Formal semantics and corpus-based approaches to predicate-argument structure

> Katrin Erk Sebastian Pado ESSLLI 2006

Structure

- 1. History of Semantic Roles
- 2. Contemporary Frameworks
- 3. Difficult Phenomena (from an empirical perspective)
- 4. Role Semantics vs. Formal Semantics
- 5. Cross-lingual aspects

Agenda

- Formal (sentence) semantics: a brief reminder of the basics
- Sources of world knowledge:
 - o Ontologies
 - Corpus-based approaches
 - Frame-semantic analysis as a corpus-based approach based on something resembling an ontology
- Problems in combining the two

Formal (sentence) semantics: a brief reminder

Sentence semantics:

- Represent meaning of a sentence as a logic formula
- The formula is then interpreted using modeltheoretic semantics
- See e.g. LTF Gamut: Logic, Language, and Meaning

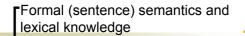
Representing the meaning of a sentence as a logic formula

- Peter is a student: student'(peter')
- Peter is not a student: ¬student'(peter')Only Peter is a student:
- ∀x.(student'(x) ↔ x=Peter)
 Every child loves Asterix.
- ∀x.child'(x) →love'(x, Asterix)
 Everybody has a fault:
- The very body has a fault. $\forall x. person'(x) \rightarrow \exists y. fault'(y) \land have'(x, y)$ $\exists y. fault'(y) \land \forall x. person'(x) \rightarrow have'(x, y)$

Representing the meaning of a sentence using logic: issues Compositionality: The meaning of an expression is completely determined by the meanings of its components Iffe: life'

- hit: $\lambda x \lambda y$.hit'(y, x)
- Some important phenomena and questions:
 - Scope ambiguity, as shown in the "everybody has a fault" example
 - o Plural
 - Negation

Model-theoretic semantics


- Interpreting a logic language by mapping components to a domain
- An interpretation of a first-order logic consists of
- o a nonempty universe (domain) D
- an interpretation function I: maps each n-place predicate symbol to a function from Dⁿ to { true, false } I(sleep'): true for all entities that sleep, false for all other entities

Model-theoretic semantics cont'd

- Interpretation function I: maps each n-place predicate symbol to a function from D^n to { true, false } I(sleep'): true for all entities that sleep, false for all other entities
- Equivalently: I maps a predicate symbol p to the set of entity tuples for which p holds
 - o I(sleep') is the set of all entities that sleep
 - \circ I(hit') is the set of entity pairs (e₁, e₂) such that e_1 hits e_2

Formal (sentence) semantics and inferences

- Representation of sentence meaning as a logic formula: Then a theorem prover can be used to infer new knowledge from text
 - All humans are mortal. $\forall x.human(x) \rightarrow mortal(x)$
 - Socrates is human. human(s)
 - So Socrates is mortal. mortal(s)
- For more sophisticated inferences, world knowledge is needed. Where can we get it?

- Sentence semantics:
 "The meaning of life is life" "
- The meaning of a word w: represented as w'. Different readings of w: w₁', w₂'...
 Interpretation is performed by interpretation function, which maps w' to the domain
 Additional lexical information can be
- included in the form of axioms
 o documentation: there exists an event that is a documenting event and of which this
 - documenting event and of which this documentation is the result

Agenda

- Formal (sentence) semantics: a brief reminder of the basics
- Sources of world knowledge:
 - o Ontologies
 - Corpus-based approaches
 - Frame-semantic analysis as a corpus-based approach based on something resembling an ontology
- Problems in combining the two

Sources of world knowledge: ontologies

- Ontologies typically contain:
 - o Inheritance relations between concepts

11

o Axioms

Sources of world knowledge: corpus-based approaches

- Lexical acquisition: learning lexical and world knowledge from corpora
 - Selectional preferences: Resnik 96
 - Hyponymy: Hearst 92
 - Causal connections, happens-before, ...: VerbOcean, Chklovsky & Pantel 04
 - Part-whole relations: Girju et al 05

Frame-semantic analysis: corpus-based, with ontology

- Annotated corpus data with Frame-semantic analyses exists:
 - English FrameNet data
 - o German SALSA data
- FrameNet has some properties of an ontology:
- Frames have definitions (in natural language, though)
- Frames are linked by Inheritance, Using, Subframe links

Frame-semantic analysis cont'd

- Lexical acquisition: learning additional knowledge about frames from corpora?
 - Selectional preferences for semantic roles
 - o Inheritance relations between frames

Frame-semantic analysis as partial semantic analysis

- Formal (sentence) semantics: complete representation of sentence meaning
- Frame-semantic analysis:
 - Represents just frames and roles
 - Ignores negation, plural, scope
- Next up: example for complete framesemantic analysis of a text

Frame-semantic analysis for contiguous text (from FrameNet webpage)

1. Why $\underline{CA}_{Capability}$ n't we TEACH_{Education_leaching} our <u>CHILDREN</u>_{Kinship} to READ_{Reading}, <u>WRITE</u>_{Text_creation} and reckon? It 's not that we do n't KNOW_{Awareness} how to , because we do . It 's that we do n't

- ▼ [_{Cause}Why] *CA*^{Target} n't [_{Entity}we] [_{Event}teach our children to read , write and reckon] ?
- ₩ Why can't [_{Teacher}we] *TEACH*^{Target} [_{Student}our children] [_{Skill}to read , write and reckon] ?
- Why can't we teach $[_{Ego}our] [_{Alter} CHILDREN^{Target}]$ to read, write and reckon?
- Why can't we teach [Reader our children] to $READ^{Target}$, write and reckon? [Text[NI]
- Why can't we teach [Author our children] to read, $WRITE^{Target}$ and

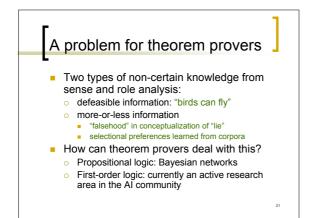
FrameNet example cont'd: All words in capitals are predicates

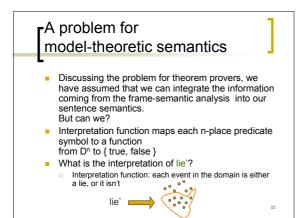
1. The ART_{Craft} of change-ringing is PECULIAR_{Idiosyncrasy} to the ENGLISH_{People} by_origin . and . LIKE_{Similarity} most English PECULIARITIES_{Idiosyncrasy} . UNINTELLIGIBLE_{Grasp} to the REST_{Rest} of the WORLD_{Political_locales} .

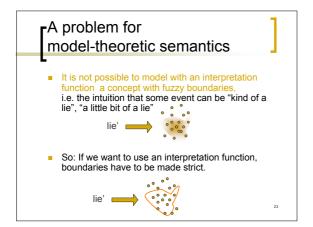
2. Dorothy L. Sayers , `` The Nine Tailors "

3. ASLACTON, England -- OF_{Partitive} all SCENES_{Sensation} that EVOKE_{Evoking} RURAL_{Locale_by_use} England, this is one OF_{Partitive} the LOVELIEST_{Aesthetics}: An ANCIENT_{Age} stone CHURCH_{Buildings} STANDS_{Being_located} AMID_{Locative_relation} the FIELDS_{Locale_by_use}, the SOUND_{Sensation} of BELLS_{Noise_makers} CASCADING_{Fluidic_motion} from its TOWER_{Building_subparts}, CALLING_{Request} the EAITHFUL_{People_by_religion} to EVENSONG_{Rite}. Why integrate sentence semantics with something like frame-semantic analysis?

- Carlson (1984): a semantics that critically relies on semantic roles for semantics construction
- Our argument is different:
 - Not that semantics construction would need semantic roles
 - But that formal semantics can profit from ontology-based and corpus-based approaches that add lexical and world knowledge


Agenda


- Formal (sentence) semantics: a brief reminder of the basics
- Sources of world knowledge:
 - o Ontologies
 - Corpus-based approaches
 - Frame-semantic analysis as a corpus-based approach based on something resembling an ontology
- Problems in combining the two


Integrating sentence semantics with frame-semantic analysis

Modular combination?

- Sentence semantics yields meaning representation for a sentence
- Frame-semantic analysis adds knowledge about predicate meaning and meaning or argument positions
- Problems with vagueness again:
 A problem for theorem provers
 - A problem for theorem provers
 - A problem for model-theoretic semantics

We stop here.

This is an introductory class, after all.

24

25

26

Summary

- Formal (sentence) semantics:
 - o Representing the meaning of the whole sentence
 - Resulting formulas can be fed into a theorem prover for inferences
 - o lexical meaning not at focus
- Ontologies and corpus-based approaches can furnish additional lexical and world knowledge
- Frame-semantic analysis as an ontology-based and corpus-based approach
 - Represents only part of the sentence meaning

Summary

- Combining formal sentence semantics with frame-semantic analyses or a similar approach:
 - · Aim: augment lexical and world knowledge Problems with vagueness:
 - Non-certain knowledge difficult for theorem provers:

 - Defeasible knowledge More-or-less knowleddge
 - Problem with model-theoretic semantics: Categories with "fuzzy boundaries" cannot be represented

References

- Greg Carlson (1984): Thematic roles and their role in semantic interpretation. Linguistics 22:259–279. Timothy Chklovski and Patrick Pantel (2004). VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations. In Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP-04). Barcelona, Spain Marti Hearst (1992): Automatic acquisition of hyponyms from large text corpora. Proceedings of the 14th conference on Computational linguistics, Nantes, France. LTF Gamut (1991): Logic, Language and Meaning. University Press. (2 volumes) .
- .
- .

27

28

References

- Roxana Cirju, Adriana Badulescu, Dan Moldovan (2006): Automatic Discovery of Part-Whole Relations. Computational Linguistics Mar 2006, Vol. 32, No. 1: 83–135. Richard Montague (1973): The proper treatment of quantification in ordinary English. In Hintikka, K.J.J., Moravcsik, J.M.E., & Suppes, P. (eds.) Approaches to Natural Language. Dordrecht: Reidel. 221-242. Reprinted in: Richard Montague (1974): Formal Philosophy. Selected Papers of Richard Montague, Edited and with an introduction by Richmond H. Thomason. New Haven/London: Yale University Press. Philip Reshik (1996): Selectional Constraints: An Information-Theoretic Model and its Computational Realization. Cognition 61:127-159
- .