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Abstract

Cooking_craation

We address the problem ohknown word
sense detectiornthe identification of cor-
pus occurrences that are not covered by
a given sense inventory. We model this
as an instance ddutlier detection using

a simple nearest neighbor-based approach
to measuring the resemblance of a new
item to a training set. In combination with

a method that alleviates data sparseness by
sharing training data across lemmas, the
approach achieves a precision of 0.77 and
recall of 0.82.
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| |was|prepared |for| a |hound] , |but]not|for|such| a |creature|as |this] .
Il

Figure 1. Wrong assignment due to missing sense:
from the Hound of the Baskervilles, Ch. 14

identification of corpus occurrences that are not cov-
ered by a given sense inventory. The training set
If a system has seen only positive examples, hoagainst which new occurrences are compared will
does it recognize a negative example?his is consist of sense-annotated text.
the problem addressed kgutlier detection also Unknown sense detection is related to word sense
callednovelty detectioch(Markou and Singh, 2003a; disambiguation (WSD) and to word sense discrim-
Markou and Singh, 2003b; Marsland, 2003): to deiation (Sclitze, 1998), but differs from both. In
tect novel or unknown items that differ from all theWSD all senses are assumed known, and the task is
seen training data. Outlier detection approaches typ select one of them, while in unknown sense detec-
ically derive some model of “normal” objects fromtion the task is to decide whether a given occurrence
the training set and use a distance measure andratches any of the known senses or none of them,
threshold to detect abnormal items. and all training instances, regardless of the sense to
In this paper, we apply outlier detection techwhich they belong, are modeled ase group of
niques to the task afinknown sense detectiothe knowndata. Unknown sense detection also differs
mledge the funding of the German Science Four]:-rom Wo_rd S_ense dlscrlmlnatlpn, where no sense in-
dation DFG for the SALSA project (Title Pl 154/9-2). ventory is given and the task is to group occurrences
2The termnovelty detectioris also used for the distinction into senses. In unknown sense detection the model
of novel and repeated information in information retrieval, arespects the given word senses.

different if related topic. . .. .
P The main motivation for this study comes from

1 Introduction



shallow semantic parsindpy which we mean a com- for detecting unknown senses: a threshold on confi-
bination of WSD and the automatic assignment oflence scores returned by tha & MANESER WSD
semantic roles to free text. In cases where a sensgstem. The result is that recall is much too low.
is missing from the inventory, WSD will wrongly Section 5 introduces the NN-based outlier detection
assign one of the existing senses. Figure 1 showapproach that we use in section 6 for unknown sense
an example, a sentence from thtound of the detection, with better results than in the first experi-
Baskervilles analyzed by the SALMANESER (Erk  ment but still low recall. Section 7 repeats the exper-
and Pado, 2006) shallow semantic parser. The andent of section 6 with added training data, making
ysis is based on FrameNet (Baker et al., 1998), ase of the fact that one semantic class in FrameNet
resource that lists senses and semantic roles for Bypically pertains to several lemmas and achieving a
glish expressions. FrameNet is lacking a sense aiarked improvement in results.

“expectation” or “being mentally prepared” for the

verb prepare so preparedhas been assigned the2 FrameNet

sense @OKING_CREATION, a possible butimprob- grame Semantics (Fillmore, 1982) models the mean-
able analysi& Such erroneous labels can be faTngs of a word or expression by reference to
tal when further processing builds on the results g{ameswhich describe the background and situa-
shallow semantic parsing, e.g. for drawing inferyong) knowledge necessary for understanding what

ences. Unknown sense detection can prevent sugly predicate is “about”. Each frame provides its

mistakes. _ ~ specific set of semantic roles.
All sense inventories face the problem of missing ¢ Berkeley FrameNet project (Baker et al.

senses, either because of their small overall size (3§9g) is building a semantic lexicon for English de-
is the case for some non-English WordNets) OrWheé‘cribing the frames and linking them to the words

they encounter domain-specific senses. Our study,q expressions that cavokethem. These can
will be evaluated on FrameNet because of our maigs erps as well as nouns adjectives, preposi-

aim of improving shallow semantic parsing, but thgjons adverbs, and multiword expressions. Frames
method we propose is applicable to any sense inveQe |inked by 1S-A and other relations. Currently,
tory that has annotated data; in particular, it is alsg,ameNet contains 609 frames with 8.755 lemma-
applicaple to WordNet. frame pairs, of which 5,308 are exemplified in an-
In this paper we model unknown sense deteGyptated sentences from the British National Corpus.
tion as outlier detection, using a simple Nearestne annotation comprises 133,846 sentences.
Neighbor-based method (Tax and Duin, 2000) that g FrameNet is a growing resource, many lem-
compares the local probability density at each tegh,s are still lacking senses, and many senses are still
item with that of its nearest training item. lacking annotation. This is problematic for the use

To our knowledge, there exists no other approachs FrameNet analyses as a basis for inferences over
to date to the problem of detecting unknown senseg, ag e.g. in Tatu and Moldovan (2005).

There are, however, approaches to the complemen-g, example, the verpreparefrom Figure 1 is

tary problem of determining the closest known Sensgssociated with the frames

for unknown words (Widdows, 2003; Curran, 2005;
] T ' ' COOKING_CREATION: prepare food

Burchardt et al., 2005), which can be viewed as the brep

logical next st fter unknown sense detection ACTIVITY _PREPARE get ready for an activity
ogical next step after unknown Sense detection- A crivity _READY_STATE: be ready for an activity

Plan of the paper. After a brief sketch of WILLINGNESS: be willing

FrameNet in Section 2, we describe the experimeryf which only the @OKING_CREATION sense has

tal setup used throughout this paper in Section $een annotated. The sense in Figure 1 is not cov-

Section 4 tests whether a very simple model sufficesed yet: ACTIVITY _READY_STATE would be more
3Unfortunately, the semantic roles have been mis-assign&pPrOpriat_e than GOKING_CREATION, but still not

by the system. The wordshould fill the Foob role, whilefor  optimal, since the sentence refers to a mental state

a houndcould be assigned the optionakREIVERT0le. rather than the preparation of an activity.



3 Experimental setup and data //wav\e\
S subj \ obj mod

Experimental setup. To evaluate an unknown She hand  outwards
sense detection system, we need occurrences that are Coshe een| o pwé Seonj
her and upwards

guaranteed not to belong to any of the seen senses.
To that end we use sense-annotated data, in our case (1): subj , obj , mod(sinces andsubj corefer,
the FrameNet annotated sentences, simulating un- W€ use only one of them)

. . (2): she, hand, outwards
known senses by designating one sense of each am-  (3): subj-she , obj-hand , mod-outwards
biguous lemma as unknown. All occurrences of that ~ (4): mod-obj-subj

sense are placed in the test set, while occurrencEs ) -
: _Figure 2: Sample Minipar parse and extracted gram-
of all other senses are split randomly between train-

) ) o matical function features
ing and test set, using 5-fold cross-validation. We

repeat the experiment with each of the senses of an
ambiguous lemma playing the part of the unknown
sense once. Viewing each cross-validation run for
each unknown sense as a separate experiment, sanses, we need lemmas with at least three senses
then report precision and recall averaged over urte evaluate it: One of the senses of each lemma is
known senses and cross-validation runs. treated asinknown which for lemmas with three or

It may seem questionable that in this experimermore senses leaves at least two senses for the train-
tal setup, theunknown senseccurrences of each ing set. This reduces our data set to 125 lemmas
lemma all belong to the same sense. However, thigith 7,435 annotated sentences.

does not bias the experiment since none of the mog- : :
els we study take advantage of the shape of the teﬁélﬁJ d(-:‘SlnT/gLM,:\ler;f; vggrel:hezr ()tgg)\/\tl:irl? (Sj)i/sitiizgnuli)surllt

setin any way. Rather, each testitem is classified in- ) . .
- . . known senséems fromunknown sensigems reli-
dividually, without recourse to the other test items. . .
ably by its confidence scores. The system extracts

Data. All experiments in this paper were per-a rich feature set, which forms the basis of all three
formed on the FrameNet 1.2 annotated data peexperiments in this paper:

taining to ambiguous lemmas. After removal of
instances that were annotated with more than one
sense, we obtain 26,496 annotated sentences for the

1,031 ambiguous lemmas. They were parsed with e bi- and trigrams centered on the target word;
Minipar (Lin, 1993); named entities were computed

e a bag-of-words context, with a window size of
one sentence;

using Heart of Gold (Callmeier et al., 2004). e grammatical function information: for each de-
pendent of the target, (1) its function label, (2)
4 Experiment 1. WSD confidence scores its headword, and (3) a combination of both are
for unknown sense detection used as features. (4) The concatenation of all

function labels constitutes another feature. For
PPs, function labels are extended by the prepo-
sition. As an example, Figure 2 shows a BNC

sentence and its grammatical function features.

In this section we test a very simple model of un-

known sense detection: Classifiers often return a
confidence score along with the assigned label. We
will try to detect unknown senses by a threshold

on confidence scores, declaring anything below the e for verb targets, the target voice.
threshold as unknown. Note that this method can

only be applied to lemmas that have more than onkhe feature set is based on Florian et al. (2002) but

sense, since for single-sense lemmas the system vﬁﬁn;amT fddd:ct'o?al s'yntax-relat?ddfeat?res.f Each
always return the maximum confidence score. word-re‘ated feature Is represented as four features

for word, lemma, part of speech, and named entity.
Data. While the approach that we follow in this SHALMANESER trains one Naive Bayes classifier
section is applicable to all lemmas with at least tw@er lemma to be disambiguated. For this experiment,



0 Precision Recall o
0.5 0.6524 ¢ 0.115) | 0.0011 ¢ 0.0004) d d ° : h
0.75| 0.7855 ¢ 0.0086)| 0.0527 ¢ 0.0013) o XU )- © o
0.9 0.7855 ¢ 0.0093)| 0.1006 ¢ 0.0021) X *t o
0.98 | 0.7847 ¢ 0.0073)| 0.1744 ¢ 0.0025)

Figure 3: Outlier detection by comparing distances

Table 1: Experiment 1: Results for lab@hknown between nearest neighbors

sense WSD confidence level approactf: confi-
dence thresholds: std. dev.

it is only applicable to lemmas with more than one

all system parameters were set to their default Se‘{DOWU sense. In this ;ectlon we introduce an al-
tings. To detect unknown senses building on thigernatlve approach, Wh'_Ch uses distances to nearest
WSD system, we use a fixed confidence threshoI'E'Je'ghbOrS to detect outliers.

and label all items below the thresholdwsknown ) In general, the task' of outlier detecthn IS to' d_e-
cide whether a new object belongs to a given training

Results and discussion. Table 1 shows precision set or not. Typically, outlier detection approaches
and recall for labeling instances asknownusing derive some boundary around the training set, or
different confidence thresholds averaged over un- they derive from the set some model of “normal-
known senses and 5-fold cross-validafioive see ity” to which new objects are compared (Markou
that while the precision of this method is acceptabland Singh, 2003a; Markou and Singh, 2003b; Mars-
at 0.74 to 0.765, recall is extremely low, i.e. almostand, 2003). Applications of outlier detection in-
no items were labelednknown even at a threshold clude fault detection (Hickinbotham and Austin,
of 0.98. However, BALMANESER has very high 2000), hand writing deciphering (Tax and Duin,
confidence values overall: Only 14.5% of all in-1998; Sclilkopf et al., 2000), and network intru-
stances in this study had a confidence value of 0.9fon detection (Yeung and Chow, 2002; Dasgupta
or below (7,697 of 53,206). and Forrest, 1999). One standard approach to out-
We conclude that with the given WSD system andier detection estimates the probability density of the
(rather standard) features, this simple method canngéining set, such that a test object can be classified
detect items with an unknown sense reliably. Thias an outlier or non-outlier according to its probabil-
may be due to the indiscriminately high confidencéty of belonging to the set.
scores; or it could indicate that classifiers, which Rather than estimating the complete density func-
are geared alistinguishingbetween known classestion, Tax and Duin (2000) approximate local density
rather thardetectingobjects that differ from all seen at the test object by comparing distances between
data, are not optimally suited to the task. Howevenearest neighbors. Given a test objectthe ap-
one further disadvantage of this approach is that, @oach considers the training objegchearest tar
mentioned above, it can only be applied to lemmaand compares the distangg between: andt to the
with more than one annotated sense. For FrameNdistanced,,; betweent and its own nearest training
1.2, this comprises only 19% of the lemmas. data neighbot’. Then the quotient between the dis-

. tances is used as an indicator of the (ab-)normality
5 A nearest neighbor-based method for of the test object:

outlier detection
dzt

dtt’

In the previous section we have tested a simple ap- pNn(T)

proach to unknown sense detection using WSD con-

fidence scores. Our conclusion was that it was notWhen the distancé,; is much larger thaa,,/, x is

viable approach, given its low recall and given thatonsidered an outlier. Figure 3 illustrates the idea.
“Note that the minimum confidence score is 0.5 if 2 senses, The norm?“ty or abnorma“ty of test ObjeCtS is de-

are present in the training set, 0.33 for 3 present senses etc. cided by a fixed threshold on pyy. The lowest



threshold that makes sense is 1.0, which rejects amyFeatures | Precision | Recall l

; : o - [CAT 0.7072 6 0.0088)[ 0.2683 ¢ 0.0043)
x thatis furt.her apa.rt from its nearest tralnlng neighr 07016 00041)| 0.3511 § 0.0035)
bort thant is from its neighbor. Tax and Duin use | syn 0.8333 £ 0.0085)| 0.2099 ¢ 0.0042)
Euclidean distance, i.e. Syn-hw || 0.7784 ¢ 0.0029) | 0.2368 ¢ 0.0022)
g — Z( Y Table 2: Experiment 2. Results for labehknown
ot = zi — i) senseNN-based outlier detectiof,,= 1.0. o: stan-

dard deviation
Applied to feature vectors with entries either 0 or 1 —
. . . Precision Recall
this corresponds to the size of the symmetric differ- Features|| all >10 >20|al >10 >20

ence of the two feature sets. All 0.71 0.70 0.67] 0.27 035 0.45
Cx 0.70 070 0.67]| 0.35 0.47 058
6 Experiment 2: NN-based outlier n 083 08l 077)021 022 021

Syn-hw || 0.78 0.76 0.73| 0.24 0.28 0.31

detection

In this section we use the NN-based outlier detectiohable 3: Experiment 2: Results by training set size,
approach of the previous section for an experimerit= 1.0

in unknown sense detection. Experimental setup and

data are as described in Section 3.

Modeling. We model unknown sense detection as

an outlier detection task, using Tax and Duin’s outen the number of subcategorization frames of the
lier detection approach that we have outlined itemma rather than the frequency of the sense, which
the previous section. Nearest neighbors (by Euwnakes frequency calculations meaningless.

clidean distance) were computed using the AN'\I&esults Table 2 shows precision and recall for la-
tool (Mount and Arya, 2005). We compute one outs ' P

. . X - eling instances asnknownusing a distance quo-
lier detection model per lemma. With training and. —

i . . ient threshold of¢=1.0, averaged over unknown
test sets constructed as described in Section 3, t

e L
- ) senses and over 5-fold cross-validation. We see that
average training set comprises 22.5 sentences. ) . . .
. . . recall is markedly higher than in Experiment 1, es-
We use the same features as in Section 4, with fea-

ture vector entries of 1 for present and 0 for abseI;?,[ecially for the two conditions that include context
P words, All  andCx. The syntax-based conditions

features. For a more detailed analysis of the contrjz . L .
. . yn and Syn-hw show a higher precision, with a
bution of different feature types, we test on reduce . .

ess pronounced increase in recall.

as well as full feature vectors: Raising the distance quotient threshold results in
All : full feature vectors little change in precision, but a large drop in recall.

Cx: only bag-of-word f ds. | For exampleAll vectors with a threshold af =
x: only bag-of-word context features (words, lém+ ; achjeve a recall of 0.14 in comparison to 0.27

mas, POS, NE) ford =1.0

Syn: function labels of dependents Training set size is an important factor in sys-
tem results. Table 3 lists precision and recall for all
Syn-hw : Syn plus headwords of dependents  training sets, for training sets of size 10, and for

We compare the NN-based model to that ofraining sets of size= 20. Especially in conditions
Experiment 1, but not to any simpler baselineAll andCx, recallrises steeply when we only con-
While for WSD it is possible to formulate simple sider cases with larger training sets. However note
frequency-based methods that can serve as a hathat precision does not rise with larger training sets,
line, this is not so in unknown sense detection bg@ther it shows a slight decline.
cause the frequency of unknown senses is, by def- Another important factor is the number of senses
inition, unknown. Furthermore, the number of anihatalemma has, as the upper part of Table 7 shows.
notated sentences per sense in FrameNet depefig€ Iemmas with a higher number of senses, preci-



Target lemma: put

. SensesENCODING, PLACING

Sense currently treated as unknown:PLACING
Extend training set by: all annotated sentences for

; C e : i lemmas other thaputin the sense ECODING:
Figure 4: "Acceptance radius” of an outlier within couch., expression.n, formulate.v,  formulation

the training set (left) and a more “normal” training | frame.v, phrase.v, word.v, wording.n
set object (right)

>

Table 4: Extending training sets: an example

[ Features || Precision [ Recall ]
All 0.7709 (0.001) | 0.7243 ¢ 0.0018)
o _ _ _ Cx 0.7727 ¢ 0.0027)| 0.8172 ¢ 0.0035)
sion is much lower, while recall is much higher. Syn 0.8571 ¢ 0.0045) | 0.1694 ¢ 0.0012)
Syn-hw || 0.8025 ¢ 0.0041)| 0.3383 ¢ 0.0025)

Discussion. While results in this experiment are
better than in Experiment 1 — in particular recall hadable 5: Experiment 3: Results for lab@hknown
risen by 19 points foC€x —, system performance is senseNN-based outlier detectiofl,= 1.0. o: stan-
still not high enough to be usable in practice. dard deviation

The uniformity of the training set has a large in-
fluence on performance, as Table 7 shows. The more
senses a lemma has, the harder it seems to be for the

model to identifyknown senseccurrences. Preci- gits than the WSD confidence model, its recall is

sion for the assignment of thenknownlabel drops, - il jow. We have suggested that data sparseness

while recall rises. We see a tradeoff between prec}hay be responsible for the low performance. Con-

sion and recall, in this table as well as in Table 3sequently, we repeat the experiment of the previous

Ther'e, we see that many _maueknoWﬂteSt objects  gsaction with more, but less specific, training data.

are identified when training sets are larger, but a | ke WordNet synsets, FrameNet frames are se-
Igrger training set does not translate into universally, , wtic classes that typically comprise several lem-
higher results. mas or expressions. So, assuming that words with

One possible explanation for this lies in a propgjmijar meaning occur in similar contexts, the con-
erty of Tax and Duin’s approach. If a training itdm eyt features for lemmas in the same frame should

is situated at distancéfrom its nearest neighbor in o similar. Following this idea, we supplement the

the training _set, then any test item within a radius Oﬂ(raining data for a lemma by all thether annotated
d aroundt will be considereknown Thus we could  ga14 for the senses that are present in the training

termd the "acceptance radius” @f Now if ¢ is an gt \here by “other data” we mean data with other
outlierwithin the training set, thed will be large, as target lemmas. Table 4 shows an exarfple
illustrated in Figure 4. The sparser the training set s,

the more training outliers we are likely to find, withModeling.  Again, we use Tax and Duin’s outlier
large acceptance radii that assign a labekmdwn detection approach for unknown sense detection.
even to more distanced test items. Thus a spard&e experimental design and evaluation are the same
training set could lead to lower recall ahknown as in Experiment 2, the only difference being the
senseassignment and at the same time higher prétaining set extension. Training set extension raises
cision, as the items labelathknownwould be the the average training set size from 22.5 to 374.

ones at great _distance from any items on the trainirEesults. Table 5 shows precision and recall for la-
set — conforming to the pattern in Tables 3 and 7. beling instances asnknown with a distance quo-
7 Experiment 3: NN-based outlier tient threshold of 1.0, averaged over unknown senses

detection with added training data and 5-fold cross-validation. In comparison to Exper-

. . . 5ConditionsSyn andSyn-hw were also tested using only
While the NN-based outlier detection model Weothertarget lemmas with the same part of speech. Results were

used in the previous experiment showed better reirtually unchanged.



Precision Recall two conditions that do not involve syntactic fea-
Features || all >50 >200 | all >50 > 200

Al 077 077 073 1072 080 o087 | tures,All and Cx, have markedly higher rgsults
Cx 077 077 0.73 | 0.82 0.89 0.94 | thanSyn-hw . This could mean that syntactic fea-
Syn 086 085 082 1017 016 013 | yreg are not as helpful as context features in detect-

Syn-hw || 080 0.79 0.76 | 0.38 0.36 038 | . . .
Syn 086 085 082 [ 017 017 014 | ing unknown senses; however in Experiment 2 the

Syn-hw || 0.81 0.80 0.76 | 0.35 0.37 0.38 | performance difference betwe&yn and the other
conditions was not by far as large as in this experi-
Table 6: Experiment 3: Results by training set sizenent. It could also mean that frames are not as uni-

f=1.0 form in their syntactic structure as they are in their
context words. This seems plausible as FrameNet
Number of senses .
2 3 4 5 frames are constructed mostly on semantic grounds,
Exp.2 Prec.|| 0.78 | 0.68 | 0.59 | 0.55 without recourse to similarity in syntactic structure.
e E?g'c 8@% 8'3? 8'22 8'22 Table 6 points to a sparse data problem, even with
" Rec. |l 068|081 089 088 training sets extended by additional items. It also

shows that the more a test condition relies on context
Table 7: Experiments 2 and 3: Results by the numgord information, the more it profits from additional
ber of senses of a lemma, conditiéh , 6 = 1.0 data. So it may be worthwhile to explore methods
for a further alleviation of data sparseness, e.g. by
generalizing over context words.
Table 7 underscores the large influence of train-
ing set uniformity: the more senses a lemma has, the

tionsAll , CxandSyn-hw , recall has risen steeply; mokre I'ke|¥:]he_ mt(;del 'S to classflfy a E[est(jlnzt?nf:e_ as
the maximum recall is achieved I8x at 0.82. unknown This 1S the case even for extended training

As before, increasing the distance quotient thresiFELS: One possible way of addressing this problem

old leads to little change in precision but a sharﬁ‘VOUId be t? ;?)ke !nt?\lscgoun; morlg thjm a §|ng!e
drop in recall. ForAll vectors, recall is 0.72 for nearest neighbor in ~based outlier detection in

threshold 1.0. 0.56 faf — 1.1. and 0.41 fof) — 1.2 order to compute more precise boundaries between

Table 6 shows system performance by training Sgpown and unknown instances.
_size. As the average training _set in this experimerg Conclusion and outlook
is much larger than in Experiment 2, we are now
inspecting sets of minimum size 50 and 200 rathé/e have defined and addressed the problem of
than 10 and 20. We find the same effect as in Ex4nknown word sense detectiothe identification
periment 2, with noticeably higher recall for emmagf corpus occurrences that are not covered by a
with larger training sets, but slightly lower precision.given sense inventory, using a training set of sense-
Table 7 breaks down system performance by th@nnotated data as a basis. We have modeled this
degree of ambiguity of a lemma. Here, too, we seproblem as an instance outlier detection using
the same effect as in Experiment 2: the more sens# simple nearest neighbor-based approach of Tax
a lemma has, the lower the precision and the high&nd Duin to measure the resemblance of a new oc-
the recall ofunknownlabel assignment. currence to the training data. In combination with
) ) ) ) a method that alleviates data sparseness by sharing
Discussion. In comparison to Experiment 2, EX- 5ining data across lemmas, the approach achieves
periment 3 shows a dramatic increase in recall, ang,,q results that make it usable in practice: With
even some increase in precision. Precision and rgz s represented as vectors of context words (in-
call for conditionsAll aanCx are good enough for cluding lemma, POS and NE), the system achieves
the system to be usable in practice. 0.77 precision and 0.82 recall in an evaluation on
Of the four conditions, the three that involve cong g meNet 1.2. The training set extension method,

text words, Al , Cx and Syn-hw, show consid- \hich proved crucial to our approach, relies solely
erably higher recall thartsyn. Furthermore, the

iment 2, precision has risen slightly, and for condi



on a grouping of annotated data by semantic simi. Fillmore. 1982. Frame Semantidsinguistics in the
larity. As such, the method is applicable to any re- Morning Calm
source that groups words into semantic classes, fgr Florian, S. Cucerzan, C. Schafer, and D. Yarowsky.

example WordNet. 2002. Combining classifiers for word sense disam-
For this first study on unknown sense detection, biguation.Journal of Natural Language Engineering

we have chosen a maximally simple outlier detec- 8(4):327-431.

tion method; many extensions are possible. One ok Hickinbotham and J. Austin. 2000. Neural networks
vious possibility is the extension of Tax and Duin’s for novelty detection in airframe strain data. Pmoc.
method to more than one nearest training neigh- International Joint Conference on Neural Netwarks

bor for a more accurate estimate of local densityy |ijn. 1993. Principle-based parsing without overgen-
Furthermore, more sophisticated feature vectors caneration. InProc. ACL-93 Columbus, OH.

be employed to generalize over context words, and ) i
Markou and S. Singh. 2003a. Novelty detection:

other outlier detection approaches (Markou anICYLA review. part 1: Statistical approache&CM Signal
Singh, 2003a; Markou and Singh, 2003b; Marsland, processing83(12):2481 — 2497.

2003) can be tested on this task. ) o
Our immediate goal is to use unknown sense d(M' Markpu and S.. Singh. 2003b. Novelty detection:
A review. part 2: Neural network based approaches.

tection in combination with WSD, to filter out itgm; ACM Signal Processin@3(12):2499 — 2521.

that the WSD system cannot handle due to missing

senses. Once items have been identifiashgmown S Marsland. 2003. Novelty detection in learning sys-
. . " tems.Neural computing survey8:157—195.

they are available for further processing: If possible

one would like to assign some measure of sense iD- Mountand S. Arya. 2005. ANN: A library for approx-

formation even to these items. Possibilities include Imate nearest neighbor searching. ~Download from

associating items with similar existing senses (Wid- NttP-//www.cs.umd.edu/mount/ANN/

dows, 2003; Curran, 2005; Burchardt et al., 2005) aB. Sctlkopf, R. Williamson, A. Smola, J. Shawe-Taylor,

clustering them into approximate senses. and J. Platt. 2000. Support vector method for novelty
detection.Advances in neural information processing
systemgsl12.
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