of FrameNet16. Their appropriateness or usefulness primarily

16 In fact, our transformationequipsFrameNet with a precise, declarative semantics by means of
the transformations proposed. Nevertheless, some interesting properties of our transformation
can be proven. For instance, that arguable reasonable properties of “inheritance” are realized.
We did not do so here for lack of space.
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depends on such factors as the application at hand and on additional linguistic or extra-
linguistic evidence available.

Our long-term goals include a treatment of selectionalpreferences(rather thanre-
strictions) which will enable a more fine-grained modeling of e.g. sortal information
about the filler of particular roles. For example, in Fig 1from the basic pensionfills
the role SOURCE of frame ACQUIRE which is perfectly acceptable for a human. This
example shows that a formalization of sortal information will have to include mecha-
nisms for dealing with preferences and type casting (e.g. to deal with typical linguistic
patterns like metonymies as inWashington announces a new drug policy). Including
preferences would also make it possible to formulateheuristic inferencesbeyond our
current assignment of default values.
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