
Computational Semantics

Aljoscha Burchardt
Stephan Walter

Alexander Koller
Michael Kohlhase
Patrick Blackburn

Johan Bos

MiLCA, Saarbrücken

Abstract

The most central fact about natural language is that it has meaning. Semantics is the
study of meaning. In formal semantics, we conduct this study in a formal manner. In
computational semantics, we’re additionally interested in using the results of our study
when we implement programs that process natural language. This is what we will be
concerned with in this course.

MiLCA
Computerlinguistik, Universität des Saarlandes

Saarbrücken, Germany
November 2002

Contents

1 First-Order Logic 5

1.1 Basic Concepts . 5

1.1.1 Vocabularies . 5

1.1.2 First-Order Models . 6

1.1.3 An Example Model . 7

1.1.4 Exact Models . 7

1.1.5 First-Order Languages . 8

1.1.6 Building Formulae . 9

1.1.7 Subformulae, Free Variables 10

1.1.8 Free Variables versus Bound Variables 11

1.1.9 Notation . 11

1.2 Semantic Notions . 12

1.2.1 Satisfaction . 12

1.2.2 Interpretations and Variant Assignments 13

1.2.3 The Satisfaction Definition 13

1.2.4 Truth in a Model . 13

1.2.5 Validities . 14

1.2.6 Valid Arguments . 15

1.2.7 An Example . 16

1.3 Equality . 16

1.3.1 Equality Symbol . 16

1.3.2 Semantics of Equality . 16

1.4 Exercises . 17

2 Prolog and First-Order Logic 19

2.1 A Simple Model Checker . 19

2.1.1 Representing Vocabularies 19

2.1.2 Representing Simple Formulae 19

2.1.3 Representing Complex Formulae 20

2.1.4 Representing Models . 21

2.1.5 Another Example . 23

2.1.6 Semantic Evaluation . 24

2.1.7 Evaluating Complex Formulae 25

2.1.8 Quantifiers . 25

2.1.9 Checking Models . 26

2.2 Refinements . 27

2.2.1 Problem One: Unknown Vocabulary 27

2.2.2 Problem Two: Formulae with Free Variables 28

2.2.3 Refining the Implementation 28

2.3 File Listing . 29

2.3.1 All modules for the model checker 29

2.4 Exercises . 29

3 Lambda Calculus 33

3.1 Building Meaning Representations 33

3.1.1 Being Systematic . 33

3.1.2 Being Systematic (II) . 33

3.1.3 [Sidetrack] Compositional Semantics 34

3.1.4 Summing Up . 36

3.2 Syntactic Analysis . 37

3.2.1 A Simple Solution: CFG 37

3.2.2 Using DCGs . 38

3.3 Semantics Construction . 39

3.3.1 A First Attempt . 39

3.3.2 Putting Things in the Right Place I 40

3.3.3 Putting Things in the Right Place II 41

3.4 The Lambda Calculus . 42

3.4.1 Lambda-Abstraction . 42

3.4.2 Reducing Complex Expressions 43

3.4.3 Using Lambdas . 44

3.4.4 [Sidetrack] Simply Typed Lambda-Calculus 45

3.4.5 Advanced Topics: Proper Names and Transitive Verbs . 49

3.4.6 The Moral . 50

3.4.7 Accidental Bindings . 52

3.4.8 Alpha-Conversion . 53

3.4.9 Summing Up . 53

3.5 Implementing Lambda Calculus 54

3.5.1 Representations . 54

3.5.2 Extending the DCG . 55

3.5.3 The Lexicon . 55

3.5.4 A First Run . 56

3.5.5 Beta-Conversion . 56

3.5.6 Beta-Conversion Continued 57

3.5.7 An Afterthought on Alpha-Conversion 58

3.6 Running the Program . 59

3.7 Exercises . 60

4 Towards a Modular Architecture 63

4.1 Architecture of our Grammar . 63

4.2 The Syntax Rules . 64

4.2.1 Ideal Syntax Rules . 64

4.2.2 The Syntax Rules we will use 65

4.3 The Semantic Side . 66

4.3.1 The Semantically Annotated Syntax Rules 66

4.3.2 Implementing combine/2 for Functional Application . . . 67

4.4 Looking Up the Lexicon . 68

4.4.1 Lexical Rules . 68

4.4.2 The Lexicon . 69

4.4.3 ‘Special’ Words . 70

4.4.4 Semantic Macros for Lambda-Calculus 71

4.5 Lambda at Work . 72

4.6 Exercises . 73

5 Scope and Underspecification 75

5.1 Scope Ambiguities . 75

5.1.1 What Are Scope Ambiguities? 75

5.1.2 Scope Ambiguities and Montague Semantics 76

5.1.3 A More Complex Example 78

5.1.4 The Fifth Reading . 79

5.1.5 Montague’s Approach to the Scope Problem 79

5.1.6 Quantifying In: An Example 80

5.1.7 Other Traditional Solutions 80

5.1.8 The Problem with the Traditional Approaches 81

5.2 Underspecification . 82

5.2.1 Introduction . 82

5.2.2 Computational Advantages 84

5.2.3 Underspecified Descriptions 85

5.2.4 The Masterplan . 85

5.2.5 Formulas are trees! . 87

5.2.6 Describing Lambda-Structures 88

5.2.7 From Lambda-Expressions to an Underspecified Descrip-
tion . 89

5.2.8 Relating Constraint Graphs and Lambda-Structures . . . 90

5.2.9 Sidetrack: Constraint Graphs - The True Story 91

5.2.10 Sidetrack: Predicates versus Functions 92

6 Constraint Solving 95

6.1 Constraint Solving . 95

6.1.1 Satisfiability and Enumeration 95

6.1.2 Solved Forms . 95

6.1.3 Solved Forms: An Example 97

6.1.4 Defining Solved Forms . 98

6.2 An Algorithm For Solving Constraints 98

6.2.1 The Choice Rule . 98

6.2.2 Normalization . 99

6.2.3 The Enumeration Algorithm 100

6.3 Constraint Solving in Prolog . 101

6.3.1 Prolog Representation of Constraint Graphs 101

6.3.2 Solve . 103

6.3.3 Distribute . 104

6.3.4 (Parent) Normalization . 104

6.3.5 Redundancy Elimination 105

6.4 Semantics Construction for Underspecified Semantics 106

6.4.1 The Semantic Macros . 106

6.4.2 The combine-rules . 107

6.5 Running CLLS . 111

6.6 Exercises . 112

7 Inference in Computational Semantics 115

7.1 What is Inference, and how do we use it in Computational Se-
mantics? . 115

7.1.1 What we already know about Logics 115

7.1.2 Calculi . 116

7.1.3 A simple Logical System: Propositional Logic with Hilbert-
Calculus . 116

7.1.4 Proofs in Hilbert Calculus 117

7.1.5 Properties of Calculi (Theoretical Logic) 118

7.1.6 Sidetrack: Calculemus! 119

7.1.7 Natural Language Semantics 120

7.2 Tableaux Calculi . 121

7.2.1 Tableaux for Theorem Proving 121

7.2.2 Tableaux for Theorem Proving (continued) 123

7.2.3 Analytical Tableaux: A more formal Account 124

7.2.4 Using Tableaux to test Truth Conditions 126

7.2.5 An Application: Conversational Maxims 127

7.2.6 The Maxim of Quality . 128

7.2.7 The Maxim of Quantity . 130

7.2.8 Sidetrack: Practical Enhancements for Tableaux 130

7.3 Tableaux Web-Interface . 131

7.4 Exercises . 132

8 Tableaux Implemented 135

8.1 Implementing PLNQ . 135

8.1.1 Literals . 135

8.1.2 Complex Formulae: Negation 136

8.1.3 Complex Formulae: Conjunctive Expansion 136

8.1.4 Complex Formulae: Disjunctive Expansion 137

8.1.5 An Example - first Steps 137

8.1.6 An Example - final Step 139

8.1.7 Another Example . 140

8.1.8 Two Connectives . 142

8.2 Wrapping it up (Theorem Proving) 143

8.3 Exercises . 143

9 [Sidetrack] Model Generation 145

9.1 Using Model Generation for Natural Language Interpretation . . 145

9.1.1 Why Model Generation? 145

9.1.2 Tableaux for Model Generation with PLNQ 146

9.1.3 Tableaux Branches and Herbrand Models 148

9.1.4 Tableaux generate Herbrand Models 149

9.2 Discourse understanding . 150

9.2.1 Building Discourse Models 150

9.2.2 A first Example . 151

9.2.3 A Second Example . 152

9.3 Wrapping it up (Model Generation) 153

9.4 Exercises . 154

10 First-Order Inference 157

10.1 The Step to First Order . 157

10.1.1 Why First-Order Inference? 157

10.1.2 Extending our Calculus: The Universal Rule 158

10.1.3 The Existential Rule . 159

10.1.4 Rule-like World Knowledge and Computational Nightmares161

10.2 Implementing First-Order Tableaux 163

10.2.1 The Existential Rule . 163

10.2.2 Universal Rule: Which Individuals to use? 163

10.2.3 Restricting the Application of the Universal Rule 164

10.2.4 Universal Rule: The Prolog Clause 165

10.2.5 Universal Rule: Subsequent Instantiations 166

10.2.6 Subsequent Instantiations: Instantiate 167

10.2.7 Subsequent Instantiations: If we can’t instantiate 168

10.3 Running First-Order Tableaux . 169

10.4 Model Generation with Quantifiers 170

10.4.1 A New Problem . 170

10.4.2 A special Rule for Model Generation 171

10.5 Sidetrack: Derived Rules for the Existential Quantifier 172

10.6 Project: Adding Equality to our Calculus 172

10.7 Exercises . 174

11 Discourse Representation Theory 175

11.1 Discourse Phenomena . 175

11.1.1 Anaphoric Pronouns . 175

11.1.2 Donkey Sentences . 176

11.1.3 Another Puzzle . 177

11.2 Discourse Representation Structures 177

11.2.1 A First Example . 177

11.2.2 Accessibility Constraints 177

11.2.3 Syntax of DRSs and DRS-Conditions 178

11.2.4 Subordination . 178

11.2.5 Accessibility . 179

11.2.6 Discourse Structure and Accessibility 179

11.2.7 Proper Names . 180

11.2.8 Donkeys again . 180

11.2.9 Accessibility and Discourse Structure: Summary 181

11.3 Interpreting Discourse Representations 181

11.3.1 Embedding Semantics . 181

11.3.2 Embedding Semantics for DRSs (Definition) 181

11.3.3 Meaning as Context Change Potential 182

11.3.4 Context Change Potential Semantics for DRSs (Definition) 182

11.3.5 Translations to First-Order Logic 183

11.4 Implementing DRT in Prolog . 184

11.4.1 DRSs in Prolog . 184

11.4.2 DRS Threading . 185

11.4.3 A First Example . 185

11.4.4 A second example (universal quantification) 188

11.4.5 Grammar rules for discourse 190

11.4.6 Driver predicate . 190

11.4.7 Pronoun Resolution . 191

11.4.8 Implementing accessibility 191

11.4.9 Binding constraints . 192

11.4.10Sortal Constraints . 193

11.5 Running DRT . 194

11.6 Compositional Approaches to DRT 194

11.7 Further Reading . 195

11.7.1 References . 195

12 The Proof of the Pudding is in the Eating 197

12.1 End term projects . 197

Course Schedule

Main Parts of the Course

One question ahead

But there’s one more question, which we have to answer in the first place: Meaning as
such is a very abstract concept. It’s not at all easy to imagine what it means to ‘work
with meanings’ directly. So what are we going to do? To study meaning, and espe-
cially to deal with it on a computer, we need a handle on it, something more concrete:
We shall work with meaning representations - strings of a formal language that has
technical advantages over natural language. In this course, we will represent meanings
using formulas of first order logic. First order logic gives us (at least) two things: First,
a formal language with desirable properties such as having a simple, well defined (and
unambigous) syntax. This makes it fit for use with the programs we’re going to im-
plement. Second, there is the truth-functional interpretation telling us unambigously
under which conditions formulae hold and what the symbols they’re made of mean. In
other words, we have a formally precise conception of how our first order meaning rep-
resentations relate to certain situations in the world. So, via meaning representations
we come a step closer to understanding how sentences manage to convey something
about how the world is.

First Order Logic

First order logic and Prolog

The first two lectures of this course pave the way for the rest. They’re directly con-
cerned with first order logic, the meaning represenation language that everything we’re
going to do in this course is based upon. Chapter 1 contains the basic concepts of first
order logic, giving us the background we need in order to understand how our repre-
sentation language works. We will explain central terms of first order logic, such as
first order formula, model, satisfaction and truth in a model. This lecture serves as a
repetition and as a reference for later chapters. In Chapter 2 we then turn to the com-
putational side of our enterprise. We show how to represent first order formulae and
models in Prolog. Furthermore, we will see how to make sense in implementational
terms of the definitions given in the previous lecture, We will look at the example of
the definition of truth in a model and implement a small model checker.

In the next three lectures (which form the first main part of this course) we will mainly
use first order logic in virtue of its nice properties as a formal language. We will not
talk about truth or models for formulae. Still of course, these notions remain in the
background as the main reason why we say for instance that the meaning of ‘Every
man walks’ is captured by the first order formula

�
x � MAN � x ��� WALK � x � . They will

2

become the focus of our interest again (although from a new perspective) in the second
main part of the course, which deals with inference. So now for the two main parts.

Semantic Construction

The first main part of the course (consisting of lectures 3-6) is concerned with the task
of semantic construction. Because we use first order logic as our meaning representa-
tion language, our question from above now turns into: ‘Given a sentence, how do we
get to the first order formula that represents its meaning?’.

λ-Calculus

Chapter 3 shows that this is not a trivial question. Using a first, quite naive approach
to the matter we will soon encounter a lot of problems. We solve these problems by
introducing λ-calculus. This calculus has been a standard tool for semantic construc-
tion ever since the pioneering work of Richard Montague in the 1960s. It allows us
to compose complex formulae in an elegant manner: Making use of β-reduction, the
key technique introduced with λ-calculus, we arrive at formulae of first order logic
for natural language sentences by a stepwise simplification of other expressions that
correspond to the structure of those sentences more directly.

As an application, we present an implementation of semantic construction in the spirit
of Montague semantics. This allows us to automatically construct the first order rep-
resentations for natural language input sentences such as ‘A therapist loves a siamese
cat’. You can test this implementation here (page 73). So by the end of this lecture, we
will have our first program that masters the task of semantic construction for a small
fragment of English. But there’s still a lot to be done.

Implementation

Starting off from the Prolog program we’ve just developed, we focus on implemen-
tational considerations in the next lecture (Chapter 4): We take a second look at our
program, this time from the perspective of software engineering. We redesign it from
a single-purpose implementation into a more general and modular framework for se-
mantic construction. This framework will easily extend and adapt to cover new sorts
of semantic phenomena that we may encounter.

Scope ambiguities and Underspecification

Then, in Chapter 5, we return to the linguistic side and take a look at one such new class
of phenomena: scope ambiguities. In the case of a scope ambiguity, multiple meanings
are associated with one and the same sentence in a systematic way. This may happen
e.g. because a sentence contains several quantified noun phrases (the infamous ‘Every
man loves a woman.’ is one such sentence).

The study of scope ambiguities has been a central issue in natural language semantics
for a long time. We will first explain briefly why such ambiguities occur and then give
a historical overview of how people have tried to deal with them. We explain why the
early extensions of Montague semantics could not treat the central phenomena satis-
factorily. Then we discuss the use of underspecified representations. Underspecified
representations allow us to speak about the parts formulae (representing for instance

3

ambiguous sentences) are made of, but we don’t have to commit to one arrangement
of these parts (i.e. one reading). This turns out to be the key to solving a whole bunch
of problems scope ambiguities pose for semantic construction.

Finally, we turn to CLLS, a calculus for semantics construction based on underspeci-
fication. In Chapter 6 we implement this calculus and integrate it into our semantics
construction framework. The resulting system allows us for example to get the five
readings for the following sentence: ‘Every owner of a siamese cat loves a therapist.’.
You can run the program here (page 112). When we develop this implementation we
shall greatly benefit of the work we put into re-designing our semantic construction
program to a general framework in the previous lecture: We just have to give Prolog
code for the interesting changes, while being able to re-use all of the periphery that we
already have at hand.

Inference

Up to this point in our course, we’ve mostly been concerned with the business of build-
ing a logical formula for a given natural language sentence that adequately describe its
meaning (or - for that matter - several formulae for several meanings). Now, we are
going one step further, approaching the second question we posed ourselves above:
Given that we have the meaning of a sentence, what can we do with it?

The key idea that we will pursue when answering this question is that - intuitively
speaking - doing something with the meaning of a sentence means finding out what
follows. For example, when we know that Mutz is a siamese cat and we hear: ‘John
doesn’t have any pet.’, we do something with the meaning of this sentence when we
come to the conclusion that John isn’t Mutzi’s owner.

On the level of meaning representations, ‘finding out what follows’ from a sentence
means drawing inferences from the first order formula that corresponds to that sen-
tence. Tasks of finding out what follows (that is, inference tasks) play an important
role at many different stages in the process of understanding a sentence. In the exam-
ple above we inferred from the formulae for a few sentences (often, we will also make
use of additional world knowledge). This kind of inference may e.g. be neccessary to
find out what the speaker intended us to do when he uttered the sentence, or it may help
us to exploit the information the speaker conveys for our purposes. It extends to the
interface between semantics and pragmatics (and sometimes beyond it). But inference
may be of use in semantic processing already at much earlier stages. We can e.g. use
inference mechanisms to find out what would follow from one reading of a sentence
(as opposed to another one) when we have to decide whether to discard or prefer the
reading, and base our decision on our findings..

Inference in Computational Semantics

For us as computational semanticists these are a lot of good reasons why we should try
to get a grip on drawing inferences computationally. In Chapter 7 we take a closer look
at techniques for this purpose. We introduce the notion of a proof as well as mecha-
nisms to work with this notion. These mechanisms (called calculi) capture semantic
concepts (like that of a valid argument, which we learned about in the first lecture) via
methods for manipulating formulae (i.e. syntactic objects). They are therefore well

4

suited for use in computational semantics - after all manipulating formulae is some-
thing that can be done by a computer.

The calculus we discuss in detail is that of (semantic) tableaux. In this lecture, we shall
look at tableaux for propositional logic. One advantage of tableaux is that we can also
use them to generate models for a given formula. As we shall see this offers a new
perspective on a variety of natural language phenomena. Another advantage is that
this calculus is good for direct implementation in Prolog. Something we shall prove in
practice by giving such an implementation.

First Order Inference

In Chapter 10 we generalize to first order logic what we learned about propositional
inference in the previous lecture. We extend our tableaux calculus, and change the
implementation accordingly. While the calculus extends readily, extending the imple-
menation is not a trivial task at all. We will discuss why this is so, and then take the
trouble of integrating what non-trivial additions and changes we need into our imple-
mentation.

Discourse Representation Theory

Up until now our only concern was the meaning of single sentences. In this chapter,
we look at discourse, i.e. sequences of sentences. Interesting challenges arise that go
beyond the tools and techniques for computational semantics we have developed so
far. One of these challenges is interpreting pronouns - words like he, she and it which
indirectly refer to objects. In this chapter we will introduce and show how one can
build semantic representations of texts and develop algorithms for resolving pronouns
to their textual antecedents.

And finally...

The proof of the pudding

And finally, the proof of the pudding is the eating: We’ve implemented a number of
programs - a model checker, a semantics construction engine, an inference system.
What can they do if they work together? Chapter 12 asks you to explore this. It
contains a collection of exercises that are meant to be starting points for your end-term
projects. Have fun!

1

First-Order Logic

1.1 Basic Concepts

1.1.1 Vocabularies

Our ultimate goal in this lecture is to define how first-order formulas are evaluated in
first-order models. In general terms, the purpose of the evaluation process is to tell us
whether a description is true or false in a situation.

We shall look at this in a moment - but first, it’s important to point out a relevant issue.
Intuitively it doesn’t make much sense to ask whether or not an arbitrary description
is true in an arbitrary situation. Some descriptions and situations simply don’t belong
together. For example, if we examine a formula (that is, a description - see above)
from a first-order language intended for talking about various relations and properties
like loving, being a moron, and being a therapist that hold between the characters
Mary, Anna, John, and Peter, while being provided with a model (that is, a situation -
see above) recording information about something entirely different (say, about which
household detergents are the best choice to get rid of nasty stains) then it makes no
sense at all to evaluate this particular formula in that particular model. But a vocabulary
(or a signature , as a vocabulary is also called) allows us to avoid such problems: It
tells us which first-order language belongs to a given model.

Here is our first vocabulary:

��� MARY � JOHN � ANNA � PETER 	
����� LOVE � 2 �
��� THERAPIST � 1 �
��� MORON � 1 ��	��
Vocabularies connect Formulas and Models.

Intuitively, the vocabulary tells us the language the conversation is going to be con-
ducted in. It tells us in what terms we will be able to talk about things. To be a bit more
precise:

1. The first set in a vocabulary tells us what symbols we can use to name certain
entities of special interest. In the case of the vocabulary we have just established,
we are informed that we will be using four symbols for this purpose (we call
them constant symbol s or simply name s), namely MARY, JOHN, ANNA, and
PETER.

6 Chapter 1. First-Order Logic

2. The second set tells us with what symbols we can speak about certain properties
and relations (we call these symbols relation symbol s or predicate symbol s).
With our example vocabulary, we have one predicate symbol LOVE of arity 2
(that is, a 2-place predicate symbol) for talking about one two-place relation, and
two predicate symbols of arity 1 (THERAPIST and MORON) for talking about (at
most) two properties.

As such, the vocabulary we’ve just seen doesn’t yet tell us a lot about the kinds of
situations we can describe. We only know that some entitities, at most two properties,
and one two-place relation will play a special role in them. But since we’re interested
in natural language, we will use our symbols ‘suggestively’. For instance, we will
only use the symbol LOVE for talking about a (one-sided) relation called loving, and
the two symbols THERAPIST and MORON will serve us exclusively for talking about
therapists and morons. With this additional convention, the vocabulary gives us all the
information needed to define the class of models of interest (that means the kinds of
situations we want to describe) and the relevant first-order language (that means the
kinds of descriptions we can use).

Obviously, to really understand all of this we need to know something about first order
models and how they’re used to interpret formulae. So let’s next have a look at what
first-order models and languages actually are.

1.1.2 First-Order Models

Let’s suppose we’ve established a vocabulary. What would a first-order model for this
vocabulary be?

If you read it again thoroughly, our previous discussion pretty much contains the an-
swer to this: Intuitively, a model is a situation. A situation is a semantic entity, pro-
viding us with a certain amount of things we can talk about. Thus, a model for a given
vocabulary gives us two pieces of information. First, it tells us what kind of collection
of entities (usually called the domain , or D for short) we can talk about. Secondly, for
each symbol in the vocabulary, it gives us an appropriate semantic entity, built from
the items in D, this task being carried out by a function F which, for each symbol in
the vocabulary, specifies an appropriate semantic value. A function like this is what we
call interpretation function .

What is a Model?

Thus, in set theoretic terms, a model M is an ordered pair � D � F � composed of a domain
D and an interpretation function F specifying semantic values in D.

What are appropriate semantic values? There’s no mystery here. Since constants are
names, each constant should be interpreted as an element of D. (That is, for each
constant symbol c in the vocabulary, F � c ��� D.) Since n-place relation symbols denote
n-place relations, each n-place relation symbol R should be interpreted as an n-place
relation on D. (That is, F � R � should be a set of n-tuples of elements of D.)

1.1. Basic Concepts 7

1.1.3 An Example Model

Let’s look at an example. We shall define a simple model using the vocabulary given
above (page 5). Let D be � d1 � d2 � d3 � d4 	 . This set, consisting of four items, is the
domain of our little model.

Next, we must specify an interpretation function F . Here’s one possibility:

F � MARY ��� d1
F � ANNA ��� d2
F � JOHN ��� d3
F � PETER ��� d4
F � THERAPIST ����� d1 � d3 	
F � MORON ����� d2 � d4 	
F � LOVE ������� d4 � d2 �
��� d3 � d1 ��	

Note that every symbol in the vocabulary neatly corresponds to an appropriate semantic
entity:

� The four names correspond to individuals.

� The two arity-1 symbols correspond to subsets of D (that is, properties, or 1-
place relations on D).

� The arity-2 symbol corresponds to a 2-place relation on D.

Intuitively, in this model d1 is called Mary, d2 is called Anna, d3 is called John and
d4 is called Peter. Both Anna and Peter are morons, while both John and Mary are
therapists. Peter loves Anna and John loves Mary. But for example we also know that
sadly, Anna does not love Peter and Mary does not love John.

1.1.4 Exact Models

What is an Exact Model?

Here’s a second model for our vocabulary (page 5). We’ll use the same domain (that
is, D ��� d1 � d2 � d3 � d4) but change the interpretation function. To emphasize that the
interpretation function has been altered, we’ll use a different symbol (namely F2) for
it.

F2 � MARY ��� d2
F2 � ANNA ��� d1
F2 � JOHN ��� d4
F2 � PETER ��� d3
F2 � THERAPIST ����� d1 � d2 � d4 	
F2 � MORON ����� d3 	
F2 � LOVE ������� d3 � d4 ��	

Exercise 1.1 Give a (natural language) description of this model.

It’s important to mention one special trait both of the models we have defined show:
every entity in D exclusively corresponds to one constant. From now on, we will call
any model with this specific an exact model .

8 Chapter 1. First-Order Logic

An Inexact Model

While exact models are particularly easy to work with, it is vital to realize that by
no means every model is an exact one. Just suppose we add two more entities to
the domain of the first model; thus creating a new domain D ��� D ��� d5 � d6 	 , and
furthermore define a new interpretation function F � on D � as follows:

F � � MARY ��� d2
F ��� ANNA ��� d1
F � � JOHN ��� d4
F ��� PETER ��� d3
F ��� THERAPIST ����� d1 � d2 � d4 � d5 	
F � � MORON ����� d3 � d6 	
F ��� LOVE ������� d3 � d4 �
��� d6 � d5 ��	

This new model is similar to our second model, the difference being that it has two
extra entities. Neither of these new entities has a name, but we can see that one of them
is a therapist, while the other one is a moron, and that the unnamed moron loves the
nameless therapist. This is still a perfectly good first-order model, for the following
two reasons:

� There is no requirement that every entity in the model must have a name (we
only bother to name entities of special interest).

� There is no requirement that each entity in a model must be named by exactly
one constant.

For example, if we wanted to we could assign both the names John and Peter to the
same entity (for example if we wished that entity to have a real name and a nickname).

1.1.5 First-Order Languages

We now understand what a vocabulary is, and we’ve learned about models, the se-
mantic entities corresponding to vocabularies. It’s time now to turn to the notion of
first-order formula e. First-order formulae are derived from first-order languages. And
a first-order language defines how we can use a vocabulary to form complex, sentence-
like entities. Starting from a vocabulary, we then build the first-order language over
that vocabulary out of the following ingredients:

The Ingredients.

1. All of the symbols in the vocabulary. We call these symbols the non-logical
symbols of the language.

2. A countably infinite collection of variables x � y � z � w������� , and so on.

3. The Boolean connectives � (negation), � (implication), (disjunction), and !
(conjunction).

4. The quantifiers
�

(the universal quantifier) and " (the existential quantifier).

1.1. Basic Concepts 9

5. The round brackets) and (. (These are essentially punctuation marks; they are
used to group symbols.)

Items 2-5 are common to all first-order languages: the only aspect that distinguishes
first-order languages from one another is the choice of non-logical symbols (that is, of
vocabulary).

1.1.6 Building Formulae

Terms.

Let’s suppose we’ve composed a certain vocabulary. How do we mix these ingredients
together? That is, what is the syntax of first-order languages? First of all, we define
a first-order term τ to be any constant or any variable. Roughly speaking, terms are
the noun phrases of first-order languages: constants can be thought of as first-order
counterparts of proper names, and variables as first-order counterparts of pronouns.

Atomic Formulae.

We can then combine our ‘noun phrases’ with our ‘predicates’ (meaning, the various
relation symbols in the vocabulary) to form what we call an atomic formula (also: basic
formula):

If R is a relation symbol of arity n , and τ1 �������#� τn are terms, then R � τ1 ��$�$�$#� τn � is an
atomic formula.

Intuitively, an atomic formula is the first-order counterpart of a natural language sen-
tence consisting of a single clause (that is, a simple sentence). So what does a formula
like R � τ1 ��$�$�$#� τn � actually mean? As a rough translation, we could say that the enti-
ties that are named by the terms τ1 ��$�$�$#� τn stand in a relationship that is named by the
symbol R. An example will clarify this point:

LOVE � PETER � ANNA �
What’s meant by this formula is that the entity named PETER stands in the relation
denoted by LOVE to the entity named ANNA - or more simply, that Peter loves Anna.

Complex Formulae.

Now that we know how to build atomic formulae, we can define more complex de-
scriptions as well. The following inductive definition tells us exactly what kinds of
well-formed formula e (or wffs, or simply formulae) we can form.

1. All atomic formulae are wffs.

2. If ϕ and ψ are wffs then so are � ϕ, � ϕ � ψ � , � ϕ ψ � , and � ϕ ! ψ � .
3. If ϕ is a wff, and x is a variable, then both " xϕ and

�
xϕ are wffs. (We call ϕ the

matrix or scope of such wffs.)

4. Nothing else is a wff.

10 Chapter 1. First-Order Logic

Roughly speaking, formulae built using � , � , and ! correspond to the natural lan-
guage expressions ‘it is not the case that ...’, ‘if ... then ...’, ‘... or ...’, and ‘... and
...’, respectively. First-order formulae of the form " xϕ and

�
xϕ correspond to natural

language expressions of the form ‘some...’ or ‘all...’. We shall soon (page 12) use first-
order models to give a more precise formulation of these intuitive correspondences.

Literals.

Finally, a widely used class of formulae are the so-called literal s which include atomic
formulae and negated atomic formulae. Literals can (in contrast to atomic formulae)
also be used to express the fact that Peter does not love Anna (� LOVE � PETER � ANNA �).

1.1.7 Subformulae, Free Variables

Subformulae.

In what follows, we occasionally use the term subformula . As an explanation, the
subformulae of any formula ϕ are ϕ itself as well as all of the formulae that are used to
build ϕ. For example, the subformulae of

� � yPERSON � y �
are PERSON � y � , � yPERSON � y � , and � � yPERSON � y � .
Exercise 1.2 Give an inductive definition of subformulahood.

Free and Bound Variables.

Let’s now turn to a rather important topic: the distinction between free variable s and
bound variable s.

Have a lok at the following formula:

�%� THERAPIST � x �� � x � MORON � x �&! � yPERSON � y �����
The first occurrence of x is free, whereas the second and third occurrences of x are
bound, namely by the first occurrence of the quantifier

�
. The first and second oc-

currences of the variable y are also bound, namely by the second occurrence of the
quantifier

�
. Here’s the full definition:

1. Any occurrence of any variable is free in any atomic formula.

2. No occurrence of any variable is bound in any atomic formula.

3. If an occurrence of any variable is free in ϕ or in ψ, then that same occurrence is
free in � ϕ, � ϕ � ψ � , � ϕ ψ � , and � ϕ ! ψ � .

4. If an occurrence of any variable is bound in ϕ or in ψ, then that same occurrence
is bound in � ϕ, � ϕ � ψ � , � ϕ ψ � , � ϕ ! ψ � . Moreover, that same occurrence is
bound in

�
yϕ and " yϕ as well, for any choice of variable y.

1.1. Basic Concepts 11

5. In any formula of the form
�

yϕ or " yϕ (where y can be any variable at all in this
case) the occurrence of y that immediately follows the initial quantifier symbol
is bound.

6. If an occurrence of a variable x is free in ϕ, then that same occurrence is free in�
yϕ and " yϕ, for any variable y distinct from x. On the other hand, all occur-

rences of x that are free in ϕ, are bound in
�

xϕ and in " xϕ.

If a formula contains no occurrences of free variables we call it a sentence .

1.1.8 Free Variables versus Bound Variables

Although they are both called variables, free and bound variables are in reality two
very different things. (In fact, some formulations of first-order logic even use two dis-
tinct kinds of symbol for what we have lumped together under the heading ‘variable’.)
As an analogy, try thinking of a free variable as something like the pronoun ‘she’ in
the sentence ‘She even has a stud in her tongue’. Uttered in isolation, this would be
somewhat puzzling, as we don’t know whom ‘she’ refers to. Normally though, such
an utterance would be made in an appropriate context, this context being either a non-
linguistic one (imagine, for example, the speaker pointing towards a heavily tattooed
biker, in which case we would say that ‘she’ was being used deictically or demon-
stratively) or a linguistic one (for example with the preceding sentence being ‘Anna is
heavily into body piercing’, in which case the name ‘Anna’ would supply a suitable
anchor for an anaphoric interpretation of ‘she’).

The point of this analogy is: Just as the pronoun ‘she’ requires something else as a
complement (namely, contextual information) in order to supply a suitable referent,
formulae containing free variables will require additional information on how to link
the free variables to the entities in the model. So just supplying a model isn’t sufficient.

Sentences, on the other hand, are relatively self-contained. For example, consider the
sentence

�
xMORON � x � . This sentence claims that every individual is a moron. Roughly

speaking, the bound variable x in MORON � x � acts as a kind of placeholder. In fact, the
use of x is completely arbitrary; the sentence

�
yMORON � y � would mean exactly the

same thing. Both sentences are simply a way of stating that no matter what we take the
second occurrence of x (or y) as standing for, that entity will invariably be a moron. In
any model of appropriate vocabulary this sentence (and in fact any sentence over that
vocabulary) will either be true or false.

Our discussion of the interpretation of first-order languages in first-order models will
further clarify these distinctions (indeed, most of the actual work involved in interpret-
ing first-order logic focuses on the correct handling of free and bound variables).

1.1.9 Notation

In what follows, we won’t always be adhering to the official first-order syntax defined
above. Instead, we’ll generally try and use as few brackets as possible, as this tends to
improve readability. For example, we would rather not write

12 Chapter 1. First-Order Logic

Outer Brackets.

� THERAPIST � JOHN �&! MORON � PETER ���
which is the official syntax. Instead, we are (almost invariably) going to drop the
outermost brackets and write

THERAPIST � JOHN �&! MORON � PETER �
Precedence.

To help further reduce the bracket count, we assume the following precedence conven-
tions for the Boolean connectives: � takes precedence over and ! , both of which
take precedence over � . What this means, for example, is that the formula

�
x ���'� THERAPIST � x ���&! MORON � x ��� MORON � x ���

is shorthand for the following:

�
x ���'� THERAPIST � x �&! MORON � x ����� MORON � x ���

In addition, we’ll at the same time use the square brackets] and [as well as the official
round brackets, as this can make the intended grouping of symbols easier to grasp
visually.

1.2 Semantic Notions

1.2.1 Satisfaction

We cannot give a direct inductive definition of truth. Truth is a relation that holds be-
tween sentences and models. But the matrix of a quantified sentence typically won’t be
a sentence. For example,

�
xMORON � x � is a sentence, but its matrix MORON � x � is not.

Thus an inductive truth definition defined solely in terms of sentences couldn’t explain
why

�
xMORON � x � would be true in a model, for there are no sentential subformulae

for such a definition to refer to.

An indirect Approach.

So instead, we’re going to proceed indirectly by defining a three place relation-called
satisfaction-which holds between a formula, a model, and an assignment of values
to variables. Given a model M �(� D � F � , an assignment of values to variables in M
(or more simply, an assignment in M) is a function g from the set of variables to D.
Assignments are a technical aid that tells us what the free variables stand for. By
making use of assignment functions, we can inductively interpret arbitrary formulae
in a natural way, which will make it possible for us to define the concept of truth for
sentences.

1.2. Semantic Notions 13

1.2.2 Interpretations and Variant Assignments

Let’s suppose we’ve fixed our vocabulary. (Note: Whenever we talk of a model M
from now on, we mean a model of this vocabulary, and whenever we talk of formulae,
we mean the formulae built from the symbols in that vocabulary.) We now give two
further technical definitions which will enable us to state the satisfaction definition in
a concise manner.

Interpretations.

First, let M �)� D � F � be a model, let g be an assignment of values to variables in M,
and let τ be a term. The interpretation of τ with respect to M and g is F � τ � if τ is a
constant, and g � τ � if τ is a variable. We denote the interpretation of τ by I g

F � τ � .
Variant Assignments.

Another concept we need is that of a variant of an assignment of values to variables.
So, let g be an assignment of values to variables in some model, and let x be a variable.
If g � is an assignment of values to variables in the same model, and for all variables y
such that y *� x, g �+� y ��� g � y � then we say that g � is an x-variant of g. Variant assign-
ments are the technical tool that allows us to try out new values for a given variable
(say x) while keeping the values assigned to all other variables the same.

1.2.3 The Satisfaction Definition

Having established this, we now are ready to define satisfaction. Let ϕ be a formula, let
M �,� D � F � be a model, and let g be an assignment of values to variables in M. Then
the relation M � g - � ϕ (ϕ is satisfied in M with respect to the assignment of values to
variables g) is defined inductively as follows:

M � g - � R � τ1 ��$�$�$�� τn � iff � Ig
F � τ1 �
��$�$�$
� Ig

F � τn ���.� F � R �
M � g - �/� ϕ iff not M � g - � ϕ
M � g - � ϕ ! ψ iff M � g - � ϕ and M � g - � ψ
M � g - � ϕ ψ iff M � g - � ϕ or M � g - � ψ
M � g - � ϕ � ψ iff not M � g - � ϕ or M � g - � ψ
M � g - �/" xϕ iff M � g � - � ϕ � for some x-variant g � of g
M � g - � � xϕ iff M � g ��- � ϕ � for all x-variants g � of g

(Here ‘iff’ is shorthand for ‘if and only if’.) Note the crucial - and indeed, intuitive
- role played by the x-variants in the clauses for the quantifiers. For example, what
the clause for the existential quantifier boils down to is this: " xϕ is satisfied in a given
model, with respect to an assignment g, if and only if there is some x-variant g � of g that
satisfies ϕ in the model. That is, we have to try to find some value for x that satisfies ϕ
in the model, while keeping the assignments to all other variables the same.

1.2.4 Truth in a Model

We can now define what it means for a sentence to be true in a model :

14 Chapter 1. First-Order Logic

A sentence ϕ is true in a model M if and only if for any assignment g of values to
variables in M, we have that:

M � g - � ϕ

If ϕ is true in M we write:
M - � ϕ

This elegant definition of truth beautifully mirrors the special, self-contained nature
of sentences. It’s based on the following observation: It doesn’t matter at all which
variable assignment is used to compute the satisfaction of sentences. Sentences con-
tain no free variables, so the only free variables we will encounter when evaluating
one are those produced during the process of evaluating its quantified subformulae
(if it has any). But the satisfaction definition tells us what to do with such free vari-
ables, namely, to try out variants of the current assignment and see whether they sat-
isfy the matrix or not. In short, you may start with whatever assignment you like;
the result will be the same. It is reasonably straightforward to make this informal
argument precise, and the reader is asked to do so in !!!UNEXPECTED PTR TO
EX_EX.FOL.EX.FREEVARS!!!.

But for all the elegance of the truth definition, it’s still satisfaction that is the funda-
mental concept. Not only is satisfaction the technical engine powering the definition of
truth, but from the perspective of natural language semantics it is conceptually prior as
well. By rendering explicit the role of variable assignments, it holds up an (admittedly
imperfect) mirror to the process of evaluating descriptions in situations while making
use of contextual information.

In !!!UNEXPECTED PTR TO EX_EX.FOL.EX.FREEVARS_CONSTANTS!!! you’re
asked to examine the relation between free variables and constants.

1.2.5 Validities

Later in this course we are going to make extensive use of logical inference, and by
making use of the semantic concepts just introduced we can explain what we mean by
this. This will be done in two separate steps. First we’ll establish what valid formulae
(or more simply, validities) are, then we’ll give a definition of valid arguments (or valid
inferences).

Valid Formulae.

A valid formula is a formula that is satisfied in all models (of the appropriate vocab-
ulary) given any variable assignment. That is, if ϕ is a valid formula, it is impossible
to find a situation and a context in which ϕ would not be satisfied. We indicate that a
formula ϕ is valid by writing - � ϕ.

For example: - �0� MORON � x �� 1� MORON(X) �
In any model, given any variable assignment, one (and indeed, only one) of the two
disjuncts must be true, and hence the whole formula will be satisfied too.

1.2. Semantic Notions 15

Valid Sentences.

Note that for sentences the definition of validity can be rephrased as follows, without
reference to assignments: A valid sentence is a sentence that is true in all models (of
the appropriate vocabulary). That is, it is impossible to falsify a valid sentence. For
example:

- � � x � MORON � x ��� THERAPIST � x ���&! MORON(MARY) � THERAPIST(MARY)

!!!UNEXPECTED PTR TO EX_VALIDITY!!! shows that the validity of arbitrary
formulae is equivalent to the validity of certain sentences.

1.2.6 Valid Arguments

Now, validities are clearly logical in a certain sense; they are descriptions featuring a
cast-iron guarantee of satisfiability. But logic has traditionally appealed to the more
dynamic notion of valid arguments, a movement, or inference, from premises to con-
clusions.

Valid arguments.

Suppose ϕ1 ��������� ϕn, and ψ are a finite collection of first-order formulae. We then call
the argument with premises ϕ1 �������#� ϕn and conclusion ψ a valid argument if and only
if the following is true for this argument: Whenever all the premises are satisfied in
some model using some variable assignment, then the conclusion is also satisfied in
the same model using the same variable assignment. The notation

ϕ1 �������#� ϕn - � ψ

means that the argument with premises ϕ1 �������#� ϕn and conclusion ψ is valid.

Terminology.

There is an extensive terminology when it comes to talking about valid arguments,
allowing us for example to refer to ψ as a valid inference from the premises ϕ1 �������#� ϕn,
or to ψ as a logical consequence of ϕ1 ��������� ϕn.

Note that if the premises and the conclusion are all sentences the definition of valid
arguments can be rephrased as follows: an argument is valid if whenever the premises
are true in some model, the conclusion is true as well. In a nutshell: the truth of the
premises guarantees the truth of the conclusion.

Proof Theory.

Validity and valid arguments are the fundamental logical concepts underlying the no-
tion of inference. Both concepts are semantically defined (that is, they are defined in
terms of models and variable assignments). The subject of proof theory is to define
them in terms of syntax. We will cover this in Chapter 7.

Proof Systems

Syntactic calculi for inference may even be employed in computational implementa-
tion: Various proof systems have been developed, and we will see in in this course how
the syntactic method of first order tableaux can be implemented in Prolog.

16 Chapter 1. First-Order Logic

1.2.7 An Example

The argument with premises
�

x � MORON � x �2� THERAPIST � x ��� and MORON(MARY)
and the conclusion THERAPIST(MARY) is valid. That is,

�
x � MORON � x ��� THERAPIST � x ���
� MORON(MARY) - � THERAPIST(MARY) �

As the reader may suspect, there is a connection between the validity of this argument
and the fact that

Deduction Theorem.

- � � x � MORON � x ��� THERAPIST � x ����! MORON(MARY) � THERAPIST(MARY) �
The example suggests that with the help of the Boolean connectives ! and � we can
convert valid arguments into validities. This is exactly what’s stated by the deduction
theorem . The reader is asked to explore this possibility in !!!UNEXPECTED PTR TO
EX_FOL.EX.DEDTHEOREM!!! and !!!UNEXPECTED PTR TO EX_EX.FOL.EX.ARG_FREEVAR!!!.

1.3 Equality

1.3.1 Equality Symbol

The first-order languages we have defined so far have an obvious expressive shortcom-
ing: we have no way of asserting that two terms denote the same entity. Still, we may
sometimes want to express such identities. So what are we to do?

Actually, the solution is perfectly straightforward. We can turn any language of first-
order logic into a first-order language with equality by adding the special two place
relation symbol � . We use this relation symbol in the natural infix way: that is, if τ1
and τ2 are terms then we write τ1 � τ2 rather than the unsightly �0� τ1 � τ2 � .

1.3.2 Semantics of Equality

Beyond the convention of writing � in infix notation there isn’t much more to say
about the syntax of the equality symbol, other than the fact that it’s just a two place
relation symbol. But what about its semantics?

This is where matters become more interesting. Although, syntactically, � is just a 2-
place relation symbol, it is a very particular one in this respect. In fact, (unlike LOVE,
or HATE, or any other two place relation symbol) we are not free to interpret it as we
please. Thus, given any model M, any assignment g in M, and any terms τ1 and τ2, we
shall insist that

M � g - � τ1 � τ2 iff Ig
F � τ1 ��� Ig

F � τ2 �
�

1.4. Exercises 17

Normal Models.

That is, the atomic formula τ1 � τ2 is satisfied if and only if τ1 and τ2 have exactly the
same interpretation. Therefore, � really means equality in this model M. A model that
fullfill this requirement is called normal model .

In fact, � is often regarded as a logical symbol on a par with � or
�

, for in normal
models it has, just like those symbols, a fixed interpretation, and a semantically funda-
mental one at that.

1.4 Exercises

Exercise 1.3 We’ve claimed that when evaluating sentences, it doesn’t matter which
variable assignment we start with. Formally, this means that given any sentence ϕ and
any model M (of the same vocabulary), and any variable assignments g and g � in M,
then M � g - � ϕ iff M � g �3- � ϕ � Now, we would like you to do two things:

First, show that the above claim is false if ϕ is not a sentence but a formula containing
free variables.

Secondly, show that the claim is true if ϕ is a sentence.

Exercise 1.4 This exercise shows that free variables and constants are very similar.
In particular, if a free variable x and a constant c denote the same individual, we can
even replace the free variable by the constant without affecting satisfiability.

Formally, let M �)� D � F � be a model, let g be an assignment in M, and suppose that
F � c �2� g � x � . Let ϕ be any formula, and let ϕ 4 c 5 x 6 denote the formula obtained by
replacing all free occurrences of x in ϕ by c. Then M � g - � ϕ iff M � g �7- � ϕ 4 c 5 x 6 , where
g � is any x-variant of g.

It follows that when working with exact models, every formula is equivalent to a sen-
tence. Explain why.

Exercise 1.5 This exercise shows that the validity of arbitrary formulae is equivalent
to the validity of certain sentences. As a first step, we would like the reader to prove
that if ϕ is a formula containing x as a free variable, then ϕ is valid iff

�
xϕ is valid.

It follows that the validity of formulae is reducible to the validity of sentences. Explain
why. [Hint: we’ve just found a way of reducing the number of free variables by one
while maintaining validity. Iterate this process.]

Exercise 1.6 The Deduction Theorem for first-order logic states that ϕ1 ��������� ϕn - � ψ
if and only if - �,� ϕ1 !8$�$�$
! ϕn ��� ψ � (That is, there is a close link between validities
and valid arguments.) Prove the Deduction Theorem.

Exercise 1.7 Show that the validity of arguments whose premises or conclusions
contain free variables is reducible to the validity of arguments whose premises and con-
clusions are sentences. [Hint: think about !!!UNEXPECTED PTR TO EX_FOL.EX.DEDTHEOREM!!!.]

18 Chapter 1. First-Order Logic

2

Prolog and First-Order Logic

2.1 A Simple Model Checker

2.1.1 Representing Vocabularies

Let us first turn to the representation of vocabularies. Recall that a (page 5) specifies
which (non-logical) symbols can be used, and how they can be used. We will soon
see that having this information available greatly simplifies the way we can specify
models. A vocabulary specifies all the constant and predicate symbols that can occur
in formulae, and specifies an arity for each predicate symbol. We will simply assert
terms to the database that record this information:

This is what the representation of our example vocabulary (page 5) will look like:

const(mary).

const(john).

const(anna).

const(peter).

pred(therapist,1).

pred(love,2).

pred(hate,2).

See file signature.pl.

This code can be found in signature.pl (along with some other constants, predi-
cate symbols, and some stuff we will need later).

2.1.2 Representing Simple Formulae

Let us now decide how to represent first-order formulae in Prolog. But before that,
there’s one thing we still have to say: How do we represent first-order variables? We
make the following choice:

20 Chapter 2. Prolog and First-Order Logic

Variables.

First-order variables will be represented by distinct Prolog atoms. To distinguish them
from constant and predicate symbols, we will assert a term of the form

fovar(x).

to the database for each variable x, along with the vocabulary (maybe var/1 would
have been a more obvious choice of name, but that would be in conflict with Pro-
log’s built-in predicate named var/1). The variables x,y,z,u,v,w are defined in
signature.pl and can be used right away.

Atomic Formulae.

Next, we must decide how to represent constant and predicate symbols. We do so in
the obvious way: a first-order constant c will be represented by the Prolog atom c, and
a first-order predicate symbol P will be represented by the Prolog atom p.

Given this convention, it is obvious how atomic formulae should be represented. For
example, LOVE(JOHN,MARY) would be represented by the Prolog term love(john,mary),
and HATE � PETER � x � would be represented by hate(peter,x).

2.1.3 Representing Complex Formulae

Next for Boolean combinations of simple formulae. The symbols

Connectives as Operators.

& v > ~

will be used to represent the connectives ! , , � , and � respectively.

See file comsemOperators.pl.

The following Prolog code from comsemOperators.pl ensures that these connec-
tives have their usual precedences:

:- op(800,yfx,&). % conjunction

:- op(850,yfx,v). % disjunction

:- op(900,yfx,>). % implication

:- op(750, fy,~). % negation

2.1. A Simple Model Checker 21

?- Question!

Have a look at Learn Prolog Now!1 if you are unsure about what this code means. To
test your understanding: How would the following look in fully bracketed version?

� love(john, mary) & love(mary, john) > hate(peter,john)

� love(john, mary) & ~ love(mary, john) > hate(john.peter)

� ~ love(mary, john) v love(peter,mary) & love(john, mary) > hate(john.peter)

Quantifiers

Finally, we must decide how to represent the quantifiers. Take for example the first
order formula MAN � x � . man(x) is its representation as a Prolog term. Now

�
xMAN � x �

will be represented as

forall(x,man(x))

and " xMAN � x � will be represented as

exists(x,man(x))

Remember that the fact fovar(x) has to be in the database because we want x to stand
for a variable.

!!!UNEXPECTED PTR TO EX_EX.WFF!!!, !!!UNEXPECTED PTR TO EX_EX.REVERSIBLE_WFF!!!
and !!!UNEXPECTED PTR TO EX_EX.WFFLIST!!! deal with checking the well-
formedness (page 9) of formulae in Prolog representation, and with the relation be-
tween vocabularies and formulae.

2.1.4 Representing Models

Let’s suppose that we have fixed our vocabulary. For example, suppose we’ve decided
to work with the vocabulary specified before (page ??) and have it in our database.
How should we represent models of this vocabulary in Prolog?

We only use exact models.

In this general formulation, this is an impossibly difficult question. We don’t have the
remotest chance of dealing with all models of this vocabulary, for there are models of
this vocabulary based on any non-empty domain D whatsoever. In particular, there are
lots of infinite models. Now, it is possible to give useful finite representations of some
infinite models - but most are too big and too unruly to be worked with computationally.
Hence we shall confine our attention to finite models of our vocabulary (i.e. ones with
a finite domain). In addition, matters are much simpler if we only have to deal with
exact models (page 7).

Recall that exact models are models where every element of the domain is named by
exactly one constant. So, let’s rephrase our question: How should we represent a finite
exact model over the above vocabulary?

1http://www.learnprolognow.org

22 Chapter 2. Prolog and First-Order Logic

The vocabulary fixes the domain.

Because of the one-to-one correspondence between constants and domain elements
in exact models, our vocabulary already tells us all we need to know about the do-
main of the model to be represented: It tells us how many elements there will be in
its domain. In fact we shall simply assume that the domains of the models we repre-
sent consist of the constants in our vocabulary. Thus given our example vocabulary
(page ??), the models we speak of in the following will invariably have the domain� MARY � JOHN � ANNA � PETER 	 .

Herbrand Models

Such models, where the domain contains the constant symbols of the language in use,
are called Herbrand models. Thus we not only restrict ourselves to considering ex-
act models in the following, but even to the more narrow class of Herbrand models.
Luckily, Herbrand models are enough in a very strong sense. In short, even if we are
interested in a model with a fixed number of items of any kind (anything different from
constant symbols; say, four human beings) in its domain, there will be an isomorphic
model with a domain that instead consists of the same number of constant symbols
(say MARY, PETER, JOHN and ANNA), and this model will do the same job at satisfy-
ing any formulae. We will encounter the concept of a Herbrand model again (and give
it a formal definition) in Section 9.1.3.

Listing positive facts.

So we use the vocabulary (asserted to the database, see Section 2.1.1) to represent the
domain of all models we want to speak about. Hence all we need to do in order to
represent a model is to give an exhaustive listing of all the atomic facts that hold in
it. And these facts can all be written as atomic formulae without variables. We can
then simply assume all other atomic facts (i.e. all other variable-free atomic formulae
licensed by our vocabulary) to be false in the represented model. Besides saying that
such a listing of atomic formulae represents a model, we will also say that it specifies
that model or call it a (model) specification .

?- Question!

Why don’t we allow atomic formulae with variables into model specifications? Hint:
Think about how variables are interpreted (see Section 1.2.2).

Now here is an example of how to represent a model in Prolog:

[therapist(john), therapist(mary), moron(peter), moron(anna), love(peter,anna)]

Fairly obviously, this list represents a model in which both John and Mary are thera-
pists, both Peter and Anna are morons, and Peter loves Anna.

2.1. A Simple Model Checker 23

Negative facts are implicit

But it is important to be aware that other properties are implicitly recorded. For exam-
ple:

� No facts about the hate relationships are given-and hate is one of the predicate
symbols in our vocabulary. This is Prolog’s way of recording the fact that the
binary predicate hate is empty; in this little world, nobody hates anybody.

� Although Peter loves Anna, he doesn’t love himself nor anybody else, for no
such facts are recorded. In fact, no other loving relationships at all hold.

Thus, given our vocabulary we have completely described a unique exact model over
it by explicitly listing positive information and implicitly listing negative information.

?- Question!

Which of the following are correct Prolog model specifications (over the example vo-
cabulary) according to our conventions:

1. [therapist(john), therapist(mary), moron(peter), moron(anna), hate(peter,anna)]

2. [therapist(john), therapist(mary), ~moron(peter), moron(anna), love(peter,anna)]

3. [therapist(john) 9 therapist(mary), moron(peter), boring(anna), love(peter,anna)]

4. [therapist(mary), moron(x), moron(anna), love(peter,anna)]

5. [therapist(mary), moron(mary),love(mary,mary)]

See file exampleModels.pl.

The file exampleModels.pl contains the representations of some models (over our
vocabulary). The models are numbered for easy access.

2.1.5 Another Example

Here’s another example of a model represented in Prolog, again over the same vocab-
ulary.

[therapist(peter),moron(anna),moron(john),love(peter,anna), hate(john,peter)]

Now for a trick question: how many individuals are there in the domain of the model
that this Prolog term represents? The answer is four. If you thought the answer was
three-because only John, Peter and Anna are explicitly mentioned-you haven’t properly
grasped the role played by the constants listed in the vocabulary. In any exact model
of this vocabulary there is the individual corresponding to the constant MARY.

24 Chapter 2. Prolog and First-Order Logic

Again: Negative facts are implicit

As it happens, in this particular model no positive facts are listed about MARY-but lots
of negative facts about Mary are implicitly given. For example:

� MARY is neither a therapist nor a moron.

� MARY neither loves nor hates anyone or anything.

� MARY is not loved or hated by anyone or anything.

Summing Up.

In short, be careful. The listing of constants in the vocabulary plays an important role
for us: it tells us exactly how many (and in a way also which) individuals there are
in an exact model of that vocabulary. For this, it doesn’t matter if anything positive is
mentioned about each of them or not.

In !!!UNEXPECTED PTR TO EX_EX.SETDESCR_MODEL!!! you can test if you
understand how our way of representing models works. !!!UNEXPECTED PTR TO
EX_EX.WELLFORMED_MODELS!!! asks you to implement well-formedness checks
for representations of models.

2.1.6 Semantic Evaluation

We now turn to the fourth and final task: Designing the actual model checker pro-
gram, which evaluates (representations of) formulae in (representations of) models.
That is, our program should say yes if the input formula is true in the given model
and no if it isn’t. E.g. given our first example model (page ??) and the formula
therapist(john) & moron(peter), the program should answer yes. In contrast,
evaluating therapist(john) & therapist(peter) over the same model should lead
to the answer no.

We now write a predicate called eval/2 to carry out this task. It consists of seven
clauses and takes two arguments: First the formula to be tested, and second the model
in our list representation. As discussed above (page 22) we assume that the vocabulary
can be found in the database.

See file modelChecker.pl.

The clauses of eval/2 and (a driver predicate evaluate/2, see Section 2.1.9) can be
found in modelChecker.pl.

Evaluating Atomic Formulas

First for the core of our little model checker. The clause that evaluates atomic formulae.
It couldn’t be much simpler. We have decided to represent an exact model by recording
all the facts (in the form of atomic formulae) that are true in it. Hence an atomic
formula is true if and only if it is one of the facts recorded in the list Model. So all we
need to do is search through our list:

eval(Formula,Model):-

member(Formula,Model).

2.1. A Simple Model Checker 25

2.1.7 Evaluating Complex Formulae

Now let’s have a look at the clauses for Boolean combinations of formulae. First for
the binary connectives:

eval(Formula1 & Formula2,Model):-

eval(Formula1,Model),

eval(Formula2,Model).

eval(Formula1 v Formula2,Model):-

eval(Formula1,Model);

eval(Formula2,Model).

eval(Formula1 > Formula2,Model):-

eval(Formula2,Model);

\+ eval(Formula1,Model).

Truth Conditions in Prolog.

These clauses mirror the first-order satisfaction definition (page 13) (on which the def-
inition of truth in a model (page 13) is based) in an obvious way, using the Prolog
versions of conjunction, disjunction and negation. For example, the clause for > trans-
lates to Prolog that an implication is true iff:

� the consequent is true, or

� the antecedent is false.

Negation and Prolog Negation.

We make use of Prolog negation (that is, negation as failure2) when we want to evaluate
negated formulae. This is a simple and natural thing to do. However we shall see soon
that it can have unexpected - and unintended - effects. Here’s the code:

eval(~Formula,Model):-

\+ eval(Formula,Model).

2.1.8 Quantifiers

"
The clause for the existential quantifier also quite directly implements the respective
part of the satisfaction definition. Our program picks one entity from the model and
instantiates the quantified variable X to it.:

eval(exists(X,Formula),Model):-

const(C),

subst([X:C],Formula,Instantiated),

eval(Instantiated,Model).

2http://learnprolognow.org

26 Chapter 2. Prolog and First-Order Logic

Instantiating the Quantified Variable.

Now because we work with exact models and assume our universe to consist of con-
stants, to pick one entity simply means to access the vocabulary and choose a constant.

See file substitute.pl.

For this task we use the predicate subst/3 from substitute.pl. It takes a substi-
tution (of the form [Substitute1:By1,Substitute2:By2...]) and applies it to the
Formula given as second argument. The third arguments contains the result. The code
for subst/3 is a bit more involved than you might expect, because it implements full
first-order substitution . For the case at hand, though, it simply recurses down to liter-
als, splits them and finally replaces the arguments according to the given substitution.

Backtracking on Instantiations.

Then, our program tests if the now instantiated Formula is true in the given model.
If this is not the case, the program backtracks and tries another constant. Either it
eventually succeeds. This means that our existential quantification is true because
there exists an entity that supports the scope (after all our program has found one such
entity). Or it doesn’t succeed, which means that the existential quantification is false.

�
The clause for the universal quantifier takes advantage of a logical equivalence:

�
Xϕ

is equivalent to �:" X � ϕ. So instead of forall(X, Formula) we can equivalently
consider ~exists(X, ~Formula). This is what happens in the following clause.

eval(forall(X,Formula),Model):-

eval(~ exists(X,~ Formula),Model).

If you like to, you can prove the equivalence used by this clause as !!!UNEXPECTED
PTR TO EX_EX.EQUIV_FA_EX!!!

2.1.9 Checking Models

See file exampleModels.pl.

So, it’s time to start checking models. Some examples of models over our original
vocabulary can be found in the file exampleModels.pl. Each example model is
assigned a number, so we can easily select any of them.

And here is a driver predicate which evaluates a formula in an example model (selected
via its number):

See file modelChecker.pl.

evaluate(Formula,ExampleNumber):-

example(ExampleNumber,Model),

eval(Formula,Model).

An example query looks like this: evaluate((love(peter,anna) & moron(anna)),1).

Systematically test the model checker on our example models (download the files
linked in Section 2.1.6). Are the results always as you expected? If not, why not?

2.2. Refinements 27

2.2 Refinements

2.2.1 Problem One: Unknown Vocabulary

What happens if our input uses symbols that are not in our vocabulary? We run into
problems if we ask our model checker to verify formulae that use completely new
non-logical vocabulary.

For example, there’s no constant symbol cinderella in our vocabulary. Let’s try to
evaluate the formula

�
xTHERAPIST(X) !;� THERAPIST(CINDERELLA) , say in model

5. The formula states that ‘Everyone is a therapist, but Cinderella isn’t.’ Clearly, this
is contradictory. So whenever well-formed, this formula is unsatisfiable. It should thus
never come out as true, no matter in which model we choose to evaluate it. So let’s
query evaluate(forall(x,therapist(x)) & ~therapist(cinderella), 5). Sur-
prisingly the answer is yes. How could this happen?

Let us have a short look at a simpler example. Let’s call evaluate(therapist(cinderella),5).
Our model checker says no. This response, too, is not strictly speaking correct. For-
mally the satisfaction relation (and thus truth) is not defined for formulae and models
of different vocabularies. The correct response of our model checker would be to re-
ject this formula and say something like “Hey, I don’t know anything about the symbol
cinderella!”.

This little flaw may seem harmless at first glance, but the same problem leads to the
false positive we’ve seen above. Think about what our model checker does when it
evaluates forall(x,therapist(x)) & ~therapist(cinderella) in a given model:
First it checks if forall(x,therapist(x)) is true in our model. (Remember the Pro-
log clause for universal quantification: The model checker will check that ~exists(x, ~therapist(x))

is true, by making sure that therapist(c) isn’t false for any of the const(c) in
the database). In model 5, this is the case. Then, our program proceeds to the sec-
ond conjunct. There it finds the negation ~therapist(cinderella), which it eval-
uates using Prolog’s \+: ~therapist(cinderella) will become true if evaluating
therapist(cinderella) fails. And in fact evaluating therapist(cinderella)

does fail. Yet this not due to the situation in our model, but simply because cinderella
is not in the vocabulary: therapist(cinderella) is not one of the facts that don’t
occur on our list because they are false. Rather, it does not come into consideration as
a positive or as a negative fact at all, because it is not well-formed.

The moral is that the use of negation as failure may turn a somewhat sloppy no (like
the answer of our model checker to unknown vocabulary) into a dangerously clear yes.
So we really should take care that no really only means ‘not true’.

Luckily the problem is not particularly deep; the solution is simply to be explicit about
what a well formed formula over a given vocabulary is. That is, we should make use of
the information in the vocabulary about which predicate symbols we are working with
(and, of course, what their arities are), which constants we have, and explicitly state
which combinations of these symbols are well formed. Our driver should check that
any sequence of symbols it has to evaluate really is a well formed combination of the
chosen predicate and constant symbols - and it should refuse to evaluate anything that
isn’t.

28 Chapter 2. Prolog and First-Order Logic

2.2.2 Problem Two: Formulae with Free Variables

We run into similar trouble if we feed our model checker formulae with free variables
(i.e. ones that are not bound by a quantifier). For example evaluate(therapist(x),1).
Our model checker answers no, although formally, truth in a model (page 13) is only
defined for sentences, i.e. formulae with no free variables. There are ways of ex-
tending this definition to formulae with free variables (see !!!UNEXPECTED PTR TO
EX_PROJ.ASSIGNMENTS!!!). But since we have not chosen any of these exten-
sions, we needn’t implement them. We will simply refuse non-sentences, just as we
will refuse non-well-formed formulae.

2.2.3 Refining the Implementation

See file revisedModelChecker.pl.

So let’s re-visit our implementation and modify it according to our new insights. The
simplest we can do is to modify our driver predicate as follows:

evaluate(Formula,ExampleNumber):-

example(ExampleNumber,Model),

wff(Formula), % Implement as an exercise

free(Formula,[]), % Imported from module substitute

eval(Formula,Model).

eval(Formula,Model):-

member(Formula,Model).

In this piece of code wff/1 is a predicate that checks whether a given formula is well-
formed over the vocabulary in the database. You should implement this predicate as an
exercise (page 29).

See file substitute.pl.

The call free(Formula,[]) solves our second problem: It enforces that the input
Formula contains no free variables, hence that it really is a sentence. The predicate
free/2 (coming from substitute.pl) produces the list of unbound variables in
the formula given as first argument. Hence calling it with an empty list as second argu-
ment makes sure that there are no free variables in the formula given as first argument.

We said before that we have to make sure that no really only means ‘not true’. But
up to now, we have not done so. We have only moved the no meaning ‘unexpected
input’ to the beginning of our predicate, where it cannot interfere with the no mean-
ing ‘not true’. However it is now a simple task to exit with a message on unex-
pected input before the actual model checking is started. !!!UNEXPECTED PTR TO
EX_EX.REFUSE_NONWFF!!! asks you to implement this little error-handling capa-
bility.

In revisedModelChecker.pl you find an incomplete implementation of the re-
vised model checker: The (unchanged) clauses of eval/2, rev_evaluate/2 as dis-
cussed above, and a dummy predicate wff/1 that you can replace by your implemen-
tation from !!!UNEXPECTED PTR TO EX_EX.WFF!!!.

2.3. File Listing 29

2.3 File Listing

2.3.1 All modules for the model checker

See file modelChecker.pl. The driver predicate evaluate/2 and the core clauses of the model checker (eval/2).
See file comsemOperators.pl. Operator definitions.
See file revisedModelChecker.pl. The revised version of the model checker (excluding wff/1, which you have to provide yourself).
See file signature.pl. Example vocabulary.
See file exampleModels.pl. Some example models to play with.
See file comsemLib.pl. Various helpers, compose/3 may be useful in exercises.

2.4 Exercises

Exercise 2.1 [Theoretical Exercise]

Give the set theoretic description (page 6) of the models that the Prolog lists in Sec-
tion 2.1.4 and Section 2.1.5 represent.

Exercise 2.2 Write a predicate wff/1. It should succeed if and only if its first argu-
ment represents a well formed formula (page 9) over the vocabulary in the database.
Thus given our example vocabulary See file signature.pl.,

wff(exists(x, moron(x) & therapist(mary)))

should succeed, while

wff(hate(peter,cinderella)).

should fail, as should:

wff(love(mary)).

See file comsemLib.pl.

[Hint: Use =.. or compose/3 (page 201) from comsemLib.pl to split terms into
functor and arguments.]

Does your predicate (correctly) require quantifiers to bind variables, i.e. does it rule
out formulae like exists(mary,moron(mary))? If it doesn’t, try to repair it. What
does your predicate do if you replace subformulae in its input by Prolog-variables (e.g.
if you check moron(mary)& X)?

Use your predicate to complete the revised version of our model checker.

Exercise 2.3 Can your predicate wff/1 be used to generate formulae over a vocab-
ulary by leaving the first argument uninstantiated? Explain your observations.

Exercise 2.4 Write a predicate wffList/1 that takes a list of formulae and suc-
ceeds if and only if all formulae on the list are well formed over the vocabulary in the
database.

30 Chapter 2. Prolog and First-Order Logic

Exercise 2.5 We did not do anything to make sure that first order variables and
constant/predicate-symbols are really distinct. Write a predicate that looks at the
database and gives a warning if any first order-variable is also a constant/predicate-
symbol.

Exercise 2.6 Write a Prolog program which when given a list of terms, determines
whether or not the list represents a model. That is, your program should check whether:

� Its input is a list.

� All members of this list are well-formed atomic formulae over the given vocabu-
lary.

� None of these atomic formulae contains a free variable.

If you’ve solved !!!UNEXPECTED PTR TO EX_EX.WFF!!! or !!!UNEXPECTED
PTR TO EX_EX.WFFLIST!!!, you may be able to reuse parts of the code with minor
changes.

Exercise 2.7 [Theoretical Exercise (OPTIONAL)]

We say that two sentences ϕ and ψ are logically equivalent if and only if ϕ - � ψ and
ψ - � ϕ. Show that

�
xϕ and �:" x � ϕ are logically equivalent.

Exercise 2.8 Go through Section 2.1.9. Run the model checker and use trace/0

to have a look at what the program really does. (The use of trace/0 is discussed in
Practical Session 2 of Learn Prolog Now!3).

What does the first version of the model checker do if its input formula contains Prolog-
variables? Compare e.g. the following calls:

� evaluate(X,1).

� evaluate(moron(peter) v X,1).

� evaluate(X & moron(mary),1).

Obviously, the behaviour of the program isn’t very consistent (in the last example,
the model checker wouldn’t come back at all on its own, but our web interface has a
timeout of 3 seconds). Find out what’s going on and why. Does it make a difference to
use the revised rev_evaluate/2 instead of evaluate/2?

We ask you to use the ILIAS newsgroup to discuss your findings from Section 2.1.9, as
well as any problems you may have in understanding and using the model checker.

Exercise 2.9 [For the code to work, you need a predicate wff/2. If you haven’t
solved !!!UNEXPECTED PTR TO EX_EX.WFF!!!, tell us4 and we will send you the
code you need.]

3http://www.learnprolognow.org
4mailto:stwa@coli.uni-sb.de

2.4. Exercises 31

If our revised model checker is called with an input that is not well-formed or that
contains free variables, it will say no. As we’ve discussed, this response is not yet what
we’d like to have. Modify rev_evaluate so that it distinguishes between non well-
formed input and well-formed input that is false in the given model. Non-wellformed
input should produce a message and should not be evaluated.

Exercise 2.10 [This is a possible mid-term project]

The definition of truth can be extended from sentences to arbitrary first-order formulae
as follows: An arbitrary first-order formula ϕ is true in a model M iff there is an
assignment g in M such that M � g - � ϕ. Remember that for sentences we required that
every assignment satisfied the sentence in the given model, but only to find out that
assignments didn’t matter for satisfying sentences anyway. This time the assignment
does matter, because our formula may contain free variables. But we only require that
some assignment do the job.

Change the model checker so that it checks if an arbitrary first order formula is true in
a model according to our new definition. You will probably have to add an argument
that represents a (partial) variable assignment. This argument can then be used by all
clauses of the model checker that deal with assigning or instantiating variables. You
may use the predicate subst/3 (page 202) from See file substitute.pl..

32 Chapter 2. Prolog and First-Order Logic

3

Lambda Calculus

3.1 Building Meaning Representations

3.1.1 Being Systematic

Is there a systematic way of translating such simple sentences as ‘John loves Mary’
and ‘A woman walks’ into first-order logic?

The key to answering this question is to be more precise about what we mean by
‘systematic’. When examining the sentence ‘John loves Mary’, we see that its semantic
content is (at least partially) captured by the first-order formula LOVE(JOHN,MARY) .
Now this formula consists of the symbols LOVE, JOHN and MARY. Thus, the most
basic observation we can make about systematicity is the following: the proper name
‘John’ contributes the constant symbol JOHN to the representation, the transitive verb
‘loves’ contributes the relation symbol LOVE, and the proper name ‘Mary’ contributes
the constant symbol MARY.

More generally it’s the words of which a sentence consists that contribute the relation
symbols and constants in its semantic representation. But (important as it may be) this
observation doesn’t tell us everything we need to know about systematicity. It tells
us where the building blocks of our meaning representations will come from - namely
from words in the lexicon. But it doesn’t tell us how to combine these building blocks.

?- Question!

We have to form the first-order formula LOVE(JOHN,MARY) from the symbols LOVE,
JOHN and MARY. But for this task, we haven’t been specific yet about what we mean
by working in a systematic fashion. For example, from the symbols LOVE, MARY and
JOHN we can also form LOVE(MARY,JOHN). So why do we choose to put MARY in the
second argument slot of LOVE rather than in the first one? Is there a principle behind
this decision? Do you have an idea?

3.1.2 Being Systematic (II)

Syntactic Structure...

Our missing link here is the notion of syntactic structure . ‘John loves Mary’ isn’t just
a string of words: it has a hierarchical structure. In particular, ‘John loves Mary’ is an
S (sentence) that is composed of the subject NP (noun phrase) ‘John’ and the VP (verb

34 Chapter 3. Lambda Calculus

phrase) ‘loves Mary’. This VP is in turn composed of the TV (transitive verb) ‘loves’
and the direct object NP ‘Mary’. Given this hierarchy, it is easy to tell a conclusive
story about - and indeed, to draw a convincing picture of - why we should get the
representation LOVE(JOHN,MARY) as a result, and nothing else:

See movie in HTML version.

John loves Mary (S)
LOVE(JOHN,MARY)

John (NP)
JOHN

loves Mary (VP)
LOVE(?,MARY)

loves (TV)
LOVE(?,?)

Mary (NP)
MARY

...and its use for Semantics

When we combine a TV with an NP to form a VP, we have to put the semantic repre-
sentation associated with the NP (in this case, MARY) in the second argument slot of
the VP’s semantic representation (in this case, LOVE(?,?)). And why does JOHN need
to be inserted into the first argument slot? Simply because this is the slot reserved for
the semantic representations of NPs that we combine with VPs to form an S.

In more general terms, given that we have some reasonable syntactic story about what
the pieces of our sentences are, and which pieces combine with which other pieces, we
can try to use this information to explain how the various semantic contributions have
to be combined.

Summing up we are now in a position to give quite a good explication of ‘systematic-
ity’: When we construct meaning representations systematically, we integrate infor-
mation from two different sources:

1. The lexical items (i.e. the words) in a sentence give us the basic ingredients for
our representation.

2. Syntactic structure tells us how the semantic contributions of the parts of a sen-
tence are to be joined together.

3.1.3 [Sidetrack] Compositional Semantics

Our discussion has led us to one of the key concepts of contemporary semantic theory:
compositionality.

The principle of compositionality

Compositionality is a simple and natural concept underlying most of the work in nat-
ural language semantics and in the semantics of programming languages. A common
formulation of the principle of compositionality is the following: ‘The meaning of a

3.1. Building Meaning Representations 35

compound expression is a function of the meaning of its parts and of the syntactic rule
by which they are combined.’ This at least requires that we have a notion of parts that
form such an expression according to rules, and that each of these parts can be assigned
a meaning.

Suppose we have some sort of theory of hierarchical syntactic structure providing us
with a notion of parts of the expressions in our language. That is, the syntactic struc-
tures we would like to have should allow us to classify sentences into subparts, sub-
subparts, and sub-sub-subparts, ..., and so on - ultimately into individual words (be-
yond that, it doesn’t matter too much for our purposes what sort of syntactic theory it
is). The syntactic structures provided by that theory then make it possible to tell an
elegant story about where semantic representations come from.

Ultimately, semantic information flows from the lexicon, where each lexical item is
associated with a representation. But how is this information combined? Here, we
make use of the sentence hierarchy a syntactic analysis provides us with. Suppose the
syntax tells us that some kind of sentential subpart (a VP, say) is decomposable into
two sub-subparts (a TV and an NP, say). In that case it’s our task to describe how
the semantic representation of the VP subpart is to be built out of the representation
of its two sub-subparts. If we succeed in doing this for all the grammatical construc-
tions covered by the syntax, we’ll have developed a compositional semantics for the
corresponding language (or at least, for that fragment of the language covered by our
syntactic analysis).

Why compositionality?

What is so nice about compositional semantics? First of all, the principle of composi-
tionality is of great immediate appeal: The meaning of a sentence should somehow be
derivable from that sentence itself. And two kinds of information that every sentence
provides us with are its words and its structure. Moreover, in the course of composi-
tional semantic construction, each of the syntactic subparts of a sentence gets assigned
a meaning of its own at some point, and syntactic rules are correlated with actions
on the semantic side. This may be seen as giving a semantic justification of syntactic
structure.

More philosophically, the principle of compositionality offers an explanantion of how
a human being can understand a possibly infinite number of sentences never heard
before (namely by constructing their meaning from a finite set of rules and a finite set
of known lexical meanings). Also, a compositional account of meaning suggests a
plausible explanation of why we perceive a connection in meaning between sentences
that share syntactic parts. Consider the sentences:

� ‘John’s father likes Mary.’

� ‘John’s father hates Mary.’

Clearly, these two sentences have meaning elements in common. Assuming a compos-
tional semantics that is constructed part-by-part, along with the syntactic structure, this
can be explained by pointing to their shared syntactic parts ‘John’s father’ and ‘Mary’.

36 Chapter 3. Lambda Calculus

Discussion

Of course, both of these arguments aren’t really coercive. Satisfactory explanantions
for the described phenomena could probably also be given on the basis of semantic
construction methods that would not neccesarily be counted as compositional. In fact,
in spite of its apparent simplicity, the notion of compositionality raises a number of
interesting issues, and is by no means uncontroversial.

On the one hand, if we do not further constrain the class of functions that may be used
to combine the meanings of the parts of expressions, the principle doesn’t really say
very much any more. It can even be shown that any semantic construction method can
be made compositional in some sense. On the other hand, it can be doubted that sys-
tematic semantics always have to be compositional. There is for instance the standard
top-down algorithm for Discourse Representation Theory (DRT). It is a systematic
approach to semantic construction (under any reasonable interpretation of the word
systematic) but it does not work by assigning meaning representations to each of the
syntactic constituents of a sentence separately. Therefore many semanticists have ar-
gued that it is not truly compositional.

Apart from this, the principle of compositionality doesn’t come with a fixed domain.
One way to read it is in terms of meaning representations, as stating that we should have
a separate meaning representation for each single syntactic part of an expression, and
that the representation of the whole expression should be formed from these separate
representations. This requirement is also known as surface- or s-compositionality . As
another extreme, it can be read as referring to truth-functional content, e.g. as stating
that we should be able to say exactly for each syntactic part how it is to be interpreted
with respect to a given first-order model (one also speaks of deep or d-compositionality
).

In the following, we shall stick to the first way of reading the principle of composi-
tionality. In fact, we shall view it more or less as a practical design guideline than as a
philosophical claim. This means that when constructing semantic representations, we
will try to solve our problems locally and modularily, striving for a nice and clearly
structured system. But occasionally, we shall also look at our semantic formalisms in
view of d-compositionality.

3.1.4 Summing Up

Let us have a look at the general picture that’s emerging. How do we translate sim-
ple sentences such as ‘John loves Mary’ and ‘A woman walks’ into first-order logic?
Although we still don’t have a specific method at hand, we can formulate a plausible
strategy for finding one. We need to fulfill three tasks:

Three Tasks

Task1 Specify a reasonable syntax for the natural language fragment of interest.

Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation of complex expressions (i.e. phrases and sentences) composi-
tionally (see also Section 3.1.3). That is, we need to systematically specify the transla-
tion of such expressions in terms of the translation of their parts, ‘parts’ here referring
to the substructure given to us by the syntax.

3.2. Syntactic Analysis 37

All of our three tasks need to be carried out in a way that naturally leads to computa-
tional implementation. Because this is a course on computational semantics, tasks 2
and 3 are where our real interests lie, and most of our attention will be devoted to them.
But we also need a way of handling task 1.

3.2 Syntactic Analysis

3.2.1 A Simple Solution: CFG

Task 1 <
In order to approach Task 1, we have opted for an easy solution: We’ve decided to use
a simple context free grammar. The syntactic analysis of a sentence will be represented
as a tree whose non-leaf nodes represent complex syntactic categories (such as S, NP
and VP) and whose leaves represent lexical items (these are associated with lexical
categories such as noun, transitive verb, determiner, proper name and intransitive verb).
Recall (the syntactic part of) the tree tasks from Section 3.1.4:

John loves Mary (S)

John (NP)

John (PN)

loves Mary (VP)

loves (TV) Mary (NP)

Mary (PN)

This tree model tells us that ‘John loves Mary’ is an S (sentence) that is composed of
the subject NP (noun phrase) ‘John’ and the VP (verb phrase) ‘loves Mary’, which in
turn consists of the TV (transitive verb) ‘loves’ and the NP ‘Mary’, which is made of
the PN ‘Mary’, and so on. To enhance the readability of such trees, we will ommit the
non-branching steps and take for instance Mary (NP) as a leave node.

Our approach to syntactic structure is not very elaborate. There are many interesting
syntactic phenomena it won’t allow us to describe. Hence, the approach won’t take us
far in terms of coverage of our grammar. But it has one important advantage: It enables
us to make use of Definite Clause Grammars (DCGs, Lecture 7 of Learn Prolog Now!))
DCG1, the in-built Prolog mechanism for grammar specification.

1http://www.learnprolognow.org/

38 Chapter 3. Lambda Calculus

3.2.2 Using DCGs

See file usingDCG.pl.

Here is a DCG for the fragment of English we shall use in our initial semantic con-
struction experiments (this DCG can be found in the file usingDCG.pl).

A Context-free Grammar using DCG

s --> np, vp.

np --> pn.

np --> det, noun.

pn --> [john].

pn --> [mary].

det --> [a].

det --> [every].

noun --> [woman].

noun --> [siamese,cat].

vp --> iv.

vp --> tv, np.

iv --> [walks].

tv --> [loves].

This grammar tells us how to build certain kinds of sentences (s) out of noun phrases
(np), verb phrases (vp), proper names (pn), determiners (det), nouns (noun), intransi-
tive verbs (iv), and transitive verbs (tv). In addtion it gives us a tiny lexicon to play
with.

An analysis of why this grammar accepts the simple sentence ‘John walks’ would be
this: ‘John’ is declared a proper name, with proper names being noun phrases accord-
ing to this grammar; ‘walks’ is an intransitive verb, and hence a verb phrase; and our
grammar licenses sentences that consist of a noun phrase followed by a verb phrase.

Since DCGs are part and parcel of Prolog, we can actually compute with them. For
example, by posing the query s([mary,likes,a,siamese,cat],[]) we can test
whether ‘Mary likes a siamese cat’ is accepted by the grammar, or we can use s(X,[]),write(X),nl,fail
to generate all grammatical sentences.

?- Question!

How many sentences are accepted by this grammar? How many noun phrases, how
many verb phrases does it allow? Check your answers by generating the relevant items.

3.3. Semantics Construction 39

3.3 Semantics Construction

3.3.1 A First Attempt

So how do we associate semantic representations with sentences using our little DCG?

Task 2 <
Let us first address the lexical items. We need to associate ‘John’ with the constant
JOHN, ‘Mary’ with the constant MARY, ‘walks’ with the unary relation symbol WALK,
and ‘loves’ with the binary relation symbol LOVE. The following piece of DCG code
makes these associations. Note that the arities of walk and love are explicitly included
as part of the Prolog representation.

pn(john)--> [john].

pn(mary)--> [mary].

iv(walk(_))--> [walks].

tv(love(_,_))--> [loves].

Task 3 <
How do we combine semantic representations? Here’s a first (rather naive) attempt:
Let’s introduce a new symbol to mark all places where two representations are com-
bined into one. For example, we can define a prolog operator + for this purpose.

?- Question!

Give the Prolog code needed to define such a + operator.

Let us incorporate this idea into our DCG. We’ll do as we did for the lexical items, and
supply additional arguments. For example, we get an s rule:

s(NPSem+VPSem) --> np(NPSem), vp(VPSem).

and a vp rule for transitive verbs:

vp(VSem+NPSem) --> tv(VSem),np(NPSem).

Additionally, we will need the following rules that do not combine anything but rather
lift the semantic representation of a lower category to that of a higher one:

np(X) --> pn(X).

vp(X) --> iv(X).

40 Chapter 3. Lambda Calculus

See file firstAttempt.pl.

With our newly augmented DCG, we are now able to construct semantic representa-
tions for the sentences we parse. For instance, parsing the sentence ‘John loves Mary.’
by posing the query s(Sem,[john,loves,mary],[]) gives us the semantic represen-
tation john+(love(_,_)+mary).

But is that what we want? No, not yet. What we want of course is to arrive at the first-
order formula LOVE(JOHN,MARY). So far, the only thing we have is a complex Prolog
term consisting of the semantic representations for the words in our input sentence in a
sequence. Or - rather - not just in a sequence. If we look at it more closely, the structure
of the term we get reflects the structure of the syntactic tree constructed by our DCG
in the way it is bracketed. Only so far we have no clue how we can use this structure to
put john and mary in their right places, namely the first and, respectively, the second
argument slot of love(_,_).

3.3.2 Putting Things in the Right Place I

Obviously, in order to obtain true first order formulae, the output of our little DCG
needs to be further processed. The problem is that our resulting expressions con-
sist of parts of a first-order formula glued together, instead of one complete-first or-
der formula with all of its parts in the right place. What do we have to do? Let us
first have a look at a simple case: From parsing the sentence ‘Mary walks.’ we get
the term mary+walks(_). From this, we would like to obtain the first-order formula
WALK(MARY).

Postprocessing: Inserting the Arguments

In this example, we could do with simply inserting the item to the left of the + into the
argument slot of the item to the right. The predicate insertArgs/2 does so:

insertArgs(N+V,V) :-

compose(V,_,[N]).

Here is an example call: s(Sem,[mary,walks],[]), insertArgs(Sem,Inserted).

What is going on here? Recall that the predicate compose/3 (see Section 12.1) states
that its first argument consists of a functor (given as first argument) and arguments
(second argument, a list). In our example, the call to compose/3 states that the term
walk(_) is to consist of a functor (which is unified with the anonymous _) and exactly
one argument, which is unified with N. Now N is in turn instantiated to mary, and so of
course the only solution is walk(mary).

Would this strategy of "left-to-right-insertion" work in general? It wouldn’t. Recall that
we obtained the term john+(love(_,_)+mary) for the sentence ‘John loves Mary.’.
In this case, the lexical representation for the verb has two argument slots. Moreover,
it occurs to the left of one + and to the right of another at the same time. Our predicate
insertArgs/2 doesn’t work any more.

So, let us design a second clause that takes care of sentences like ‘John loves Mary’ of
the form (noun+(verb+object)). Here it is:

insertArgs(N+(V+O),V) :-

compose(V,_,[N,O]).

3.3. Semantics Construction 41

?- Question!

Try this call: s(Sem,[john,loves,mary],[]), insertArgs(Sem,Inserted). Ex-
plain in your own words how the above clause of insertArgs/2 works. Add lexical
rules for a few other words (along the examples) to the DCG and play a bit with the
program on your own computer:

1. Download firstAttempt.pl2 and extend the DCG.

2. Start Prolog and consult the file:

?- [firstAttempt].

3. Parse a sentence or some other phrase (you have to give it as a list of atoms) and
post-process the resulting + term:

?- s(Sem,[peter,sleeps],[]), insertArgs(Sem,Inserted).

(Assuming you’ve added lexical rules for peter and sleeps).

3.3.3 Putting Things in the Right Place II

Things get even more complicated once we start considering quantified noun phrases.
Quantified noun phrases are noun phrases that contain a determiner. For example the
sentence ‘A woman walks.’ contains the the quantified noun phrase ‘a woman’. The
meaning of this sentence is captured by the first order formula " X(WOMAN(X) ! WALK(X)).
Obviously, the contribution made to this formula by the word ‘woman’ should be the
one place predicate symbol WOMAN. The verb ‘walks’ contributes the predicate sym-
bol WALK. Thus, the determiner must contribute the quantifier and the pattern of the
quantification. The lexical rules for the noun ‘woman’ and the determiner ‘a’ are as
follows:

n(woman(_)) --> [woman].

det(exists(_,_&_)) --> [a].

The rule for the determiner ‘a’ gives us a template for building a quantified first-order
formula by supplying the information that the formula will be an existential quantifi-
cation, and that there will be a conjunction in the scope of this quantification.

To combine determiner and noun to an NP, we need a suitable combination rule:

np(DetSem+NSem) --> det(DetSem),n(NSem).

But now what happens when we parse ‘A woman walks.’ with our DCG? Try it your-
self: s(Sem,[a,woman,walks],[]) . How do we arrive at exists(x,woman(x) & walk(x))

from there? Clearly ‘inserting left into right’ isn’t an option. All in all, simply inserting
subterms of our complex representation into each other no longer looks like a feasible
solution at all. Even if we had a systematic way of putting each of the subterms into
its final place, we hardly could ensure that the arguments of the two predicates woman
and walk are bound by the existential quantifier.

2./prolog/firstAttempt.pl

42 Chapter 3. Lambda Calculus

Try to extend the predicate!

In !!!UNEXPECTED PTR TO EX_EX.LAM.INSERTARGS!!! you’re asked to extend
insertArgs/2 so that quantified formulae can be handled as well. This will confront
you quite directly with the shortcomings of our naive approach, which we want to
discuss next. So it’s a good idea to do the exercise right away!

What we have learned...

We’ve managed to teach our DCG how to construct first-order formulae for some sim-
ple sentences quite quickly. But obvioulsy our approach is not yet very elaborate (as
you could clearly see in the above exercise...). Its most severe shortcomings are:

� Even in our tiny fragment of natural language semantics the formulation of the
clauses of insertArgs/2 already required quite some care. Contrary to our
resolutions, we obviously didn’t work systematically at all.

� Consequently, we will in the worst case have to give one clause of insertArgs/2
for each (of the infinitely many) possible syntactic structures.

Obviously, what we have just implemented is not a simple postprocessing step, but a
little promising ad hoc improvisation. As soon as we want to scale it up only a little
bit, it becomes unpleasantly complex.

3.4 The Lambda Calculus

3.4.1 Lambda-Abstraction

λ-expressions are formed out of ordinary first order formulae using the λ-operator.
We can prefix the λ-operator, followed by a variable, to any first order formula or λ-
expression. We call expressions with such prefixes λ-abstraction s (or, more simply,
abstractions). We say that the variable following a λ-operator is abstracted over . The
variable abstracted over is (λ-)bound by its respective λ-operator within an abstraction,
just as a quantified variable is bound by its quantifier inside a quantification.

Abstractions

So the following two are examples of λ-abstractions:

1. λx �WOMAN � x �
2. λu � λv � LOVE � u � v �

In the first example, we have abstracted over x. Thus the x in the argument slot of
WOMAN is bound by the λ in the prefix. In the second example, we have abstracted
twice: Once over v and once over u. So the u in the first argument slot of LOVE is
bound by the first λ, and the v is bound by the second one.

3.4. The Lambda Calculus 43

Missing Information

We will think of occurrences of variables bound by λ as placeholders for missing in-
formation: They will serve us to mark explicitly where we should substitute the various
bits and pieces obtained in the course of semantic construction. Let us look at our first
example λ-expression again. Here the prefix λx � states that there is information miss-
ing in the formula following it (a one-place predication), and it gives this ‘information
gap’ the name x. The same way in our second example, the two prefixes λu � and λv�
give us separate handles on each of the two information gaps in the following two-place
predication.

While the λ-bound variables in our two examples act as placeholders for missing con-
stant symbols, we will also use λ-prefixes to mark other kinds of missing information.
For instance we will use λ-prefixes and variables to mark the gaps where information
is missing in the template associated with the indefinite article ‘a’ (don’t care about the
@-symbol for now. We’ll explain what it means in a minute (page 43)):

λP� λQ �=�'" x � P@x ! Q@x ���
Here, P and Q stand for missing predicate symbols. The version of λ-calculus in-
troduced here does not distinguish variables that stand for different kinds of missing
information. Nevertheless we will stick to a convention of using lower case letters for
variables that stand for missing constant symbols, and capital letters otherwise.

3.4.2 Reducing Complex Expressions

So the use of λ-bound variables allows us to mark places where information is missing
in a partial first order formula. But how do we fill in the missing information when it
becomes available? The answer is simple: We substitute it for the λ-bound variable.
We can read a λ-prefix as a request to perform substitution for its bound variable.

Controlled substitution

In our first example, the binding of the free variable x in WOMAN(x) explicitly indicates
that WOMAN has an argument slot where we may perform substitutions. Operationally
speaking, the purpose of abstracting over variables is thus to mark the slots where we
want substitutions to be made. We will use concatenation to indicate when we have to
perform substitutions, and what to substitute. By concatentating a λ-expression with
another expression, we trigger the substitution of the latter for the λ-bound variable.
Consider the following expression (we use the special symbol @ to indicate concate-
nation):

λx �WOMAN � x � @MARY.

Functional Application, β-Reduction

This compound expression consists of the abstraction λx �WOMAN � x � written immedi-
ately to the left of the expression MARY, both joined together by @. Such a concatena-
tion is called functional application ; the left-hand expression is called the functor, and
the right-hand expression the argument. The concatenation is an instruction to discard
the λx � prefix of the functor, and to replace every occurrence of x that was bound by this

44 Chapter 3. Lambda Calculus

prefix with the argument. We call this substitution process β-reduction (other common
names include β-conversion and λ-conversion). Performing the β-reduction demanded
in the previous example yields:

WOMAN(MARY).

So basically the @-symbol has taken the place of the +-operator which we used in our
first approach. And β-reduction will replace our insertArgs/3-postprocessing step.
Abstraction, functional application, and β-reduction together thus drive our first really
systematic semantic construction mechanism. Next, let’s see how it works in practice.

3.4.3 Using Lambdas

Fine, now we have a tool for juggling around with missing information in incomplete
first order formulae. But does it really solve our problems? Does it help us when we
want to construct a semantic representation for a sentence compositionally?

Let’s return to the sentence ‘A woman walks’. According to our grammar, a deter-
miner and a common noun can combine to form a noun phrase. Our semantic analysis
couldn’t be simpler: we will associate the NP node with the functional application that
has the determiner representation as functor and the noun representation as argument
(we mark this application by inserting an @ between functor and argument).

Building a structured application...

a woman (NP)
λP� λQ �>" x � P@x � Q@x � @λy � WOMAN � y �

a (Det)
λP� λQ �>" x � P@x � Q@x � woman (Noun)

λy � WOMAN � y �
Let’s carry on with the analysis of the sentence. We now have to incorporate the in-
transitive verb ‘walks’. We assign it the representation λ � zWALK � z � . The following
tree shows the final representation we obtain for the complete sentence:

a woman walks (S)� λP� λQ �>" x � P@x � Q@x � @λy �WOMAN � y ��� @ � λz �WALK � z ���

a woman (NP)
λP� λQ �>" x � P@x � Q@x � @λy � WOMAN � y � walks (VP)

λz �WALK � z �

a (Det)
λP� λQ �>" x � P@x ! Q@x � woman (Noun)

λy �WOMAN � y �
The S node is associated with � λP� λQ �>" x � P@x ! Q@x � @λy �WOMAN � y ��� @λz �WALK � z � .
We obtain this representation by a procedure analogous to that just performed at the

3.4. The Lambda Calculus 45

NP node. We associate the S node with the application that has the NP representation
just obtained as functor, and the VP representation as argument.

Up to now it may seem as if we haven’t gained much. The representation at the S-node
has the same internal structure as

(exists(_,_&_)+woman(_))+walks(_)

produced by our first attempt (page 39) for the same sentence. But now comes the time
that the λ-prefixes in our new representations really help us solve a problem.

...and reducing it.

Instead of hand-tailoring some specially dedicated post-processing method, we will
simply β-reduce the expression we find at the S node. Let’s see what happens. We
must follow its (bracketed) structure when we perform β-reduction, so we start with
reducing the application λP� λQ �>" x � P@x ! Q@x � @λy �WOMAN � y � . We have to replace
P by λy �WOMAN � y � , and drop the λP prefix. The whole representation then looks as
follows:

λQ �>" x � λy �WOMAN � y � @x ! Q@x � @λz �WALK � z �
See movie in HTML version.

Let’s go on. This time we have two applications that can be reduced. We decide to get
rid of the λQ. Replacing Q by λz �WALK � z � we get:

" x � λy �WOMAN � y � @x ! λz �WALK � z � @x �
Again we have the choice where to go on β-reducing, but this time it should be clear
that our choice doesn’t make any difference for the final result (in fact it never does.
This property of λ-calculus is called confluence). Thus let’s β-reduce twice. We have
to replace both y and z by x. Doing so finally gives us the desired:

" x � WOMAN � x �&! WALKS � x ���
?- Question!

Look at the representations λy �WOMAN � y � and λz �WALK � z � again. It may seem strange
at first sight that we give semantic representations for intransitive verbs that are struc-
turally like the ones for common nouns. Yet from the point of view of logics, this is
the obvious thing to do. Why?

3.4.4 [Sidetrack] Simply Typed Lambda-Calculus

The perspective we’ve been taking on λ-calculus so far has been a very technical one.
We ’ve been viewing it simply as a tool for controlling substitutions, without caring
much what single λ-expressions actually mean. If you’ve heard about λ-Calculus be-
fore in other semantics textbooks or lectures, you will probably feel that we have left
out a discussion of at least two points:

46 Chapter 3. Lambda Calculus

1. Types: The version of λ-calculus most commonly used in linguistics is simply
typed λ-calculus . In this calculus, expressions get assigned types that regulate
function application.

2. Functions: λ-expressions can be given an interpretation in terms of functions
over a system of complex domains. (In fact λ-calculus was originally designed
to investigate function definition, function application and recursion.)

As regards the first point: The version of λ-calculus we’re going to use is untyped, and
we’ll argue below that we don’t have to interpret any λ-expressions for our purposes.
Nevertheless, the two points just mentioned are very important theoretical topics con-
cerning the use of λ-calculus in formal semantics. Therefore, we will now give a short
sketch of some of the central ideas involved in an interpreted simply typed λ-calculus.

Types

Every expression gets assigned a unique type in simply typed λ-calculus. On the one
hand such types restrict how applications can be formed and regulate what the results
of applications will be after β-reduction. On the other hand types correspond to certain
classes of semantic entities and thereby tell us that the typed expressions are to be
interpreted in terms of these entities.

Basic types

But how does all of this work? Let’s assume we are using simply typed λ-calculus
to construct first order meaning representations with the goal of evaluating them in a
given model. So we know what the domain of that model is. Now for our type system.
Initially, we have two basic types, written as e and t. The type e corresponds to the
domain of our model (i.e. the set of our basic individuals). It gets assigned to constant
symbols, which pick out entities from that set in our model. So for instance, a constant
symbol MARY would be assigned type e because it picks out a basic entity (for instance
Mary). Moreover, standard first order variables (which range over the domain of our
model) are also of type e.

The other basic type is t. It corresponds to the set of truth values (that is, the set� TRUE � FALSE 	 , and it gets assigned to complete well-formed first order formulae (i.e.
to expressions that can be evaluated to a truth value in our first order model).

Complex types

We can then recursively construct complex types from these two basic types. Such
complex types are written as ? τ1 � τ2 9 , where τ1 and τ2 are themselves types. For
example from the basic types e and t we can form the complex type ? e � t 9 , and from
this complex type and type t, we can form ?@? e � t 9@� t 9 . A complex type of the form? τ1 � τ2 9 corresponds to the set of functions from things of type τ1 (the argument type
) to things of type τ2 (the result type). For instance, type ? e � t 9 corresponds to the
functions from basic entities (like, for instance, John and Mary) to the truth values.

But what do we need complex types for? They are the types that get assigned to λ-
expressions. A λ-abstraction of the form λx � P is of type ? τ1 � τ2 9 , where τ1 is the
type of the λ-bound variable x, and τ2 is the type of the scope P of the abstraction.

3.4. The Lambda Calculus 47

For example (assuming that MAN � x � is a well-formed first order formula), the type of
the abstraction λx � MAN � x � is ? e � t 9 . The reason is that x is a first order variable
ranging over individuals, hence of type e, and MAN � x � is a first-order formula, hence
of type t.

Well-Typedness

Types regulate which applications are possible: In typed λ-calculus, applications are
only allowed if the type of the argument (to the right of the @ in the expression) is the
same as the argument type of the functor (to the left of the @). The result of β-reducing
such an application is then always of the result type of the functor. If all applications
in an expression are allowed according to this criterion, the expression is well-typed .

Consider the following expression:

λx � MAN � x � @MARY

The application is allowed (it is well-typed), because MARY is of type e and this is also
the argument type of the functor

λx � MAN � x �
�
Recall that this functor is of type ? e � t 9 . The result of β-reducing the above applica-
tion is MAN(MARY) of type t - the result type of the functor.

In contrast the application

λy �WOMAN � y � @λx � MAN � x �
is not admissible (it is not well-typed), because the type of the argument (? e � t 9 , this
time) and the functor’s argument type (e) don’t match.

Thus one aspect of the type system is that it formalizes what we express by a typo-
graphic convention in our untyped approach: The different kinds of missing informa-
tion that λ-bound variables may stand for. But more than this. If we form our abstrac-
tions only from well-formed first order formulae and respect the well-typedness restric-
tions, we really know for sure that we can always return to a well formed first-order
formula through a series of well-typed applications and β-reductions. Consider for in-
stance the λ-expression λX � λz �=� X@λx � LOVE � z � x ��� , where X is of type ?@? e � t 9A� t 9 ,
and z and x are of type e (incidentally, this is the kind of λ-expression we will be using
for transitive verbs). The expression is built up from the first-order formula LOVE � z � x � ,
abstractions and a well typed application. Hence we can be sure that we will be able
to get a well-formed first order formula (namely LOVE � z � x � with z and x possibly re-
placed by some constants) if we feed our original expression arguments of the right
type and then β-reduce. Notice that this ‘guarantee of full β-reducibility’ is a property
we plainly took for given with our untyped λ-calculus when we said above that we
would view it as a simple notational extension of first order logic.

Interpreting Abstractions and Applications

We have not said much about the interpretation of λ-abstractions and applications so
far. Yet keeping in mind what sets correspond to complex types, this becomes an easy
matter: For each complex type, we have the corresponding set of functions from its

48 Chapter 3. Lambda Calculus

argument type to its result type. Thus, we will simply interpret each λ-abstraction
as one function from the set corresponding to its (complex) type. Applications are
interpreted by really applying the interpretation of the functor to the interpretation of
the argument.

For instance, we will interpret λx � MAN � x � (of type ? e � t 9) as a function from in-
dividuals to truth values. The application λx � MAN � x � @MARY will be interpreted by
applying this function to the interpretation of MARY.

Moreover, given a model, we will choose as interpretation for λx � MAN � x � the function
that yields TRUE exactly for those members of the domain that are in the set inter-
preting the predicate MAN (the so-called characteristic function of that set). Hence,
the interpretation of λx � MAN � x � @MARY will be the same as the interpretation of the
β-reduced formula MAN(MARY) in our given model. Generally, choosing characteris-
tic functions as the interpretation of λ-abstractions of type ? e � t 9 , we can couple the
interpretation of λ-terms with the first-order interpretation of our goal formulae: We
can be sure that the interpretation of any well-typed application that can be β-reduced
to a first order formula will be the same as the interpretation of this formula itself.

Let’s add one final, more fundamental remark to our discussion. We have just seen
how simply typed λ-calculus allows us to give an interpretation of the λ-expressions
involved in semantic construction in terms of well-understood mathematical entities
(namely functions). This is a great achievment from the point of view of composition-
ality. Remember that one of the requirements made by the principle of composition-
ality (page 34) was that we should be able to give individual semantic interpretations
to the syntactic parts and sub-parts of the expressions in our language. Semantic con-
struction using simply typed λ-calculus fulfills this requirement in the particularily
strict sense of d-compositionality, thus even beyond the level of meaning representa-
tions: The interpretation in terms of functions which we’ve dicussed enables us to state
exactly which of the functions built up over the domain of our model corresponds to
any syntactic part of a sentence.

Then why do we use the untyped version?

But although very interesting from a theoretical perspective, the issues just discussed
are not nearly as important for understanding the λ-based semantic construction mech-
anism we’re going to implement. In particular:

� For a start, we do not care to interpret any λ-expressions before they’re fully
β-reduced. Also, we will not ask for the meaning of any individual parts of our
sentence relative to a model. Below sentence level, we will be happy with having
a meaning representation to work ourselves through to the whole sentence. Most
of the time, the first-order formula that we get after β-reducing is all that interests
us. So any arguments about interpreting unreduced λ-expressions aren’t of great
relevance for our purposes.

� As regards the guarantees about getting useful results after β-reduction that come
with simply typed λ-calculus: We will basically use our untyped version of λ-
calculus as if it was typed. All the (well formed) expressions we will encounter
would also be well typed in a typed λ-calculus. Thus we may safely take it for
granted that we can always reduce the meaning reprentations for sentences to

3.4. The Lambda Calculus 49

first order formulae. This is only due to our own discipline, we could do less
decent things with our untyped calculus (and the implementation we’re going to
base on it).

Implementing typed λ-calculus would require a lot of efforts particularily for managing
the type system. So we will use a disciplined approach to the untyped version instead.

3.4.5 Advanced Topics: Proper Names and Transitive Verbs

It looks as if there are clouds on the horizon. For example, while the semantic repre-
sentation of a quantifying NP such as ‘a woman’ can be used as a functor, surely the
semantic representation of an NP like ‘John’ will have to be used as an argument. Will
this problem throw a spanner in the works of our new semantic construction mecha-
nism?

Proper names

In fact, there’s no problem at all - if we only look at things the right way. We want
to use proper names as functors, the same way as quantified noun phrases. So let’s
simply keep this intended use in mind when designing the semantic representations
for proper names. It then all becomes a matter of abstracting cleverly. Indeed the λ-
calculus offers a delightfully simple functorial representation for proper names, as the
following examples show:

‘Mary’: λP� P@MARY

‘John’: λQ �Q@JOHN

Role-Reversing

From outside (i.e. if we only look at the λ-prefix) these representations are exactly like
the ones for quantified noun phrases. They are abstractions, thus they can be used as
functors in the same way. However looking at the inside, note what such functors do.
They are essentially instructions to substitute their argument in P (Q), which amounts
to applying their own arguments to themselves! Because the λ-calculus offers us the
means to specify such role-reversing functors, proper names can be used as functors
just like quantified NPs.

Transitive verbs

As an example of these new representations in action, let us build a representation
for ‘John loves Mary’. But before we can do so, we have to meet another challenge:
‘loves’ is a transitive verb, it takes an object and forms a VP. We will want to apply it
to its object-NP. And the resulting VP should be usable just like a standard intransitive
verb, we want to be able to apply the subject NP to it. This is what we know in advance.

Given these requirements, a λ-expression like the simple λu � λv� LOVE � u � v � (which
we’ve seen in Section 3.4.1) surely won’t do. After all the object NP combining with
a transitive verb is itself a functor. It would be inserted for u in this λ-expression,
but u isn’t applied to anything anywhere. So the result could never be β-reduced to a
well-formed first-order formula. How do we make our representation fit our needs this

50 Chapter 3. Lambda Calculus

time? Let’s try something like our role-reversing trick again; we’ll assign ‘loves’ the
following λ-expression:

λR � λz �=� R@λx � LOVE � z � x ��� .
An example

Thus prepared we’re now ready to have a look at the semantic construction for ‘John
loves Mary’. We can build the following tree:

See movie in HTML version.

John loves Mary (S)� λP� P@JOHN � @ � λX � λz �=� X@λx � LOVE � z � x ��� @ � λP� P@MARY ���

John (NP)
λP� P@JOHN

loves Mary (VP)
λX � λz �=� X@λx � LOVE � z � x ��� @ � λP� P@MARY �

loves (TV)
λX � λz �=� X@λx � LOVE � z � x ��� Mary (NP)

λP� P@MARY

How is this going to work? Let’s look at the application at the S-node, and think
through step by step what happens when we β-convert (page 43) it: Inside our complex
application, the representation for the object NP is substituted for X . It ends up being
applied to something looking like an intransitive verb (namely to λx � LOVE � z � x �). This
application is going to be no problem - it’s structurally the same we would get if our
object NP was the subject of an intransitive verb. So everything is fine here.

Now the remaining prefix λz makes the complete VP-representation also function like
that of an intransitive verb (from outside). And indeed the subject NP semantic rep-
resentation finally takes the VP semantic representation as argument, as if it was the
representation of an intransitive verb. So everything is fine here, too.

Trace the semantic construction!

Make sure you understand what is going on here by β-reducing the expression at the
S-node yourself!

3.4.6 The Moral

What λ-calculus gives us

Our examples have shown that λ-calculus is ideal for semantic construction in two
respects:

1. The process of combining two representations was perfectly uniform. We sim-
ply said which of the representations is the functor and which the argument,
whereupon combination could be carried out by applying functor to argument
and β-converting. We didn’t have to make any complicated considerations here.

3.4. The Lambda Calculus 51

2. The load of semantic analysis was carried by the lexicon: We used the λ-calculus
to make missing information stipulations when we gave the meanings of the
words in our sentences. For this task, we had to think accurately. But we could
make our stipulations declaratively, without hacking them into the combination
process.

Our observations are indeed perfectly general. Doing semantic construction with the
help of λ-calculus, most of the work is done before the actual combination process.

What we have to do...

When giving a λ-abstraction for a lexical item, we have to make two kinds of decisions:

1. We have to locate gaps to be abstracted over in the partial formula for our lexical
item. In other words, we have to decide where to put the λ-bound variables inside
our abstraction. For example when giving the representation λP� P@MARY for
the proper name ‘Mary’ we decided to stipulate a missing functor. Thus we
applied a λ-abstracted variable to MARY.

2. We have to decide how to arrange the λ-prefixes. This is how we control in
which order the arguments have to be supplied so that they end up in the right
places after β-reduction when our abstraction is applied. For example we chose
the order λP� λQ when we gave the representation λP� λQ �>" x � P@x ! Q@x � for
the indefinite determiner ‘a’. This means that we will first have to supply it with
the argument for the restriction of the determiner, and then with the one for the
scope.

...and how

Of course we are not totally free how to make these decisions. What constrains us is
that we want to be able to combine the representations for the words in a sentence so
that they can be fully β-reduced to a well-formed first order formula. And not just some
formula, but the one that captures the meaning of the sentence.

So when we design a λ-abstraction for a lexical item, we have to anticipate its potential
use in semantic construction. We have to keep in mind which final semantic represen-
tations we want to build for sentences containing our lexical item, and how we want to
build them. In order to decide what to abstract over, we must think about which pieces
of semantic material will possibly be supplied from elsewhere during semantic con-
struction. And in order to arrange our λ-prefixes, we must think about when and from
where they will be supplied. All this could be seen most clearly when we designed
the representation for the transitive verb ‘loves’. We had to consider that it would be
applied to its object NP and that the result of this application would then itself be an
argument, namely of the subject NP. And all the time, we had to keep in mind that we
wanted to arrive at formulae like LOVE � a � b � for sentences like ‘A loves B’.

For sidetrack-readers...

If you’ve read the sidetrack (page 45) on typed λ-calculus, you will remember that
there, the type system would help us with the kind of considerations just discussed.

52 Chapter 3. Lambda Calculus

In fact one way to think about the type system is to view it as a static, predetermined
encoding of how semantic material fits together. Also, remember the denotations that
were assigned to typed λ-expressions according to their type, in terms of functions. As-
signing such denotations, it is possible to ask whether a decision for one representation
instead of another one is semantically adequate. For instance, we may ask if it is more
adequate to interpret the proper name ‘Mary’ as Mary herself (or whatever we take
to be MARY in a given model), or as the set of all of Mary’s properties (characterised
by the function λP� P@MARY). Maybe our semantic intuitions help us in answering
such questions, or some deeper philosophical reasons commit us to one specific kind
of answer.

Summing up

For our purposes here the bottom line of all this is that devising lexical representations
will be the tricky part when we give the semantics for a fragment of natural language
using λ-calculus. But with some clever thinking, we can solve a lot of seemingly
profound problems in a very streamlined manner.

3.4.7 Accidental Bindings

Before we can put λ-calculus to use in an implementation, we still have to deal with
one rather technical point: Sometimes we have to pay a little bit of attention which
variable names we use. Suppose that the expression F in λV � F is a complex expression
containing many λ operators. Now, it could happen that when we apply a functor λV � F
to an argument A , some occurrence of a variable that is is free in A becomes bound
when we substitute it into F .

For example when we construct the semantic representation for the verb phrase ‘loves
a woman’, syntactic analysis of the phrase could lead to the representation:

λP� λy �=� P@λx � LOVE � y � x ��� @ � λQ � λR �=�'" y � Q@ � y �&! R@y ��� @λw�WOMAN � w ���
β-reducing three times yields:

λy �=� λR �=�'" y � WOMAN � y �&! R@y ��� @λx � LOVE � y � x ���
Notice that the variable y occurs λ-bound as well as existentially bound in this expres-
sion. In LOVE � y � x � it is bound by λy, while in WOMAN � y � and R it is bound by " y.
So far, this has not been a problem. But look what happens when we β-convert once
more:

λy �=�'" y � WOMAN � y �&! λx � LOVE � y � x � @y ���
LOVE � y � x � has been moved inside the scope of " y. In result, the occurence of y has
been ’caught’ by the existential quantifier, and λy doesn’t bind any occurence of a
variable at all any more. Now we β-convert one last time and get:

λy �=�'" y � WOMAN � y �&! LOVE � y � y �����
We’ve got an empty λ-abstraction, made out of a formula that means something like
‘A woman loves herself’. That’s not what we want to have. Such accidental bindings
(as they are usually called) defeat the purpose of working with the λ-calculus. The
whole point of developing the λ- calculus was to gain control over the process of per-
forming substitutions. We don’t want to lose control by foolishly allowing unintended
interactions.

3.4. The Lambda Calculus 53

3.4.8 Alpha-Conversion

But such interactions need never happen. Obviously at the heart of our problem lies
the fact that we used two variables named y in our representation. But λ-bound vari-
ables are merely placeholders for substitution slots. The exact names of these place-
holders do not play a role for their function. So, relabeling bound variables yields
λ-expressions which lead to exactly the same substitutions in terms of ’slots in the for-
mulas’ (much like relabeling bound variables in quantified formulas doesn’t change
their truth values).

Let us look at an example. The λ-expressions λx � MAN � x � , λy � MAN � y � , and λz � MAN � z �
are equivalent, as are the expressions λQ �>" x � WOMAN � x ��! Q@x � and λY �>" x � WOMAN � x ��!
Y@x � . All these expressions are functors which when applied to an argument, re-
place the bound variable by the argument. No matter which argument A we choose,
the result of applying any of the first three expressions to A and then β-converting
is MAN � A � , and the result of applying either of the last two expressions to A is" x � WOMAN � x �&! A@x � .

α-Equivalence

Two λ-expressions are called α-equivalent if they only differ in the names of λ-bound
variables. In what follows we often treat α-equivalent expressions as if they were
identical. For example, we will sometimes say that the lexical entry for some word is a
λ-expression E , but when we actually work out some semantic construction, we might
use an α-equivalent expression E � instead of E itself.

α-Conversion

The process of relabeling bound variables is called α-conversion . Since the result of α-
converting an expression performs the same task as the initial expression, α-conversion
is always permissible during semantic construction. But the reader needs to understand
that it’s not merely permissible to α-convert, it can be vital to do so if β-conversion is
to work as intended.

Returning to our intial problem, if we can’t use λV � F as a functor, any α-equivalent
formula will do instead. By suitably relabeling the bound variables in λV � F we can
always obtain an α-equivalent functor that doesn’t bind any of the variables that occur
free in A , and accidental binding is prevented.

So, strictly speaking, it is not merely functional application coupled with β-conversion
that drives the process of semantic construction in this course, but functional applica-
tion and β-conversion coupled with (often tacit) use of α-conversion. Notice we only
didn’t encounter the problem of accidental binding earlier because we (tacitly) chose
the names for the variables in the lexical representations cleverly. This means that
we have been working with α-equivalent variants of lexical entries all along in our
examples.

3.4.9 Summing Up

Let’s sum up what we have achieved. Our decision to move to the disciplined approach
of the λ-calculus was sensible. For a start, we don’t need to spend any time thinking

54 Chapter 3. Lambda Calculus

about how to combine two semantic representations - functional application and β-
conversion give us a general mechanism for doing so. Moreover, much of the real
work is now being done at the lexical level; indeed, even the bothersome problem
of finding a decent way of handling NP representations uniformly now has a simple
lexical solution.

What’s next?

For the remainder of this lecture, the following version of the three tasks listed earlier
(page 36) will be put into practise:

Task 1 Specify a DCG for the fragment of natural language of interest.

Task 2 Specify semantic representations for the lexical items with the help of the λ-calculus.

Task 3 Specify the translation R � of a syntactic item R whose parts are F and A with the
help of functional application. That is, specify which of the subparts is to be thought
of as functor (here it’s F), which as argument (here it’s A) and then define R � to be
F �@A � , where F � is the translation of F and A � is the translation of A . Finally, apply
β-conversion as a post-processing step.

3.5 Implementing Lambda Calculus

3.5.1 Representations

First, we have to decide how to represent λ-expressions in Prolog. Something as simple
as the following will do:

lambda(x,F)

Be careful!

According to our convention (page 20), x is a Prolog constant representing the variable
bound by the λ. F is (the Prolog representation of) either a first-order formula or a
λ-expression. Note that in the system we are going to implement, you will often see
Prolog variables in place of the x. In Section 3.5.3 you will see why.

Secondly, we have to decide how to represent concatenation. Let’s simply transplant
our @-notation to Prolog by defining @ as an infix operator:

:- op(950,yfx,@). % application

That is, we shall introduce a new Prolog operator @ to explicitly mark where functional
application is to take place: the notation F@A will mean ‘apply function F to argument
A’. We will build up our representations using these explicit markings, and then carry
out β-conversion when all the required information is to hand. So - as we discussed
above (page 43) - the @-operator will finally take over the role of the +-operator in
our first attempt (page 39) at semantic construction, and β-conversion will replace the
post-processing formerly done by insertArgs/2.

3.5. Implementing Lambda Calculus 55

?- Question!

We could as well perform β-conversion steps interleaved with the construction of the
application. For instance, we could always fully reduce the λ-expressions at the nodes
of our syntactic trees before going on. Why? Look again at one of our previous exam-
ples and see how it works out if you β-convert at different stages!

3.5.2 Extending the DCG

Let’s see how to use this notation in DCGs. We’ll deal with the rules first. Actually,
there’s practically nothing that needs to be said here. If we work with rules in the
manner suggested by (our refined version of) Task 3 (page 53), all we need is the
following:

See file firstLambda.pl.

s(NP@VP)--> np(NP), vp(VP).

np(PN)--> pn(PN).

np(Det@Noun)--> det(Det), noun(Noun).

vp(IV)--> iv(IV).

vp(TV@NP)--> tv(TV), np(NP).

The unary branching rules just percolate up their semantic representation (here coded
as Prolog variables NP, VP and so on), while the binary branching rules use @ to build
a semantic representation out of their component representations. This is completely
transparent: we simply apply function to argument to get the desired result.

3.5.3 The Lexicon

The real work is done at the lexical level. Nevertheless, the lexical entries practically
write themselves:

See file firstLambda.pl.

noun(lambda(X,siamesecat(X)))--> [siamese,cat].

noun(lambda(X,woman(X)))--> [woman].

iv(lambda(X,walk(X)))--> [walks].

tv(lambda(X,lambda(Y,X@lambda(Z,love(Y,Z)))))--> [loves].

If you do not remember the somewhat difficult representation of B&C s, look at Sec-
tion 3.4.5 again.

56 Chapter 3. Lambda Calculus

Prolog Variables?

Note that we break our convention (page 20) of representing FO variables by constants
here. A clever idea, because this way we can do without implementing α-conversion.
We will see why in Section 3.5.7.

And here’s the code stating that λP� P@JOHN is the translation of ‘John’, and λP� P@MARY

the translation of ‘Mary’:

pn(lambda(P,P@john))--> [john].

pn(lambda(P,P@mary))--> [mary].

Recall that the λ-expressions for the determiners ‘every’ and ‘a’ are λP� λQ � � x �=� P@x �
Q@x � and λP� λQ �>" x �=� P@x ! Q@x � . We express these in Prolog as follows:

det(lambda(P,lambda(Q,forall(X,(P@X)>(Q@X)))))--> [every].

det(lambda(P,lambda(Q,exists(X,(P@X)& (Q@X)))))--> [a].

3.5.4 A First Run

See file firstLambda.pl.

Now, this makes semantic construction during parsing extremely easy: we simply use
@ to record the required function/argument structure. (The new DCG with additional
argument is part of the file firstLambda.pl.) Here is an example query:

?- s(Sem,[mary,walks],[]).

Sem = lambda(_G358, _G358@mary)@lambda(_G364, walk(_G364))

Or generate the semantics for ‘John loves Mary’: s(Sem,[john,loves,mary],[]).

?- Question!

Where do the anonymous variables in the output of our predicate (for instance _G358

and _G364 in the above example) come from?

So now we can construct λ-terms for natural language sentences. But of course, we
need to do more work after parsing, for we certainly want to reduce these complicated
λ-expressions into readable first-order formulas by carrying out β-conversion. Next,
we will implement the predicate betaConvert/2, which will do the job.

3.5.5 Beta-Conversion

The first argument of betaConvert/2 is the expression to be reduced and the sec-
ond argument will be the result after reduction. Let’s look at the three clauses of the
predicate in detail.

3.5. Implementing Lambda Calculus 57

See file betaConversion.pl.

betaConvert(Var,Result):-

var(Var),

!,

Result=Var.

betaConvert(Functor@Arg,Result):-

compound(Functor),

betaConvert(Functor,lambda(X,Formula)),

!,

substitute(Arg,X,Formula,BetaConverted),

betaConvert(BetaConverted,Result).

The first clause of betaConvert/2 simply records the fact that variables cannot be
further reduced.

The second clause is for the cases where ‘real’ β-conversion is done, i.e. where a λ
is thrown away and all occurences of the respective variable are replaced by the given
argument. In such cases

1. The input expression must be of the form Functor@Arg,

2. The functor must be compound,

3. The functor must be (recursively!) reducible to the form lambda(X,Formula)

(and is in fact reduced to that form before going on).

If these three conditions are met, the substitution is made and the result can be further
β-converted recursively.

3.5.6 Beta-Conversion Continued

Finally, there is a clause of betaConvert/2 that deals with those expressions that do
not match the first two clauses. Note that the first two clauses both contain cuts. So,
this last clause will deal with all (and only) the non-variable expressions whose functor
is not (reducible to) a λ-abstraction. The only well-formed expressions of that kind
are formulas like walk(john) & (lambda(X,talk(X))@john) and atomic formulas
with arguments that are possibly still reducible.

betaConvert(Formula,Result):-

compose(Formula,Functor,Formulas),

betaConvertList(Formulas,ResultFormulas),

compose(Result,Functor,ResultFormulas).

This clause breaks down such expressions and recursively reduces their arguments or
subformulas. This is done with the help of:

betaConvertList([],[]).

betaConvertList([Formula|Others],[Result|ResultOthers]):-

betaConvert(Formula,Result),

betaConvertList(Others,ResultOthers).

58 Chapter 3. Lambda Calculus

?- Question!

We said that the last clause handles atomic formulas with arguments that are still re-
ducible. Given our grammar and lexicon, can we ever get this kind of expressions?

Here is an example query with β-conversion:

?- s(Sem,[mary,walks],[]), betaConvert(Sem,Reduced).

Sem = lambda(A,A@mary)@lambda(B,walk(B))

Reduced = walk(mary)

Try it for ‘John loves Mary’: s(Sem,[john,loves,mary],[]), betaConvert(Sem,Res).

?- Question!

Above, we said that complex formulas like walk(john) & (lambda(X,talk(X))@john)

are reduced to their subformulas (which are then in turn β-converted) by the last clause
of betaConvert/2. Explain how this is achieved at the example of this particular
formula.

?- Question!

In Chapter 6, we will learn about a way of semantics construction that differs in some
respects from what we are doing now with the λ-calculus. Without going into de-
tail, (sub-)formulas might be of the form walk@john there. Nevertheless, we will
use the predicate betaConversion/2 given above to reduce formulas containing λs.
Now, the question is: Which of the clauses of betaConvert/2 handles queries like
betaConvert(walk@john,Res)? What is the result?

Our implementation of betaConvert/2 uses a version of the Sterling and Shapiro
substitute/4 predicate. Because this is an important predicate, we recommend that
you look at its definition in Section 12.1.

3.5.7 An Afterthought on Alpha-Conversion

One thing that apparently still needs to be done is to implement α-conversion. Recall
from Section 3.4.8 that α-conversion can prevent accidental variable bindings in the
course of β-reduction by renaming variables.

In principle, things can go wrong...

Now, as we have a module for β-reduction at our disposal, let’s first practically see
whether things can in fact go wrong because we choose inadequate variable names.
Below, you will find the final β-reduction step of the semantics construction for ‘Every
woman loves a siamese cat’. Here are the translations of the two (sub-)phrases where
the variables have been named the same:

‘Every woman’ lambda(X,forall(Y,woman(Y)>(X@Y)))

‘loves a siamese cat’ lambda(X,exists(Y,siamesecat(Y)& love(X,Y)))

If we form an application out of these two expressions and β-reduce it, we get this:

3.6. Running the Program 59

?- betaConvert(lambda(X,forall(Y,woman(Y)>(X@Y)))@lambda(X,exists(Y,siamesecat(Y)& love(X,Y))),R).

R = forall(Y,woman(Y)>exists(Y,siamesecat(Y)& love(Y,Y)))

We’ve already seen that problem in Section 3.4.8: The formula does not represent the
meaning we intended. It rather says something like ‘There is a self-loving siamese cat
for every woman.’

So, do we run into trouble with our approach if we don’t use α-conversion?

...but not in our implementation!

No, we don’t! The representations in the example above were hand-written. In our
implementation, all representations coming from the lexicon contain new and fresh
PROLOG variables. If you look at the lexical entries (page 55) again, you can see
that it is not possible to build any two representations using the same variable names.
Check what representations our approach generates for ‘Every woman’ and ‘loves a
siamese cat’: np(NP,[every,woman],[]),vp(VP,[loves,a,siamese,cat],[]).

(We conjoin the queries in order to execute them in one go). Are there any shared
variables between the two phrases?

Prolog Variables

Once again: Using Prolog variables for first-order variables during semantic construc-
tion violates our convention (page 20) - strictly speaking. But now we can see what we
gain breaking that rule: We always automatically get brand new variables with every
lexical lookup, without ever having to generate or compare them. Thus we need never
bother with α-conversion - and all for free. Well, almost for free. If we want to work
with our formulas afterwards, we have to convert them into our standard format. In
the next Section (page 59) you will see that this is easily done by one small helper
predicate.

Project

In !!!UNEXPECTED PTR TO EX_EX.LAM.ALPHY!!! you are asked to implement
α-conversion.

3.6 Running the Program

We’ve already seen a first run of our semantically annotated DCG, and we’ve imple-
mented a module for β-conversion. Now we shall put them together in a predicate
firstLambda/0 to get our first real semantic construction system. Here’s the code of
firstLambda/0:

firstLambda :-

readLine(Sentence),

s(Formula,Sentence,[]),

resetVars,vars2atoms(Formula),

betaConvert(Formula,Converted),

printRepresentations([Converted]).

60 Chapter 3. Lambda Calculus

This predicate first converts the keyboard input into a list of Prolog atoms (using
readLine/0 (page 201) form comsemLib.pl). Then it uses the semantically an-
notated DCG from firstLambda.pl and tries to parse a sentence.

So far, so good. But what are the two calls resetVars,vars2atoms(Formula) for?
The reason why we have to include them is that we’ve broken our representational
convention for variables (we’ve explained why in Section 3.5.7). Hence the Formula

coming from the call s(Formula,Sentence,[]) may still contain Prolog variables.
For instance when we construct the semantics for the sentence ‘John walks’, we will
get something like lambda(_G365,_G365@john)@lambda(_G371,walk(_G371)).

Undo Variable Cheat

So we undo our little cheat before going on. Calling resetVars,vars2atoms(Formula)

(see Section 12.1) instantiates the Prolog variables in Formula with new (and consis-
tently distinct) variables-as-atoms, according to our convention (page 20). Finally, the
resulting λ-expression is β-converted by our predicate betaConvert/2. In the last
step, the resulting formula is printed out (the predicate printRepresentations/1

used for this purpose is documented here (page 201)).

Before we turn to the exercises for this chapter, we give a listing of the files that contain
the code discussed in this chapter. You run our λ-based semantic construction program
by:

1. Consulting the file runningFirstLambda.pl, which contains the driver
predicate we’ve just seen:

?- [runningFirstLambda].

2. Calling the driver predicate:

?- firstLambda.

3. Entering a sentence of your choice at the prompt.

Code For This Chapter

See file usingDCG.pl. Our very first experimantal DCG.
See file firstAttempt.pl. The code for our first attempt at semantic construction, using the +-operator and insertArgs/2.
See file firstLambda.pl. DCG for semantic construction using λ-calculus.
See file betaConversion.pl. β-conversion.
See file runningFirstLambda.pl. Driver predicate for our first lambda approach.
See file signature.pl. Generating new variables
See file comsemLib.pl. Auxiliaries.
See file comsemOperators.pl. Operator definitions.

3.7 Exercises

Exercise 3.1 Add a clause to insertArgs/2 (see Section 3.3.2) in firstAttempt.pl
that handles quantified sentences like ‘A man walks.’

3.7. Exercises 61

[Hint: If you follow the pattern of the clauses of insertArgs/2 already given, you may
run into trouble with your new clause since terms like exists(_A,_B&_C)+man(_D)+walk(_E)
also match on one of the first two clauses. You may either catch this inside the respec-
tive clause or simply put your clause above the other clauses.]

Exercise 3.2 Look at the semantics construction in Section 3.4.5 again. Work through
the functional applications and β-reductions required to build the VP and S represen-
tations. Make sure you understand the role-reversing idea used in the TV semantic
representation.

Exercise 3.3 Starting off from our treatment of transitive verbs (Section 3.4.5), how
would you handle ditransitive verbs such as ‘offer’? Give a semantic representation
for ‘offer’, as well as semantically annotated grammar rules to analyse sentences like
‘Mary offers John a siamese cat.’

Exercise 3.4 Find a suitable λ-expression for the determiner ‘no’ and add it to our
implementation of λ-calculus. Test your solution with sentences like ‘No man walks.’

Extend our implementation of λ-based semantic construction accordingly.

Exercise 3.5 [This is a mid-term project]

See file betaConversion.pl.

We could prevent accidental variable bindings as shown in Section 3.5.7 once and for
all if we had a module doing α-conversion.

Design such a module and include it as a preprocessing step in a new driver predicate
for β-conversion:

alphaBetaConvert(F@A,Result):-

alphaConvert(F,ConvertedF),

betaConvert(ConvertedF@A,Result).

Please comment your code and provide a short documentation. The documentation
should include a brief description of the problem and of your solution.

Test your module on some examples and include your results in the documentation.
Does your program support the use of Prolog atoms to represent first order variables
(i.e could you for instance write lambda(x walks(x)) instead of lambda(X walks(X)))?

Please contact3 us if you would like to do this exercise as your mid-term project.

3mailto://stwa@coli.uni-sb.de

62 Chapter 3. Lambda Calculus

4

Towards a Modular Architecture

4.1 Architecture of our Grammar

We have adopted a fairly simple grammar architecture that has four (2x2) parts: a
lexicon, DCG-rules, semantic macros, and (semantic) combination rules. Before we
go through each of these parts in detail, we will give an overview over what exactly the
tasks are of each of these components.

The figure below shows how our system analyses the sentence ‘John walks’:

Static throughout the course Different for different approaches (e.g. λ-calculus here)

DCG � D

E�F � � C F
F�E � � G C

lexicon

combine � H
D�IKJ � λ F � F �+L�MON&P7� @λ Q7� R7S&TVU���QW���

P&X D�IKJ � λ F � F �+L&MVN&P7��� � � Y X D�IKJ � λ Q7� R7S&TVU���QW���
X&P D�IKJ � λ F � F �+L&MVN&P7��� � � ZVY3D�IKJ � λ Q7� R7S&TVU���QW���

semantic Macros

John walks

Syntax...

Look at the left-hand side of the figure. This side shows the syntactic parts of the
grammar. The syntactic analysis consists of two steps: First, a lexicon look-up tells us
that ‘John’ is a proper name (

F�E
) and that ‘walks’ is an intrantitive verb (G C). Second,

the two non-branching DCG-Rules
E&F � F&E

and C F � G C tell us that ‘John’ is also
a noun phrase (

E&F
) and that ‘walks’ is also a verb phrase (C F). Finally, the DCG-ruleD � E&F C F tells us that ‘John walks’ in fact is a sentence. A grammar that’s as simple

as that on the side of syntax will do for our purposes.

64 Chapter 4. Towards a Modular Architecture

...and Semantics.

Now look at the right-hand side of the figure. Here, you see the semantic parts of
the grammar. The semantic macros for proper names (pnSem(...)) and for intran-
sitive verbs (ivSem(...)) provide us with the semantic representations of the lexi-
cal items, in this case: λP� P � JOHN � and λx �WALK � x � . Then, two so-called combine-
rules (there is one for each DCG-rule) tell us how to obtain the semantic representa-
tions npSem(...) and vpSem(...) out of the semantic representations pnSem(...)

and ivSem(...), respectively. Finally, there is a combine-rule that tells us how to
combine these semantic representations to end up with the semantic representation
of the sentence. At present, we’re using functional application for this task and get:
λP� P � JOHN � @λx �WALK � x � .
To get WALK � JOHN � , a postprocessing step is neccessary, namely doing β-reduction.

The division of our grammar into syntactic and semantic parts will make life easier for
us as semanticists, because once we have specified the lexical entries for the words
belonging to the syntactic categories of interest, and once we have formulated the
DCG-rules that license buliding all complex phrases we want to deal with, we need
not bother with syntax any more. Instead, we can concentrate on the semantic macros
that give meaning to the lexical entries, and we can design the combine rules so that
they adequately compute the meaning of larger phrases out of the meaning of their
parts.

4.2 The Syntax Rules

4.2.1 Ideal Syntax Rules

DCG

Here are some DCG rules that license a number of semantically important construc-
tions: Proper names, determiners, pronouns, relative clauses, the copula construction,
and coordination. In addition, the first two rules allow us to form discourses by string-
ing together sentences.

The DCG we would like to use

s--> [if], s, [then], s.

s--> np, vp.

np--> np, coord, np.

np--> det, noun.

np--> pn.

np--> whnp.

np--> whdet, noun.

noun--> noun, coord, noun.

noun--> noun.

noun--> adj, noun.

noun--> noun, pp.

4.2. The Syntax Rules 65

noun--> noun, rc.

noun--> noun, coord, noun.

vp--> vp, coord, vp.

vp--> v(fin).

vp--> v(fin).

vp--> mod, v(inf).

v(I)--> v(I), coord, v(I).

v(I)--> tv(I), np.

v(I)--> iv(I).

v(fin)--> cop, np.

v(fin)--> cop, neg, np.

pp--> prep, np.

rc--> relpro, vp.

However these are not quite the rules we’re actually going to use, for the following
reason: The coordination rules are left-recursive, hence the standard Prolog DCG in-
terpreter will loop when given this grammar. As we do want to give coordination
examples while not implementing any parser that deals with left-recursive rules, we’re
going to adopt adopt an easy fix for this problem.

4.2.2 The Syntax Rules we will use

DCG

Luckily, there’s a simple trick that will make a limited form of coordination available
to us. We’ll add an auxiliary set of categories named np2, np1, v2, v1, etc. These aux-
iliary categories allow us to specify left-recursive rules to a certain depth of recursion.
For example, the rules which have something to say about NPs will be replaced by the
following:

A DCG allowing only limited recursion.

np2--> np1.

np2--> np1, coord, np1.

np1--> det, noun2.

np1--> pn.

Similarly, the rules controlling nouns will become:

noun2--> noun1.

noun2--> noun1, coord, noun1.

noun1--> noun.

noun1--> noun, pp.

noun1--> noun, rc.

66 Chapter 4. Towards a Modular Architecture

While this is a rather blunt way of dealing with the problem of left recursion in a
grammar, it enables us to parse the examples we want without having to implement a
more sophisticated parser.

Another shortcoming of these rules should be mentioned. As you might have noticed
by now, we’ve imposed limits on inflectional morphology—all our examples are relent-
lessly third-person present-tense. This is a shame, since tense and its interaction with
temporal reference is a particularly rich source of semantic examples. Nonetheless, we
shall not be short of interesting things to do.

See file englishGrammar.pl.

But for all its shortcomings, this small set of rules (to be found in englishGrammar.pl)
assigns tree structures to an interesting range of English sentences:

‘Mary loves every owner of a siamese cat.’

‘John or Mary smokes.’

‘Every man that loves a woman visits a therapist.’

‘John does not love a therapist or woman that smokes.’

‘If a therapist talks then a man works.’

If you want to test the grammar, you will have to do this within a semantic framework,
e.g. λ-calculus: lambda([mary,knows,every,owner,of,a,siamese,cat],Sem).

4.3 The Semantic Side

4.3.1 The Semantically Annotated Syntax Rules

Here we go providing the clean interface between syntax and semantics construction
that we’ve just promised. Recall that so far, we’ve simply been using concatenation
(indicated by the @-operator) to combine semantic representations while parsing a sen-
tence, then β-converting the result in a subsequent post-processing step.

In our examples before (page 55), concatenation using the @-operator was encoded
directly in the DCG. For instance, the s-rule looked like this:

s(NP@VP)--> np(NP), vp(VP).

Each DCG rule is paralleled by a combine-rule.

In view of our grammar engineering principles, this is not a good practice. The crucial
keywords here are modularity and reusability. We shouldn’t code one particular mode
of semantic construction in the syntactic rules. Instead, we will encapsulate the partic-
ular method in use into a generic predicate combine/2. Each DCG rule will include
a call to this predicate (to call a predicate with a DCG rule, we have to put it in curly
brackets. The predicate is then called whenever the respective rule is applied). The
following examples show what our DCG rules now look like:

4.3. The Semantic Side 67

DCG combine

s1(S1)--> np2(NP2), vp2(VP2), {combine(s1:S1,[np2:NP2,vp2:VP2])}.

np1(NP1)--> det(Det), noun2(N2), {combine(np1:NP1,[det:Det,n2:N2])}.

np1(NP1)--> pn(PN), {combine(np1:NP1,[pn:PN])}.

The first argument of combine/2 is always the semantic representation passed on to the
superordinate phrase. Now let’s look at the way we specify the second argument. We
use a little Prolog trick here: In order to uniformly have a binary combine/2, no matter
how many daughters the syntax rule at hand licenses, we make the second argument
of combine/2 a list. On this list, we put the semantic representations of the daughters,
each one tagged with its syntactic category. So there’s one item on this list if we are in
a unary syntax rule, and two if we are in a binary one.

As a result of our encapsulation strategy, changing the mode of semantic construction
is now solely a matter of changing the implementation of combine/2, whereas the
DCG itself will always remain as shown above. Additionally, we will often need to
provide some postprocessing capabilities. These may of course also have to be imple-
mented differently for different semantic construction methods. But given our modular
architecture, they can simply be plugged in and out behind the modules we’re looking
at right now (we will see below (page 72) how all of this is done at the example of
β-reduction).

See file englishGrammar.pl.

The complete set of annotated DCG rules we will use in this course can be found in
englishGrammar.pl.

4.3.2 Implementing combine/2 for Functional Application

combine

Using the predicate combine/2, we have factored the task of combining semantic rep-
resentations out of the syntax rules. Let’s illustrate what we’ve achieved at an example.
As a case study, we will implement the combination technique we’ve got used to by
now: Functional application. So the task is simply building the obvious ‘apply the
function to the argument statements’ expressed with the help of @. How do we have to
define combine/2 for this purpose? Take a look at the s-rule of our grammar:

See file englishGrammar.pl.

s1(S1)--> np2(NP2), vp2(VP2), {combine(s1:S1,[np2:NP2,vp2:VP2])}.

Look at the call to combine/2 in the curly brackets. The first argument contains the
semantics of the sentence (tagged s1), the second argument contains a list with the
semantics of the NP and the VP (tagged np1 and vp1 respectively).

The purpose of the tags contained within these arguments is to select an appropriate
clause of the predicate combine/2. We define the combine/2 predicate for lambda
calculus in lambda.pl. So let us start by looking the first clause of combine/2 that
goes with the syntax rule given above. It unifies S with NP@VP. This looks as follows:

68 Chapter 4. Towards a Modular Architecture

combine(s1:(NP@VP),[np2:NP,vp2:VP]).

The clause of combine/2 that goes with the np rule

np1(NP1)--> det(Det), noun2(N2), {combine(np1:NP1,[det:Det,n2:N2])}.

is similarily straightforward:

combine(np1:(DET@N),[det:DET,n2:N]).

The unary rules, of course, are even simpler, for they merely pass the input representa-
tion up to the mother node. For example:

combine(np2:X,[np1:X]).

goes with

np2(NP2)--> np1(NP1), {combine(np2:NP2,[np1:NP1])}.

For all combine rules see See file lambda.pl.

Note again the advantage of using a list of tagged semantic representations as the sec-
ond argument (i.e. the input) of combine/2: We’ve been able to uniformly give clauses
for one and the same (binary) predicate for combining the two input representations in
the binary s and np-rules, as well as for passing on the single input representation in
the unary np-rule. Guided by matching the tags and lengths of the input lists, Prolog
will always select the right clause for us automatically.

?- Question!

Recall our first attempt at semantic construction with extended DCGs. There (page 39),
we used the predicate insertArgs/2 to postprocess terms glued together with +.
Doesn’t the predicate combine/2 here do exactly the same with λ-terms? Why don’t
we run into the same trouble as with insertArgs/2?

4.4 Looking Up the Lexicon

4.4.1 Lexical Rules

lexicon

The combinatorial part of our grammar is connected to the lexicon via the so-called
lexical rules. These are the grammar rules that apply to terminal symbols, the actual
strings in the input of the parser. They need to call on to the lexicon to check if a string
belongs to the syntactic category searched for, and retrieve its semantic representation.

noun(N)--> {lexicon(noun,Sym,Word,_),nounSem(Sym,N)}, Word.

4.4. Looking Up the Lexicon 69

Semantic Macros

The code that goes with each lexical DCG rule consists of two calls: One to a lexicon/4
predicate, and one to a binary so-called semantic macro (nounSem/2 in the example).
The lexicon/4-call does the actual lexical lookup: If it finds Phrase (a list of atoms
coming from the input sentence. Most of the time this list will of course contain only
one item.) in the category given as first argument, it returns a core semantic represen-
tation in Sym. As we shall see below (page 69), such a core representation is nothing
else than a predicate or constant symbol (hence the variable name Sym). This symbol
is then further processed by the semantic macro. In our example, the semantic macro
nounSem/2 is used to construct the actual semantic representation for a noun.

Each lexical category is associated with one semantic macro. Using such macros, we
can set up the lexicon as well as the lexical rules totally independent from the semantic
theory. Note that we’re now simply re-doing on the lexical level what we did when
we introduced the combine/2-calls to our combinatorial rules: We’re factoring out the
specific types of structure required by changing semantic formalisms into a (set of)
interface predicates. This way, we encapsulate this structure and separate it from all
other, more or less static information. And again, to change the semantic formalism we
will simply re-implement our interface predicates (i.e. the semantic macros) - that’s it.

See file englishGrammar.pl.

The lexical DCG rules can be found at the bottom of englishGrammar.pl.

4.4.2 The Lexicon

lexicon

Our lexicon declaratively lists information about the words belonging to most syntactic
categories in a very basic form. Technically, it consists of a lot of lexicon/4-facts.
Thus the general format of a lexical entry is:

lexicon(Cat,Sem,Phrase,Misc).

Here Cat is the syntactic category, Sem the core semantic information introduced by the
phrase (normally a relation symbol or a constant), Phrase the string of words that span
the phrase, and Misc miscellaneous information depending on the type of entry. In
particular, Misc may list gender information for nouns, proper names and inflectional
information for verbs, etc.

Typical entries for intransitive verbs are:

lexicon(pro,nonhuman,[it],[]).

lexicon(pro,male,[him],[]).

lexicon(iv,purr,[purr],inf).

lexicon(iv,smoke,[smokes],fin).

70 Chapter 4. Towards a Modular Architecture

Nouns are listed in the following format:

lexicon(noun,woman,[woman],[]).

lexicon(noun,siamesecat,[siamese,cat],[]).

See file englishLexicon.pl.

A complete list of our lexical rules is to be found in the file englishLexicon.pl.
All these rules will work for us unchanged throughout the course.

4.4.3 ‘Special’ Words

lexicon Semantic Macros

There are two classes of words that get a special treatment in our framework:

1. First, look at the following lexicon/4 facts for determiners:

lexicon(det,_,[every],uni).

lexicon(det,_,[a],indef).

Note that these entries contain no semantic information whatsoever. This is be-
cause the semantic contribution of determiners is not simply a constant or pred-
icate symbol, but rather a relatively complex expression that is expressed dif-
ferently in different formalisms. Hence we shall specify the semantics of these
categories in the semantic macros alone.

2. Secondly, a small number of important words - in particular, copula and the verb
phrase modifier construct ‘does not’ - are not listed in the lexicon at all. This is
because they are not associated with either a relation symbol or a constant, and
there’s no additional information we would like to list for them. For such words,
a lexicon/4 fact would simply list the word form as Phrase entry. Instead, we
will check their word form directly in our lexical rules (or as one also says: we
treat them syncategorematically). For example, the following rule handles verb
phrase negation:

neg(Neg)--> [not], {modSem(neg,Neg)}.

Thus here the semantic macros will again be the sole source of semantic infor-
mation.

In !!!UNEXPECTED PTR TO EX_EX.ARCHITECTURE.COPULA!!!, you are asked
to find out how copula constructions are handled in our approach.

4.4. Looking Up the Lexicon 71

4.4.4 Semantic Macros for Lambda-Calculus

Semantic Macros

Let’s now turn to our case study again: semantic construction with λ-calculus and
functional application. We saw in the last chapter (page 39) that using functional ap-
plication and β-conversion more or less reduces the process of combining semantic
representations to an elegant triviality, while it shifts most of the semantic load to the
lexical component. Now the only semantic information that our lexicon/4-facts sup-
ply are the relevant constant and relation symbols. So our semantic macros are where
the real work will be done. Basically, they will specify the templates for the abstraction
patterns associated with different lexical categories. Let’s now implement the semantic
macros needed for λ-calculus. Here are some examples:

Nouns and proper names

nounSem(Sym,lambda(X,Formula)):-

compose(Formula,Sym,[X]).

The first macro, nounSem/2, builds a semantic representation for any noun given the
predicate symbol Sym, turning this symbol into a formula λ-abstracted with respect to
a single variable. For example, given the predicate symbol man, it will return the λ-
abstraction lambda(X,man(X)). The scope of the abstraction is built using compose/3

to incorporate the given predicate symbol into a well-formed open formula. The se-
mantic macro for proper names (pnSem/2) is still simpler: It constructs the kind of
λ-expression discussed above (page 49) and doesn’t even need to call compose/3 for
this purpose.

Verbs

Let’s have a look at the macros for verbs next. The one for intransitive verbs is very
straightforward:

ivSem(Sym,lambda(X,Formula)):-

compose(Formula,Sym,[X]).

In fact, the macro does exactly the same as nounSem/2. This is not surprising at all -
after all the λ-expressions we saw (page 44) for intransitive verbs are also exactly like
the ones for nouns.

Finding the right abstraction pattern for transitive verbs turned out (page 49) to be a
little more involved. Nevertheless now we’ve got it, this pattern too translates into a
semantic macro without a glimpse:

tvSem(Sym,lambda(K,lambda(Y,K @ lambda(X,Formula)))):-

compose(Formula,Sym,[Y,X]).

This macro is again similar to that for nouns, except that it handles two variables rather
than just one. Additionally, it resembles the macro for proper names in the way it
incorporates our well known role-reversing trick.

72 Chapter 4. Towards a Modular Architecture

Special words

As we’ve already mentioned, our grammar also deals with some ‘special’ words, words
that do not have a value for a predicate or constant symbol specified in the lexicon. De-
terminers are such words - and here are the macros for the indefinite and the universal
one. They’re basically just the old-style ‘lexical entries’ we used in Section 3.5.3:

detSem(uni,lambda(P,lambda(Q,forall(X,(P@X)>(Q@X))))).

detSem(indef,lambda(P,lambda(Q,exists(X,(P@X)&(Q@X))))).

These macros are self-contained in that they provide a complete semantic representa-
tion starting from no input. While the first argument does have a value, this is only a tag
that helps Prolog select the right clause. It does not occur in the output representation.

All semantic macros can be found in See file lambda.pl.

For a complete listing of the macros we have been discussing, see the file lambda.pl.
We shall see more types of semantic macros as we work our way through the course.
But let’s emphasize: From now on, we will always use the lexicon and the rules listed
above. The primary locus of change will be the semantic macros and the implementa-
tion of combine/2.

4.5 Lambda at Work

Beta-reduce afterwards

By now, we have seen all ingredients of our core system in detail, and we’ve provided
almost all of the neccessary plug-ins for λ-based semantic construction. Almost all:
Because remember that we still need to post-process the semantic representations our
grammar produces, meaning we have to β-reduce them. Luckily, we already have the
predicate betaConvert/2 from the last chapter at our avail for this purpose.

Plugging together

What’s next? Let’s plug it all together and provide a user-interface! The predicate
lambda/0 will be our driver predicate:

lambda :-

readLine(Sentence),

parse(Sentence,Formula),

betaConvert(Formula,Converted),

resetVars,vars2atoms(Formula),

printRepresentations([Converted]).

parse(Sentence,Formula):-

s2(Formula,Sentence,[]).

4.6. Exercises 73

First, readLine(Sentence) reads in the input (see Section 12.1). Next, parse(Sentence,Formula)
tests whether this input is accepted by our grammar as a sentence (the predicate simply
calls our DCG to parse a phrase of category s2). If the input is a sentence, the λ-
expression representing its meaning is returned in Formula. For example, for the input
‘Tweety smokes.’, we get the output lambda(A, A@tweety)@lambda(B, smoke(B)).
This expression is then β-converted, and finally all remaining Prolog variables in it are
replaced by atoms.

Check it out!

Our driver predicate lambda/0 is contained in the module lambda, which is the main
module for λ-calculus. Below, we give a listing of all modules that are used by lambda.
But before that, here is an example call for the sentence ‘A therapist loves a siamese
cat’: lambda([a,therapist,loves,a,siamese,cat],Sem),write(Sem).

All modules used by lambda.pl

See file lambda.pl. The driver predicate; definition of the combine-rules and the lexical macros for λ-calculus.
See file comsemOperators.pl. Operator definitions.
See file englishGrammar.pl. The DCG-rules and the lexicon (using module englishLexicon). From here, the combine-rules and lexical macros defined by lambda are called.
See file englishLexicon.pl. The lexical entries for a small fragment of English.
See file betaConversion.pl. β-conversion.
See file comsemLib.pl. Auxiliaries.
See file signature.pl. Generating new variables
See file readLine.pl. Reading the input from stdin.

4.6 Exercises

Exercise 4.1 Find out how copula verbs are handled in the lexicon and grammar,
and how our implementation generates the semantic representations for sentences like
‘Mary is a therapist’ and ‘Mary is not John’. You may either hand in your solution in
(hand-)written form or send us a an E-mail. In the latter case, you can use the Prolog
notation for λ-terms. E.g. for ‘John walks’, the solution might look like this:

John ~> lambda(A,A@john)

walks ~> lambda(B,walk@B)

John walks ~> lambda(A,A@john)@lambda(B,walk(B))

...

<=> walk(john).

Exercise 4.2 Add a treatment of ditransitive verbs such as ‘offer’ to the implementa-
tion discussed in this chapter. Use the following formalization as a starting point:

λRλOλg �O@λo � R@λr � OFFER � g � o � r ���

74 Chapter 4. Towards a Modular Architecture

Hint: Move along the lines of transitive verbs. First specify the lexicon/4-fact and
the lexical and phrasal DCG rules. Then specify the semantic macro and finally design
an appropriate combine rule. Don’t forget the brackets in your complex applications,
e.g. ((A@B)@C)!

Test your solution with sentences like ‘Mary offers John a siamese cat.’

Exercise 4.3 Find a suitable λ-expression for the determiner ‘no’ (or use what you’ve
thought out in !!!UNEXPECTED PTR TO EX_EX.LAM.NO!!!) and add it to our im-
plementation. Test your solution with sentences like ‘No man walks.’

[Hint: remember the special treatment of determiners!]

Exercise 4.4 Extend our implementation such that it covers negated sentences like
‘It is not the case that Mary walks.’

Hint: Find out how if-then-sentences are treated.

Exercise 4.5 This is an important exercise!

Test the coverage of our system. Try to find some sentences where the semantic rep-
resentations returned by our implementation are not satisfactory. Are the problems
due to our implementation, or due to the mechanism of λ-based semantic construction
itself?

Exercise 4.6 [Mid-term project]

Localize the system we’ve implemented. That is, take it to a language of your choice by
adapting the lexicon and grammar accordingly. The range of constructions and phe-
nomena covered should be the same or comparable to what is covered by the English
version we’ve discussed. If you want to cover different semantic phenomena, you’ll
probably have to extend the semantic macros, too.

Your solution should contain a sort of report, documenting the changes you make, as
well as the difficulties you encounter. Do you think that the difficulties are particular
to the language you’ve chosen? Does the modular character of the system support you
in your work?

5

Scope and Underspecification

5.1 Scope Ambiguities

5.1.1 What Are Scope Ambiguities?

What are scope ambiguities?

A scope ambiguity is an ambiguity that occurs when two quantifiers or similar expres-
sions can take scope over each other in different ways in the meaning of a sentence.
Here are some examples.

1. ‘Every man loves a woman.’

2. ‘Every student did not pass the exam.’

Let’s look at the first sentence to see the ambiguity. The more prominent meaning
of this sentence is that for every man, there is a woman, and it’s possible that each
man loves a different woman. But the sentence also has a second possible meaning,
which says that there is one particular woman who is loved by every man. This reading
becomes clearer if we continue the example by "..., namely Brigitte Bardot."

To further underline the difference, have a look at the two readings represented in first-
order logic.

1.
�

x � MAN � x ���[�'" y � WOMAN � y ��! LOVE � x � y ���
2. " y � WOMAN � y ��!\� � x � MAN � x ��� LOVE � x � y ���

They are genuinely semantic...

We see that the sentence has two different meanings: it is ambiguous. Moreover, there
is no good reason to assume that the ambiguity should be syntactic. So we can say that
scope ambiguities are genuine semantic ambiguities. It is important to observe here
that both readings are made up of the same material (the semantic representations of
the quantified NPs ‘every man’ and ‘a woman’, and the nuclear scope ‘love’). The
only difference is the way in which the material is put together. We will come back to
this later.

76 Chapter 5. Scope and Underspecification

...and omnipresent!

The second example shows that not only quantifiers can give rise to scope ambiguities
(if you find this particular sentence a little odd, you can play the same game with the
German ‘Jeder Student hat nicht bestanden.’). In this sentence, it is the relative scope
of the quantifier and the negation that is ambiguous. The two readings mean that either
every single student failed, or, respectively, that not everyone of the students passed.
In formulae:

1.
�

x � STUDENT � x ���]� PASS � x �
2. � � x �=� STUDENT � x ��� PASS � x ���

Exercise 5.1 Quantifiers and negation aren’t the only scope taking elements. Other
candidates (and thus other sources of genuinely semantic ambiguity) include certain
adverbs. For example modal adverbs like ‘possibly’ may interfere with the scope of
determiners. Consider the sentence ‘Possibly a dog is barking’. What are the different
readings of this sentence?

5.1.2 Scope Ambiguities and Montague Semantics

Using our Implementation

Now let’s see what Montague Semantics has to say about this. In !!!UNEXPECTED
PTR TO EX_EX.ARCHITECTURE.COVERAGE!!!, we asked you to test our im-
plementation of λ-calculus and to try to find sentences the approach does not handle
properly.

Maybe you’ve come up with sentences containing scope ambiguities like ‘Every man
loves a woman’. We have just seen that this sentence has two readings, but our imple-
mented system only gets one of them:

?- lambda.

> every man loves a woman.

1 forall(A,man(A)>exists(B,woman(B)& love(A,B)))

yes

If you like to, reproduce this result at your computer: lambda([every,man,loves,a,woman],Sem).
This is a correct representation of one of the possible meanings of the sentence - namely
the one where the quantifier of the object-NP occurs inside the scope of the quantifier
of the subject-NP. We say that the quantifier of the object-NP has narrow scope while
the quantifier of the subject-NP has wide scope. But the other reading is not generated
here! This means our algorithm doesn’t represent the linguistic reality correctly.

5.1. Scope Ambiguities 77

What’s the problem?

This is because our approach so far constructs the semantics deterministically from the
syntactic analysis. Our implementation simply isn’t yet able to compute two different
meanings for a syntactically unambiguous sentence. The reason why we only get the
reading with wide scope for the subject is because in the semantic construction process,
the verb semantics is first combined with the object semantics, then with that of the
subject. And given the order of the λ-prefixes in our semantic representations, this
eventually transports the object semantics inside the subject’s scope.

A Closer Look

To understand why our algorithm produces the reading it does (and not the other alter-
native), let us have a look at the order of applications in the semantic representation as
it is before we start β-reducing. To be able to see the order of applications more clearly,
we abbreviate the representations for the determiners. E.g. we write Every instead of
λPλQ

�
x � P � x �^� Q � x ��� . We will of course have to expand those abbreviations at some

point when we want to perform β-reduction.

��_�`VaVbdc @λ `W� MAN �e`f��� @ ��� λ g λ hWg @ � λ cW� LOVE �=h&��cf����� @ ��i @λ jk�WOMAN �ejl�����
After β-reducing the VP once, things look a little nicer:

i. ��_�`�aVbdc @λ `&� MAN �e`
��� @ � λ h3��i @λ jk�WOMAN �ejl��� @ � λ cW� LOVE �=h&��cf�����
The resulting expression is an application. The universal quantifier occurs in the func-
tor (the translation of the subject NP), and the existential quantifier occurs in the argu-
ment (corresponding to the VP). The scope relations in the β-reduced result reflect the
structure in this application.

An Idea for a Solution

With some imagination we can already guess what an algorithm would have to do
in order to produce the second reading we’ve seen above (where the subject-NP has
narrow scope): It would somehow have to move the i @λ c WOMAN �ecf� part in front of
the _f`VaVbdc . Something like the following expression would do:

ii. ��i @λ jk�WOMAN �ejl��� @ � λ c&�=��_�`�aVbmc @λ `W� MAN �e`f��� @ � λhW� LOVE �=h&��cf�����
Exercise 5.2 Convince yourself - by expanding the abbreviations and β-reducing -
that the above expression really is the second reading.

Exercise 5.3 Notice that we not only moved i @λ jk�WOMAN �ejl� in front of the _�`�aVbdc ,
but tacitly also moved the adjacent @λy bit with it. Explain why this makes sense. It
may help you to look at these colored representations of the two readings:

i. � Every@λv � MAN � v ��� @ � λx � � A@λw�WOMAN � w ��� @ � λy � LOVE � x � y �����
ii. ��i @λ jk�WOMAN �ejl��� @ � λy � ��_�`VaVbdc @λ `W� MAN �e`f��� @ � λx � LOVE � x � y �����

78 Chapter 5. Scope and Underspecification

5.1.3 A More Complex Example

So by sticking to the principles of classical Montague grammar, our implementation
can only construct one reading per sentence. You may think: But hey, at least we get
half of what we want. If this is what you think, the following example should convince
you that things are really worse:

‘Every owner of a siamese cat loves a therapist.’

Exercise 5.4 The sentence is syntactically unambiguous, that is there’s only one syn-
tax tree for it. Draw this syntax tree.

We have a scope ambiguity between three quantifiers in the example sentence. Below
are four possible readings that are pretty easy to get for most speakers of English, and
a fifth one which we will examine a little closer soon:

1.
�

x �=� OWNER � x ��!k" y � SIAMESECAT � y ��! OF � y � x ���3�n" z � THERAPIST � z �K! LOVE � x � z �
��_f`VaVbdc @λhW�=� OWNER �=h
��!o����i @ p _ qsrKt#� @λ cW� OF �ecW�uh
������� @ � λ h3��i @ twvKaVber�x
y p�t�� @λ zV� LOVE �=h&�'z{���

2. " y � SIAMESECAT � y �K!o� � x �=� OWNER � x ��! OF � y � x ���3�n" z � THERAPIST � z �K! LOVE � x � z ���
��i @ p _ qsrKt#� @ � λ cW�=4d��_�`�aVbdc @λ h&�=4 OWNER �=hf�K! OF �ecW�uh
�|6u� @λ zV�=4d��i @ t
v�aVber�x
y p�t#� @λ z LOVE �=hW�'z{�|6d6u�

3. " z � THERAPIST � z �K! � x �=� OWNER � x ��!}" y � SIAMESECAT � y �K! OF � y � x ���3� LOVE � x � z �
��i @ twvKaVburfxfy p�t�� @λ zV�=4d��_�`�aVbmc @λh&�=4 OWNER �=h
��!~��i @ p _ qsrKt�� @λ cW�����s�ecW�uh
�|6u� @λ h&� LOVE �=hW�'z{�|6

4. " y �=� SIAMESECAT � y �K!k" z � THERAPIST � z ��! � x �=��� OWNER � x ��! OF � y � x ���3� LOVE � x � z �����
��i @ p _ qsrKt#� λ c&�=4d��i @ twvKaVber�xfy p�t#� @λ zV�=4d��_�`�aVbmc @λ h&�=4 OWNER �=hf�K! OF �ecW�uh
�|6u� @λ h&� LOVE �=h&�'z{�|6d6

5. " z � THERAPIST � z �K!k" y � SIAMESECAT � y ��! � x �=��� OWNER � x �K! OF � y � x ���3� LOVE � x � z ���
��i @ twvKaVburfxfy p�t�� @λ zV�=4d��i @ p _ qsrKt�� λ cW�=4d��_�`�aVbdc @λ h&�=4 OWNER �=hf�K! OF �ecW�uh
�|6u� @λ h&� LOVE �=h&�'z{�|6d6

We have also given an equivalent expression for each of the readings that uses abbre-
viations for the determiners, and additionally abbreviates some of the less complex
λ-expressions (if you like to, see for yourself by expanding and β-reducing). This
should give you an intuition of how the differences in meaning between the readings
actually go back to different ways of ordering the determiners.

So far only the first reading can be produced by our implementation. Again the order
of the quantifiers in this reading quite directly reflects the relations between the corre-
sponding NPs in the syntax tree. For instance ‘a therapist’ is a constituent of the VP
‘loves a therapist’. Thus its quantifier is in the scope of the universal quantifier of the
subject NP. The same goes for the existential quantifier of ‘a siamese cat’, because the
phrase is a constituent of the subject NP.

Exercise 5.5 Give natural language paraphrases for the first four readings (try to
make them as unambiguous as possible).

5.1. Scope Ambiguities 79

5.1.4 The Fifth Reading

Two readings may be equivalent...

If you have already looked closely at all the readings we have listed for the complex
example, you will have noticed that the fourth and fifth readings are logically equiva-
lent.

Exercise 5.6 Give a natural language paraphrase for the fifth reading and compare
it to the paraphrase for the fourth one. Can you explain why both readings are equiv-
alent by examining the corresponding formulas?

...but not necessarily

The reason why we have listed readings four and five separately in spite of this is that
there are structurally identical examples (which just use other determiners) in which
the two readings do mean different things. Consider the sentence ‘Every researcher of
a company saw most samples.’ Because of the determiner "most", the readings of this
sentence can’t be represented in first-order logic, but we can use �1�Vp�t as the analogue
of _�`�aVbmc and i in the λ terms. We are then able to write the semantic representations
of the fourth (1.) and fifth (2.) reading of the previous example as follows:

1. � A@company � λx �=4d� Most@sample � @λy �=4d� Every@λz �=4 RESEARCHER � z �K! OF � z � x �|6u� @λz � SEE � z � y �|6
2. � Most@sample � @λy �=4d� A@company � λx �=4d� Every@λz �=4 RESEARCHER � z �K! OF � z � x �|6u� @λz � SEE � z � y �|6

Exercise 5.7 Do you see the difference (in meaning) between the two readings? Give
a natural language paraphrase for each of the readings and try to think of contexts that
would favour one or the other. Can you explain why the ordering of the representations
of the two determiners A and Most makes a difference in this case (in contrast to the
corresponding determiners in our siamese-cat-example)?

5.1.5 Montague’s Approach to the Scope Problem

Of course, linguists soon became well aware of the fact that Montague Grammar had
to do something about scope. Montague himself extended his formalism with an oper-
ation called quantifying in to remedy the problem.

Basically, his idea was to postulate two alternative syntactic analyses of sentences like
‘Every man loves a woman’:

1. The sentence is taken to consist of the NP ‘Every man’ and the VP ‘loves a
woman’. This is the analysis we’re used to. We already know that this analy-
sis gives us the formula

�
x �=� MAN � x �:���'" y �WOMAN � y ��! LOVE � x � y ����� , where

‘Every man’ has scope over ‘a woman’.

2. Alternatively, the sentence is analysed in a way that may be paraphrased as ‘A
woman - every man loves her.’. (Of course ‘her’ in this paraphrase refers to the
woman introduced by the NP ‘a woman’). For semantic construction, this means
that the representation for the whole sentence is built by applying the translation
of ‘a woman’ to the translation of ‘every man loves her’. This analysis yields the
reading where ‘a woman’ outscopes ‘every man’.

80 Chapter 5. Scope and Underspecification

To make the second analysis work, one has to think of a representation for the pronoun,
and one must provide for linking the pronoun to its antecedent ‘a woman’ later in the
semantic construction process. Intuitively, the pronoun itself is semantically empty.
Now Montague’s idea essentially was to choose a new variable to represent the pro-
noun. Additionally, he had to secure that this variable ends up in the right place after
β-reduction.

5.1.6 Quantifying In: An Example

Let’s look at our example from before (page 79): Suppose we chose the variable v1
for the pronoun ‘her’. But we want to be able to use this pronoun like a quantified NP
that would usually stand in the same place. Eventually, it should end up in the second
argument slot of WOMAN. So we will wrap it in a λ-expression as follows: λP� P � v1 � .
This should ring a bell - we did the same thing for proper names, for example when
translating ‘John’ as λP� P � JOHN � .

Introduce a pleaceholder...

In effect, the sentence ‘Every man loves her’ yields the representation

� λPλQ
�

x �=� P � x ��� Q � x ��� @λy � MAN � y ��� @ � λRλxR@λy � LOVE � x � y � @λP� P � v1 ���
which can be β-reduced to: �

x � MAN � x ��� LOVE � x � v1 ���
So what remains to be done? We still have to process the antecedent for our pro-
noun, namely the phrase ‘a woman’, translated as λQ " y �=� WOMAN � y �7! Q � y ��� . And
of course, our pronoun variable should be connected to this antecedent: We eventu-
ally want the second argument position of LOVE � x � v1 � to be bound by the existential
‘woman-quantifier’. This is achieved by λ-abstracting over the pronoun variable v1 and
then applying the translation of ‘a woman’ to the resulting abstraction:

...and eliminate it again.

λQ " y �=� WOMAN � y �&! Q � y ��� @ � λv1 � � x � MAN � x ��� LOVE � x � v1 �����
This reduces to:

" y �=� WOMAN � y �&! � x � MAN � x ��� LOVE � x � y �����
We’ve finally got the reading where ‘a woman’ has scope over ‘every man’. The basic
trick was to find a way to delay processing the NP ‘a woman’ until we have processed
‘every man’, thus lifting the existential quantifier above the universal. Implementing
this trick of course required quite a piece of sophisticated λ-programming.

5.1.7 Other Traditional Solutions

So we have managed to construct the second reading for our sentence. At a price,
though: in order to solve a semantic problem, we had to postulate an alternative syn-
tactic analysis for no obvious syntactic reason - and a rather unintuitive and strange one
at that; one that employs a pronoun that doesn’t surface in the sentence itself. The fun-
damental problem that each syntactic analysis still can have only one possible meaning
remains.

5.1. Scope Ambiguities 81

A more Elegant Solution

In 1975, Robin Cooper proposed a much more elegant mechanism to solve this prob-
lem. It became known as Cooper storage . This mechanism took up Montagues idea of
lifting quantifiers by using ‘placeholders’ (like pronoun variables) as arguments instead
of quantified NPs, and accessing these placeholders later at different points during the
semantic construction process. Cooper started with a syntax tree whose leaves had
been annotated with the λ-terms representing the semantics of the words. Then he
performed bottom-up semantic composition as we have seen it above, but whenever
he had to combine an NP and a verb or VP, he could not only immediately apply the
NP semantics to the verb semantics, but alternatively use a placeholder and put the NP
semantics into a quantifier store . This way, he could potentially collect a lot of quan-
tifiers whose application he wanted to delay on his way up in the tree. Whenever he
hit a sentence node, his algorithm could pick some or all of the quantifiers and apply
them to the current semantics, in any order, thus generating all possible permutations
of quantifiers.

A Pseudo-reading

Cooper’s algorithm was a big step forward, but it suffered from an overgeneration prob-
lem. For example, it generated a sixth reading for the three-quantifier sentence we’ve
seen above (page ??). The problem with Cooper’s approach was that it liberally as-
sumed that you can obtain readings by simply permuting the quantifiers, and that each
formula obtained that way would represent a possible reading as well. In this respect
it did not differ too much from Montague’s technique of quantifying in. However, this
assumption is not true. Look at the following formula. It is another permutation of the
three quantifiers in our siamese-cat-example, but it is not a possible reading.

� � x � OWNER � x ��! OF � y � x �&!1" y � SIAMESECAT � y ���]" z � THERAPIST � z �&! LOVE � x � z �
Exercise 5.8 Do you see what’s problematic about this formula? Try to give a natu-
ral language paraphrase for it. What could have gone wrong in a semantic construc-
tion process that has led to this formula for our example sentence?

Advanced Solutions

In 1988, Keller managed to fix this overgeneration problem in a modified Cooper stor-
age mechanism called Nested Cooper storage (or simply Keller storage). By the mid-
Eighties, algorithms like this one or Hobbs and Shieber’s (1987) scoping algorithm
allowed to enumerate the readings of a scope ambiguity reasonably well.

5.1.8 The Problem with the Traditional Approaches

By the time most linguists were satisfied with having algorithms that computed the
readings of a scope ambiguity in a reasonably elegant way, the more computationally
minded researchers started to become a bit unhappy. Their problem was that they
tried to build practical language-processing systems, and it turned out that ambiguities
(including, but not limited to scope) were a major efficiency problem.

82 Chapter 5. Scope and Underspecification

Combinatorial Explosion

The problem is one of combinatorial explosion . We’ve already seen above that a
scopally ambiguous sentence with two quantifiers has two readings, and one with three
quantifiers has five readings. The number of readings for similar sentences increases
as follows:

number of quantifiers readings
4 14
5 42
6 132
7 429
8 1430

As you can see, the number of readings grows exponentially with the number of quan-
tifiers in the sentence. Now imagine that you wanted to do something interesting with
the possible meanings of your sentence - for example, feed them to a theorem prover
for inferences, as we will learn to do later in this course. Such operations are expensive
even on a single reading, but they become completely unfeasible for 1430 readings.
This is particularly annoying because the vast majority of these readings may be the-
oretically possible, and thus must be predicted by the theory. Still most readings will
not be intended by the speaker in the particular situation. Thus an NLP system spends
a lot of time on expensive computations, most of which are probably irrelevant.

The problem is serious.

At this point, you might argue that sentences that contain so many quantifiers are very
rare, but in the words of Jerry Hobbs, ‘Many people feel that most sentences exhibit too
few quantifier scope ambiguities for much effort to be devoted to this problem, but a
casual inspection of several sentences from any text should convince almost everyone
otherwise.’ Besides, you should bear in mind that not only NPs, but also negation,
some verbs (e.g. ‘believe’) and adverbs (‘possibly, sometimes, always’) take scope,
the basic combinatoric principles applying to these as well. Finally, scope is of course
only one source of ambiguity, and the numbers of readings for each type of ambiguity
multiply. The bottom line is that ambiguity in general is one of the big challenges for
efficient natural-language processing today; scope ambiguities are just one of many
culprits in this respect.

5.2 Underspecification

5.2.1 Introduction

A Clean and Declarative Approach

So basically, we are going to separate semantic construction from the enumeration
of readings of ambiguities. We thus divide the problem into two independent parts,
which we can in turn solve independently. This means we can stick to our original
setup, where we derive one representation from one syntactic analysis, only now this
representation is the description of a whole set of readings. It also means we can
take a more declarative perspective on scope ambiguity: First of all, we specify what

5.2. Underspecification 83

readings a sentence should have, and in a second step we can think about how to
actually compute them. We call this step of enumerating the single readings solving.
Our algorithm for this task will turn out to be quite an elegant one, constituting a great
step forward from traditional Cooper or Hobbs style algorithms, which not only had to
think about the structure of the semantics, but also about syntactic considerations.

Let us now sum up our discussion so far, using a few pictures. Then we illustrate
how our new underspecification based approach relates to the Montague style semantic
construction system from the last chapters, and to its extensions that we discussed in
the first part of this chapter.

Here’s a schema of how we get from a sentence to its semantic representation in the
standard case that our Montague style system covers: Unambiguous sentences like
‘John loves Mary’.

Standard Montague

NL Sentence Sem. RepresentationSyntactic Analysis

We’ve discussed a much more detailed version of this picture in the last chapter- the
semantic representation of the sentence is constructed via and along with its syntactic
analysis. One syntactic analysis can only yield one semantic representation. Now since
we’ve assumed that our input sentence is unambiguous, that’s fine. There is in fact only
one semantic representation for it.

But as we have seen in the first sections of this chapter, there are sentences that con-
tain genuinely semantic ambiguities. The paradigmatic case we’ve looked at is that of
quantifier scope ambiguities as in ‘Every man loves a woman’. The following graphic
depicts the situation when we feed that sentence to our Montague style semantic con-
struction system:

The Problem

NL Sentence Sem. Representation 1

Sem. Representation 2

Syntactic Analysis

???

There are two semantic representations that should be associated with our input sen-
tence, due to the scope ambiguity in it. But our system can only construct one of them.
That’s because there’s only one syntactic analysis for the sentence, and as we’ve just
mentioned, one syntactic analysis can only yield one semantic representation.

So if we don’t want to change anything substantial in the approach we’ve implemented,
there seems to be only one way to get to the second reading. That is to allow a second
syntactic analysis.

Montague with Quantifying In

NL Sentence Sem. Representation 1

Sem. Representation 2

Syntactic Analysis 1

Syntactic Analysis 2

84 Chapter 5. Scope and Underspecification

Now we would be able to construct the second semantic representation together with
this second syntactic analysis. As we’ve said (in Section 5.1.5), this is the solution
that Montague himself adopted. But we’ve also discussed that there’s one strong and
obvious argument against this solution: Scope ambiguities simply are not syntactic.
According to our intuitions, our example sentence is syntactically unambiguous, and
so we should not for purely technical reasons claim the opposite.

Underspecification allows for a more satifactory solution to our problem:

Underspecification

Sem. Rep. 1

NL Sentence
Underspec.
Rep.

Sem. Rep. 2

Syntactic
Analysis

Solve

Solve

We have split the ‘semantic side’ of our picture in two levels. On one level we have
underspecified descriptions, and on the other one the semantic representations we’re
used to (i.e. λ-expressions and - at the end of the day - first order formulae). With
this two-leveled architecture we can again construct one underspecified description
along with only one syntactic analysis. But this one underspecified description some-
times describes many readings on the level of λ-expressions. This means that we have
now captured the semantic ambiguity in truly semantic terms. Our first-level semantic
representation (the underspecified description) remains ambiguous between multiple
second-level semantic representations (λ-expressions) in the same way as the original
sentence.

Terminology

Before we go on, let us sort out our terminology a bit. Up to now, we’ve used the term
‘semantic construction’ to denote the whole business of getting from natural language
sentences to first order formulas. From now on, we will often have to differentiate a bit
more. We will then use ‘semantic construction’ in a more narrow sense, only for the
way from natural language sentences to underspecified descriptions. We will call the
step from underspecified descriptions to λ-expressions solving.

As regards the term ‘semantic representation’, we’ll sometimes use it as an umbrella
term for underspecified descriptions as well as λ-expressions and first order formulas.
But whenever it is important, we will carefully distinguish between the three.

5.2.2 Computational Advantages

Outlook

From a computational perspective the central hope connected with underspecification
is that we will be able to overcome the problems arising out of the combinatorial ex-
plosion. We don’t have the time here to go into it, but people have shown how to lift
β-reduction and even some first-order deduction (we’re going to hear about first-order
deduction in Chapter 10) to underspecified descriptions. More than anything, however,

5.2. Underspecification 85

underspecification may be an ideal platform when it comes to incorporating external
information that excludes irrelevant readings. We have seen above that the theoreti-
cally possible number of readings of a sentence may be much higher than the number
of readings that are actually possible in a given context. People have preferences for
certain readings (e.g. going back to the word order), or they may judge some readings
implausible. Underspecification may make it possible to exclude impossible or dispre-
ferred readings without ever seeing them. But this is ongoing research and beyond the
scope of this introduction.

5.2.3 Underspecified Descriptions

The first thing we need to do now is to render the notion of underspecified description
more precise. To see how we can describe all readings of an ambiguous sentence, let’s
go back to our favourite example, ‘Every man loves a woman.’ We’ve said that the two
readings of the sentence are these:

1.
�

x � MAN � x ���[�'" y � WOMAN � y ��! LOVES � x � y ���
2. " y �woman � y �&!\� � x �man � x ��� LOVE � x � y ���

Assessing the material...

Now the important observation is that both readings consist of the same material: the
representations of the two quantified NPs and the nuclear scope. The difference is in
the way that these three fragments are put together. Both quantifiers must have scope
over LOVE � x � y � , but they can still have scope over each other in either way.

...and describing its combinations.

If you have a closer look at what we’ve just said, you’ll notice that this is a description
of the two possible readings - in an informal way, of course. Underspecification for-
malisms are all about making such descriptions more formal: They specify what mate-
rial the readings of a sentence consist of (in our example, the three formula fragments),
and what structural constraints one must obey when arranging them into complete for-
mulas. What is left underspecified is which of these readings is the "right" reading of
a specific utterance of the sentence.

5.2.4 The Masterplan

In the rest of this chapter and in the next one, we will go into the details of underspec-
ification. What exactly are we going to do? We will first give you an intuition of what
the formalism to be presented does, and then make this intuition more formal. Here’s
how we will proceed:

1. In order to give underspecified descriptions of possible readings, the first thing
we need is a way of talking about the structure of formulas and of λ-expressions.
We will represent formulas and λ-expressions as trees. So to begin with (Sec-
tion 5.2.5), we’ll explain how to do this.

86 Chapter 5. Scope and Underspecification

2. Then (in Section 5.2.6) we will introduce a formalism that allows us to describe
trees (and thereby formulas and λ-expressions). This formalism is called nor-
mal dominance constraint s. As a concrete example, we will look at the two
λ-expressions (written as trees!) for our running example ‘Every man loves a
woman’ (Section 5.2.7) and see how we can represent them using only one un-
derspecified description from our new formalism. We will learn how we can
construct this description from the two λ-expressions.

3. Once we know how an underspecified description describes (one or more) tree
representations of λ-expressions, we turn to the question that’s most important
when we build semantic representations for a sentence: How do we solve un-
derspecified descriptions? That is, given an underspecified description, how can
we compute the formulae it describes? In our formalism of normal dominance
constraints, this involves a process called constraint solving . In the rest of this
chapter we will give you a first intuition of what the problem is that we have
to deal with (Section 5.2.8). In the next chapter, we will then continue our dis-
cussion by formulating an algorithm that incorporates this intuition. Section 6.1
introduces the basic concepts used in that algorithm. In Section 6.2 we consider
one by one each of its subtasks.

Below you see again the general picture of underspecification-based semantic con-
struction that you know from Section 5.2.1. But this time we’ve marked in blue what
we will have dealt with when we’re through with the three points just mentioned. Addi-
tionally we’ve filled in the boxes with the types of representation we’re actually going
to use:

λ-Struct. 1
(tree rep.)

Formula 1

NL Sentence Dominance
Constraint

λ-Struct. 2
(tree rep.)

Formula 2

Syntactic
Analysis

Solve

Solve

Now you probably wonder: Isn’t there something missing? What about the grey part of
the picture above? We plan to discuss at length how underspecified descriptions relate
to formulas, and even give an algorithm that constructs the latter from the former. But
we seem to keep secret how to get from natural language sentences to underspecified
descriptions...

You are right with this observation! At that stage we will not yet know how to con-
struct e.g the one underspecified description of the two readings of ‘Every man loves a
woman’ from this sentence. And of course we have to know how to do this. Yet we will
not bother about this task until the very end of the next chapter (Section 6.4), when we
actually implement semantic construction based on our underspecification formalism.

The reason for this postponement is that the actual construction of underspecified de-
scriptions from sentences is by far the easiest step in our new semantic construction
system. It’s less complicated than the subsequent step of constraint solving, and it’s
even less complicated than the direct construction of λ-expressions that we’re used to
from our Montague based approach.

5.2. Underspecification 87

5.2.5 Formulas are trees!

Tree Notation

We’ve just said that we’re going to develop a formalism that allows us to describe
trees. But why trees? Shouldn’t we talk about formulas? The answer is that formulas
are trees - if you look at them the right way. Representing formulas as trees is simple.
You know that every formula of first order logic has a main connective. For instance,
a conjunction ϕ ! ψ has the main connective ! and the subformulas ϕ and ψ. So if
we know how to represent the two subformulas as trees, we can represent the whole
formula as a tree whose root node is labeled with the symbol ! and the two trees for ϕ
and ψ as children. This works similarly with the other connectives. The leaves of the
tree are predicate symbols, constants, and variables.

New Representation of Atomic Formulae!

Finally, on the level of atomic formulas, we shall from now on write application of
predicates to arguments with the binary symbol @. (We have already seen this: We
indicate applications in λ-calculus the same way). Here’s one of our standard example
formulae in this notation (if you’re interested in the motivation behind our decision to
use this new notation, read the sidetrack (page 92) at the end of this chapter):

1.

�
x �=� MAN@x �����'" y �=� WOMAN@y ��!\��� LOVE@x � @y ���

2. " y �=� WOMAN@y �&!\� � x �=� MAN@x ���[��� LOVE@x � @y ���
Now have a look at the following tree representation of this formula:

Testtitel
� �
� �

@ �� MAN var � " �! �
@ �� WOMAN var � @ �

@ �� LOVE var �var �

?- Question!

In one respect, the tree above differs from the formula it represents. Do you see where?

Binding Edges

The answer to this question is that variables are represented differently in the tree rep-
resentation. We could have used variable names as we always have. But we will see
later that this would have lead us into problems when writing underspecified descrip-
tions. That’s why we explicitly link bound variables to their binders via binding edge
s. These are depicted as purple arrows in the picture above. Since these binding edges
tell us all there is to know about which variables are bound by which binders, we can

88 Chapter 5. Scope and Underspecification

do away with variable names altogether, and it is sufficient to label variable nodes with
the symbol var and quantifier nodes with the symbols " and

�
. We will see in the

implementation section that this way of handling variable binding will even simplify
our implementation.

5.2.6 Describing Lambda-Structures

There is of course no reason to restrict our new tree notation to formulas of first-order
logic. We can just as easily represent λ-expressions. All we have to do is to generally
represent application as a tree with the root symbol @ and subtrees for the functor
and the argument, and λ-abstraction as a tree with the root symbol lam. Again, we
use binding edges to represent variable binding, and thus don’t have to give a name
to the variable bound by the λ. We call a tree with binding edges for variable binding
a λ-structure . We can always convert a λ-expression (or a formula) into a unique
λ-structure. At the same time, every λ-structure represents a λ-expression (but not
uniquely): All we have to do is invent a new variable name whenever we hit a binder,
and then use this name for all bound variables.

Let’s look again at the λ-expressions that lead to the two first order formulae for ‘Every
man loves a woman’. We have seen these λ-expressions in Section 5.1.2, and repeat
them here:

i. � Every@λv �=� MAN@v ��� @ � λx � A@λw�=� WOMAN@w ��� @ � λy �=��� LOVE@y � @x �����
ii. � A@λw�=� WOMAN@w ��� @ � λy �=� Every@λv�=� MAN@v ��� @ � λx �=��� LOVE@y � @x �����

We have switched again to representations where we abbreviate determiners such as
‘every’: Every stands for λPλQ

�
x � P@x � Q@x � . In the tree representations that

we look at now, we will continue to use such abbreviations, and also abbreviate the
simple λ-expressions and λ-structures for common nouns. Hence, from now on Every
abbreviates the λ-structure for λPλQ

�
x � P@x � Q@x � , and e.g. woman stands for the

λ-structure for λw�WOMAN@w.

Two lambda-structures...

If we represent the two readings of our example as λ-structures, we can identify the
three formula fragments relevant for the scope ambiguity we’re interested in as three
tree fragments. We have given them different colours in the picture below.

@ �
@ �

Every � man � lam �
@ �

@ �
A � woman � lam �

@ �
@ �

LOVE � var �var �

@ �
@ �

A � woman � lam �
@ �

@ �
Every � man � lam �

@ �
@ �

LOVE � var �var �

Exercise 5.9 Write down (at least) one of the two readings as a "normal" λ-expression
of the form � λx �WALK@x � @JOHN. Remember that you have to "invent" a variable for
each lam! If you do not feel familiar with this notation yet, replace the @s by bracket-
ting, e.g. � λx �WALK � x ����� JOHN � . Compare the way the transitive verb is combined with
its arguments here with the way this was done in λ-calculus. Give a short comment on
what you think is the main difference between the two approaches.

5.2. Underspecification 89

...but only one constraint graph

Now we can represent the information that is common to both readings in the following
graph:

@ �
@ �

Every � man � lam ��
@ �

@ �
A � woman � lam ��

@ �
@ �

LOVE � var �var �
We call a graph as in this picture a constraint graph . A constraint graph is a di-
rected graph that has node labels and three kinds of edges: ordinary solid edges, dotted
dominance edge s, and purple arrow binding edge s. It consists of several little tree
fragments which are internally connected with solid edges, and connected to other
trees with dominance edges. Binding edges generally go from variable nodes to binder
nodes.

5.2.7 From Lambda-Expressions to an Underspecified Description

Let us look at our example once more and go through step by step how we have con-
structed the constraint graph describing our two λ-expressions. We had to take four
steps:

1. We wrote down all (two) readings of the sentence, as λ-expressions:1. ��_�`�aVbmc @λ h&� MAN �=h
��� @ � λ h&�=��i @λ WOMAN @λ LOVE 2.��i @λ cW�WOMAN �ecf��� @λ cW�=��_�`�aVbdc @λh&� MAN �=h
��� @ � λ h&� LOVE �=h&��cf���

2. We converted the readings into λ-structures:

@ �
@ �

Every � man � lam �
@ �

@ �
A � woman � lam �

@ �
@ �

LOVE � var �var �

@
@ �

A � woman
lam

@
@

Every man
lam

@
@

LOVE var
var

3. We identified the common material in both λ-structures. Generally, each block of
common material must be contiguous (linked internally with only solid edges). It
may be a complete subtree (like the purple part), or it may be just a tree fragment

(like the other two parts).

@ �
@ �

Every � man � lam �
@ �

@ �
A � woman � lam �

@ �
@ �

LOVE � var �var �

@ �
@ �

A � woman � lam �
@ �

@ �
Every � man � lam

@
@ �

LOVE � var
var

4. We built an underspecified description that expresses what material the readings
contain, and what structural constraints we must obey when putting that material

90 Chapter 5. Scope and Underspecification

together.

@ �
@ �

Every � man � � lam�
@ �

@ �
A � woman � � lam�

@ �
@ �

LOVE � var �var �

What we have just done, namely going from a natural language sentence via all its
readings to an underspecified description, does not correspond to any part of our system
architecture (page 85). We started off from fully specified λ-structures. But once
we hold all λ-structures for a sentence in our hands, there is of course no point in
constructing an underspecified description any more. Yet we hope that our discussion
has given you a better idea of how this whole underspecification business works. Our
explanations should enable you to solve the following exercise.

Exercise 5.10 Write down a constraint graph that describes the five readings of the
sentence ‘Every owner of a Siamese cat loves a therapist.’

5.2.8 Relating Constraint Graphs and Lambda-Structures

We’ve just seen pictures that gave us an intuitive idea of how λ-structures relate to
constraint graphs. Let’s now frame our intuition into a more formal definition. We
can say that a constraint graph describe s a λ-structure if it’s possible to embed the tree
fragments into the λ-structure. (In this case we also say that the λ-structure is a solution
of the constraint graph.) That is, we must be able to map the nodes of the constraint
graph to nodes of the λ-structure in a way that satisfies the following conditions:

1. Any node that has a label in the graph must have the same label in the λ-structure.

2. No two nodes that have a label in the graph must be mapped to the same node in
the λ-structure.

3. Any two nodes connected with a solid edge or a binding edge in the graph must
be connected in the same way in the λ-structure.

4. Whenever there is a dominance edge from a node X to a node Y in the graph,
there must be a path from X to Y using only solid edges in the λ-structure.

Intuitively again, embedding a constraint graph into a λ-structure is a bit of a jigsaw
puzzle: Overlay parts of the λ-structure with matching tree fragments so that no two
fragments overlap and all the dominances are respected. If you start with a constraint
graph and want to construct λ-structures that it describes, the puzzle character comes
out even more strongly, as you basically have to arrange the tree fragments into a valid
λ-structure.

In the example, it is clearly possible to embed the fragments in the graph into each
of the two λ-structures; the embeddings indicated by the colouring also respect the
dominance requirements. Note that while different fragments do overlap at the borders,
there never are any two labeled nodes that are mapped to the same node in the structure.

5.2. Underspecification 91

Exercise 5.11 Convince yourself that the constraint graph you’ve seen in the exam-
ple really describes both of our λ-structures. Check each of the points in the above
definition.

5.2.9 Sidetrack: Constraint Graphs - The True Story

In the example, we have been able to cover the complete λ-structure with the fragments
in the constraint graph. This need not be the case in general: As the fragments only
have to be embedded into the λ-structure, it is possible that the latter contains some
material not mentioned in the graph.

More Flexibility

This makes sense from a computational point of view, considering that constraint
graphs are provably harder to deal with if solutions are not to contain additional mate-
rial. From a linguistic point of view, one can take the idea behind underspecification
even further, using the same formalism to deal not only with scope ambiguities, but
also with cases where, for example, a speech recognizer has failed to recognize certain
parts of the input. In such cases, we want flexibility to add more material to a solution
- in a controlled way, of course.

Embedding vs. Arranging

Here we will be ignoring this point, and eventually it will turn out that we’ll never need
to invent any additional material to solve the constraint graphs we get for scope ambi-
guities anyway. It is safe to think of the process of solving a constraint as arranging
the fragments into a bigger tree.

The difference between embedding and arranging may become clearer with an example
given. Consider the following constraint graph:

� ��
@ �

f � a � @ �
g � b �

Additional material...

This constraint graph trivially has a solution. It starts with the topmost fragment. Then
we put an arbitrary label (like @) at the leaf of this fragment and say that this node
should have two children. The left child should be the root of the lower left fragment,
while the other child should be the root of the lower right one:

� �
@ �

@ �
f � a � @ �

g � b �

92 Chapter 5. Scope and Underspecification

...or not?

But if we insist that we have to arrange the fragments, without adding any new material,
the answer is not so clear. Only if one of the two lower fragments had an unlabeled
leaf, it would indeed be possible to arrange them by attaching the other fragment to
this leaf. Otherwise, it is impossible to arrange them; this is the case in the example.
If we take an example of larger scale, of course, we might be able to start with the
arrangement process, but then notice somewhere down the line that we have plugged
fragments together in the wrong order. That’s why computation becomes much harder
when we restrict ourselves to arrangement instead of embedding.

Although we have presented constraint graphs a bit informally here, they can be given
a very precise meaning as a shorthand notation for logical formulas, which then are
called normal dominance constraint s. In fact, if you look at the literature on domi-
nance constraints, you’ll find that the logical formulas are always the first concept to
be defined, constraint graphs being then derived from them. If you’d like to know the
true true story about constraint graphs, you can ask1 us for literature on dominance
constraints.

5.2.10 Sidetrack: Predicates versus Functions

When we introduced our tree notation for formulas (in Section 5.2.5) we also said
that we use the application symbol @ in atomic formulas of first order logic and their
tree representations. So we write for instance the application WALK@MARY instead
of WALK � MARY � and the two nested applications � LOVE@MARY � @JOHN instead of
LOVE � JOHN � MARY � . We’ve introduced this as a simple change of notation, but in fact
there’s a somewhat deeper motivation behind it.

Using function symbols

As you may remember from the sidetrack on typed λ-calculus, the semantics of λ-
expressions is generally defined in terms of functions, and the symbol @ is understood
as functional application of the functor (to the left of the @) to the argument (to the
right). Thus the semantics of an application A@B is the result of applying the function
denoted by A to whatever is denoted by B . Now with our new notation (which is quite
common for λ-based formalisms), this ‘function-and-application perspective’ on the
syntax and semantics is extended to atomic formulas.

What exactly does this mean?

1. Syntactically, what used to be predicate and relation symbols are treated alike,
as one-place function symbols that are combined with other symbols using the
application symbol @. n-ary predications are written as n nested applications.

2. This means that the semantics of our (former) predicate and relation symbols
has to be given in terms of unary functions if we want to interpret the @-symbol
as functional application consistently. In short, we have to re-define models
such that they interpret predicate symbols (which are by definition unary) as the
characteristic function of the set that we used to assign to the respective symbol.
The characteristic function of a set is the function that assigns TRUE to all entities

1mailto:koller@coli.uni-sb.de

5.2. Underspecification 93

in that set, and FALSE to all other entities. Unary predications can then be stated
equivalently as application of such a function to the argument of the predication.
On this basis, n-ary predicates are interpreted as complex functions, allowing us
to express n-ary predications as a series of nested functional applications. This
series has to end with the application of the characteristic function of some set,
resulting in a truth value.

Examples: Expressing predicates by functions

This was a bit abstract, so here are two examples. First let’s look at the predicate
symbol MAN. Here, the situation is easy: A predicate symbol used to be interpreted
as the set of things in the extension of the respective predicate in the model under
consideration. In our example that’s the set of all men, (assuming that we’re looking
at a model that really interprets the symbol MAN as counterpart of the word ‘man’).
Now, we will simply use the characteristic function of that same set instead, hence in
our example the function that yields TRUE if its argument is a man (and thus would
have been in the extension of MAN in our old model), and false otherwise.

But what can we do for relation symbols? How do we give an interpretation in terms
of a unary function that corresponds in the right way to an n-ary relation? The solution
is to use functions that yield functions as a result. We can do this in such a way that
we finally arrive at the characteristic function of some set. Let us look at the example
of the (former) relation symbol LOVE. We used to interpret this symbol as the set of
ordered pairs such that the first element loves the second. Instead we will now interpret
it as a unary function that takes each entity to the characteristic function of the set of
all things that love that entity.

Let’s see how we interpret
LOVE � MARY � JOHN �

versus � LOVE@JOHN � @MARY

We shall assume that we are looking at a model where MARY is assigned Mary and
JOHN is assigned John. The first formula is true if the pair ? Mary � John 9 is in the set
assigned to LOVE by our model. For the second formula, we will proceed in two steps.
First we apply the function that our model assigns to the symbol LOVE to John. This
yields the characteristic function of the set of ‘john-lovers’, which we apply in turn to
Mary. This final application gives us the result TRUE in case Mary loves John in our
model, and FALSE otherwise.

All other n-ary relations are treated analogously to our example: As functions that
yield the characteristic function of some set after n-1 applications. Clearly we can
characterize situations just as well using this functional way of speaking as we could
with our familiar relational approach.

Connection to lambda-calculus

What’s the great advantage of all this? As we’ve mentioned above, our new nota-
tion and interpretation fit in well with λ-calculus. And now that we know something
about the interpretation of atomic formulas, we can see why this is so. If you re-
call what we’ve said about the interpretation of λ-expressions in Section 3.4.4, you

94 Chapter 5. Scope and Underspecification

will realize that the functional interpretations we’ve just discussed for our former
predicate and relation symbols are constructed exactly along the lines of the seman-
tics for λ-expressions such as λx � MAN � x � and λy � λx � LOVE � x � y � . In fact for any of
our unary function symbols ‘written on its own’, there’s an equivalent λ-expression
where the functional character has been made explicit. We say that the function sym-
bol is η-equivalent to its explicit λ-counterpart (and the other way round). Strictly
speaking, there are always many λ-expressions that are η-equivalent to one func-
tion symbol, because (as usual) α-equivalence doesn’t make a difference. Here’s an
example: LOVE and λy �=� λx �=� LOVE@x � @y � are η-equivalent, and so are LOVE and
λs �=� λr�=� LOVE@r � @s � , etc.

A simplification

For practical purposes this means that we can use the (shorter) function symbols for
common nouns directly in semantic construction, instead of their η-equivalent (long)
λ-terms. For example we used to write λx � MAN � x � (or, lately, λx � MAN@x) as the
translation of ‘man’, and translated the NP ‘a man’ as:

λP� λQ �>" y �=� P@y ! Q@y � @λx � MAN � x �
But now we know the functional semantics of MAN on its own, and so we know that
we can apply the determiner to that function directly, to the same effect:

λP� λQ �>" y �=� P@y ! Q@y � @MAN

We will make use of this simplification in our implementation of CLLS (see in partic-
ular Section 6.3.1).

6

Constraint Solving

6.1 Constraint Solving

6.1.1 Satisfiability and Enumeration

One Remark!

Before we go into the matter of constraint solving, one remark is due. Below we will
use the words "constraint" and "constraint graph" interchangeably. Strictly speaking,
constraint graphs are the graphs we have drawn so far, whereas constraints are formulas
of a certain simple logic, which we have announced in Section 5.2.9 without defining
it. But both representations can easily be translated into each other, so we’ll allow
ourselves some sloppy language.

When we deal with solving underspecified descriptions, the two algorithmic problems
that concern us most are the following:

Satisfiability Given a constraint graph, we need to decide whether there is a λ-structure into which
it can be embedded.

Enumeration Given a constraint graph, we have to compute all λ-structures into which it can be
embedded.

It is clear that the first problem is simpler than the second one. Whenever you have
an algorithm with which you can enumerate all solutions, you can just stop when you
have found the first solution, and say that the constraint is indeed satisfiable. And if it
turns out that you just can’t find a solution with your enumeration algorithm, you can
be sure that it’s unsatisfiable.

6.1.2 Solved Forms

Many solutions...

In fact, if you think about the enumeration problem a bit, you’ll notice that it is not
realistic to enumerate all λ-structures that solve the constraint: In general, there can
exist an infinite number of satisfying λ-structures into which the fragments can be
embedded while respecting the dominances. However, the differences between most

96 Chapter 6. Constraint Solving

of the solutions are completely irrelevant additions of extra material. The situation
looks like this:

λ-Struct. 1 Formula 1

. . . Dominance
Constraint

λ-Struct. 1(b) Formula 1(b)

...

λ-Struct. 2 Formula 2

λ-Struct. 2(b) Formula 2(b)
...

Solve
Solve

Solve
Solve

Solve

Solve

In this example, we might only be interested in the two solutions 1 and 2 while the
"variants" 1(b) and 2(b) as well as all other variants with additional material inbetween
are pointless to us.

...few solved Forms

So instead of really trying to enumerate solutions (i.e. λ-structures), we reformulate
the problem to enumerate solved forms of the original constraint. Intuitively, solved
forms are themselves constraint graphs that each represent a class of solutions that
only differ in the addition of extra material. We will define them in a way that they
have the following useful properties:

� Every constraint graph has a finite number of solved forms.

� The solutions of all solved forms of a constraint taken together are the same as
the solutions of the original constraint.

� It is trivial to enumerate the solutions of a solved form.

Before we look at an example, let’s refine the scheme of our architecture (page 85)
once more:

Solved
Form 1

λ-Struct. 1 Formula 1

. . . Dominance
Constraint

λ-Struct. 1(b) Formula 1(b)

...
Solved
Form 2

λ-Struct. 2 Formula 2

λ-Struct. 2(b) Formula 2(b)
...

Solve

Solve

(minimal)

(other)

(minimal)

(other)

6.1. Constraint Solving 97

6.1.3 Solved Forms: An Example

A constraint graph...

Since the definition of solved given before forms might be a little too much on the ab-
stract side, let’s have a look at our running example ‘Every man loves a woman’ again.
Remember that the corresponding original constraint is (where, again, abbreviations
like Woman stand for the simple λ-structures).

@ �
@ �

every � Man � lam ��
@ �

@ �
a � Woman � lam ��

@ �
@ �

LOVE � var �var �

...two of its solutions...

Two of its solutions are the following λ-structures. (In fact these are the only solutions
we’ve been interested in so far. But remember that we can get lots of other solutions
by integrating new material):

@ �
@ �

every � Man � lam �
@ �

@ �
a � Woman � lam �

@ �
@ �

LOVE � var �var �

@ �
@ �

a � Woman � lam �
@ �

@ �
every � Man � lam �

@ �
@ �

LOVE � var �var �

...and its two solved forms.

Now while the constraint graph has an infinite number of solutions, it has precisely two
solved forms:

@ �
@ �

every � Man � lam ��
@ �

@ �
a � Woman � lam ��

@ �
@ �

a � Woman � lam ��
@ �

@ �
every � Man � lam ��

@ �
@ �

LOVE � var �var � @ �
@ �

LOVE � var �var �

If you look at the solved forms, you’ll see that they’re very close to the λ-structures –
the graphical difference only consists in the dominance edges, which allow the addition
of extra material. We can get from the solved forms to the two solutions that we saw
above by simply identifying the end points of each dominance edge.

However, it is important to remember that the solved forms are not solutions, i.e. λ-
structures! They are still constraint graphs. They do have the special property that
if you disregard the binding edges, these graphs are trees, but they can still contain
dominance edges.

98 Chapter 6. Constraint Solving

6.1.4 Defining Solved Forms

Summing up, we say that a constraint graph is in solved form if it has certain proper-
ties that guarantee its satisfiability and make it trivial to enumerate its solutions. The
solved forms of a constraint are constraints in solved form that each represent a class
of solutions of the original constraint that have only "irrelevant" differences. Every
solution of the original constraint is a solution of one of the solved forms; and vice
versa.

Let us now define what a solved form is. A constraint graph is in solved form if:

1. It has no cycles that use only solid and dominance edges.

2. It has no node with two incoming edges that are solid or dominance.

You can easily verify that if you disregard the binding edges, every graph in solved
form is a tree. As it is forbidden that a node with a node label has an outgoing domi-
nance edge in a constraint graph, you get a tree that consists of the little tree fragments
of the original constraint, with dominance edges going from (unlabeled) leaves to roots.

From Solved Forms to Solutions

Now how do we get from a solved form to an actual solution? As we have already
said, this step is going to be quite trivial. In general, there are two cases we have to
distinguish:

1. If we’re lucky, the solved form will not contain any nodes with two outgoing
dominance edges anyway. In this case, we can simply identify the endpoints
of each dominance edge, and we obtain a minimal λ-structure that satisfies the
solved form. As it happens, all of the solved forms we’ll get for underspecified
semantics will belong to this class.

2. Otherwise, we could do the same operation as in Section 5.2.9: For each node
with more than one outgoing dominance edge, we add an arbitrary node label,
and make the dominance children real children over solid edges.

As you can see, it’s always possible to construct a rather small solution to a solved
form very easily. In particular, you know that solved forms are always satisfiable.

6.2 An Algorithm For Solving Constraints

6.2.1 The Choice Rule

The key insight that we exploit in the algorithm is the following. Suppose you have a
node with two incoming dominance edges:
� x � y

� z
Any solution of this constraint must be a tree (plus binding edges). Since trees don’t
branch upwards, this means that the only way in which two different nodes can domi-
nate a third one is if one of them, in turn, dominates the other.

6.2. An Algorithm For Solving Constraints 99

Pursuing two alternatives.

Of course we don’t know beforehand which of the two has to be the higher node in
the solution; in principle, both choices can lead to solutions. We can thus formulate
the Choice Rule as follows: If Z is a node with dominance edges from X to Z and Y
to Z, add either the dominance edge from X to Y or the dominance edge from Y to X.
Graphically:

� x � y

� y � x

� z � z
Because of the argument we just made, we don’t lose solutions in this way: Any solu-
tion has either the dominance from X to Y or vice versa.

We will refer to this rule both as the Choice Rule (because it chooses either X or
Y to dominate the third node) and as the Distribution Rule . This second name is
motivated from a programming paradigm called Constraint Programming, in which
case distinctions are referred to as "distribution". The Choice Rule is the only case
distinction which we use in our enumeration algorithm.

6.2.2 Normalization

Cleaning up

The Choice Rule is the driving force behind the enumeration process: It resolves one
node that keeps the constraint from being in solved form by adding additional domi-
nance edges. However, the Choice Rule can’t operate on its own. It needs some helpers
that clean up after it has done its job. This cleaning work is what we call normalization
.

Parent Normalization

The first kind of normalization we need to apply is necessary because X and Y above
are generally leaves of bigger tree fragments. This means that an application of the
Choice Rule gets us into a situation where e.g. Y has an incoming dominance edge and
an incoming solid edge – which is not allowed in a solved form:

@ �
G � � x

@ �
F � � y� z

Fortunately, we can resolve this configuration easily. The key observation is that X and
Y cannot be mapped to the same node in a solution, as their parents must be different.
Thus we can infer that X must dominate not just Y, but the parent of Y:

100 Chapter 6. Constraint Solving

@ �
G � � x

@ �
F � � y� z

We can continue with this kind of inference; the sequence of inference steps will stop
when we have deduced that X dominates the root of Y’s fragment, which now doesn’t
have an incoming solid edge any more. We call this step parent normalization .

Redundant Edges

The other kind of normalization we need removes redundant dominance edges. A re-
dundant dominance edge is one which we can remove from a constraint graph without
losing information. For example, if we add the edge from X to Y in the Choice Rule,
the old dominance edge from X to Z becomes redundant: Even when we remove it, the
graph still expresses that there must be a path from X to Y and a path from Y to Z, so
there must of course also be a path from X to Z. Here are the solutions of our example
constraint without the unnecessary edges:

� x � y

� y � x

� z � z
We call the operation of removing unnecessary dominance edges redundancy elimi-
nation . Redundancy elimination can be done quite efficiently using a standard graph
algorithm called transitive reduction.

?- Question!

It’s important that we always apply parent normalization before redundancy elimina-
tion. Can you tell why?

6.2.3 The Enumeration Algorithm

The Algorithm

We obtain a sound and complete enumeration algorithm for solved forms by putting
these steps together in the following way:

1. Apply redundancy elimination and parent normalization as long as possible.

2. If there are still nodes with two incoming dominance edges, pick one and apply
the Choice Rule once. Then continue with step 1 for each of the two resulting
graphs.

3. Otherwise, the graph either has a cycle or is in solved form.

6.3. Constraint Solving in Prolog 101

Checking for Cycles

It is very easy to check whether a graph has a cycle: The standard algorithm for this is
depth-first search. This check has to be performed once for each potential solved form.
Because the algorithm has eliminated all nodes with more than one incoming edge by
this time, we know that every graph that passes this final test is indeed a solved form.

Efficiency Issues

Each component of the enumeration algorithm is quite efficient, and even though it is
very simple, the complete algorithm is one of the more efficient algorithms for enu-
merating solutions of underspecified descriptions. But because the Choice Rule has
to make an uninformed choice, and it’s quite possible that one of the two results is
unsatisfiable, there is a possibility that our algorithm spends a lot of time failing, even
if the input graph has very few solved forms. What’s worse is that, if we’re unlucky,
we might explore the branches of the search tree that lead to unsatisfiable constraints
first, and it might take a long time before we find even the first solution. This means
that although the enumeration algorithm gives us a satisfiability test, it’s by no means
a very efficient one.

It’s possible to write a special satisfiability test that runs very efficiently (in linear time);
but this algorithm employs rather advanced graph algorithms that we can’t discuss here.
We can use this satisfiability algorithm in turn to guide the enumeration: Whenever
we apply Choice, we can check both results for satisfiability, and if one of them is
unsatisfiable, we don’t need to spend any time at all on exploring the search tree below
this constraint. Our algorithm above would have continued a fruitless computation on
the unsatisfiable constraint, and only discovered the unsatisfiability in the very end.
In effect, such an early satisfiability test can dramatically speed up the enumeration
process.

6.3 Constraint Solving in Prolog

6.3.1 Prolog Representation of Constraint Graphs

In the rest of this chapter, we will explain how to implement the constraint solver
in Prolog. First of all, let’s have a look at how we represent a constraint graph in
Prolog. We represent such a graph as a collection usr(Ns,LCs,DCs,BCs) of four lists.
These lists contain all ingredients of constraint graphs: nodes (Ns), labeling constraints
(solid edges: LCs), dominance constraints (dotted edges: DCs), and binding constraints
(dashed arrows: BCs). usr stands for underspecified representation. In other words, we
represent the graph by specifying its nodes and its various types of edges. Incidentally,
this syntax is extremely similar to the notation as logical formulas (constraints) that we
have mentioned above.

Nodes and Labelings

Nodes are simply Prolog atoms: Each node gets a unique name. The labelings are terms
which are composed with the Prolog inbuilt operator :. For example, x0:(x2@x1)
means that the node x0 is labeled x2@x1. Note that this labeling constraint tells you
two things at once, namely that:

102 Chapter 6. Constraint Solving

1. x0 has the label @.

2. x0 has two daughters over solid edges: x1 and x2.

Dominances and Bindings

The Prolog notation for a dominance edge is dom(x0,x1). Finally, a binding edge
stating the fact that the variable for which the (var-)node x1 stands for is bound by the
(lam-)node x0 is represented as bind(x1,x0).

Here is a sample constraint for ‘John walks’:

usr([x0,x1,x2],[x0:(x2@x1),x1:john,x2:walk],[],[]).

In the more familiar tree representation:

@ � QW�
WALK � QW� JOHN � Q^�
If you experiment with the implementation later, you will notice that the constraint
graphs soon become large and somewhat unreadable. For example, here’s the repre-
sentation for ‘A woman walks’:

usr([x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17],

[x0:(x17@x1),x1:var,x2:(x3@x4),x3:(x6@x16),x4:lambda(x5),

x6:lambda(x7),x7:lambda(x8),x8:exists(x9),x9:(x10& x11),

x10:(x12@x13),x11:(x14@x15),x12:var,x13:var,x14:var,x15:var,

x16:woman,x17:walk],

[dom(x5,x0)],

[bind(x1,x4),bind(x12,x6),bind(x13,x8),bind(x14,x7),bind(x15,x8)]).

But if you look closely, you’ll notice that this long term is really nothing but a repre-
sentation of the following graph, constructed in a way that allows for better use in a
program:

@ �
@ �

lam �
lam �
" �! �

@ �� var var � @ �� var var �

� WOMAN
lam ��

@ �� walk � var

And if you look closely at this constraint graph, you’ll notice another thing: We’ve
used the predicate symbol WOMAN instead of the abbreviation Woman. But didn’t we
say that Woman abbreviates λx �WOMAN@x? In fact, for all common nouns (that is,
also for ‘man’, ‘siamese cat’, etc.), we will directly use the predicate symbol instead
of a λ-term in our implementation. This will make the semantic macro for common
nouns a bit easier. Have a look at the sidetrack in Section 5.2.10 to see why this is
possible.

6.3. Constraint Solving in Prolog 103

6.3.2 Solve

See file solveConstraint.pl.

The main predicate of our constraint solver is solve/2 (to be found in solveConstraint.pl).
This predicate is a straightforward implementation of the enumeration algorithm from
Section 6.2.3. It takes a constraint graph as its first argument, and returns the list of
its solved forms in the second argument. Our solve/2-predicate calls some low-level
predicates that implement normalization and distribution. We will define these predi-
cates later.

The predicate solve/2 itself consists of three clauses. Its first clause handles the case
of a constraint graph that still contain one or more nodes with two incoming dominance
edges. It normalizes the input graph, and then calls distribute/3 to select one such
node and compute the two constraints with the additional dominance edge (hence it
corresponds to the Choice Rule discussed above (page 98)). Then it calls itself recur-
sively, once for each of the two alternatives, and appends the two lists of solved forms
thus obtained.

solve(Usr,Solutions) :-

normalize(Usr,NormalUsr),

distribute(NormalUsr,Dist1,Dist2),

solve(Dist1,Solutions1),

solve(Dist2,Solutions2),

append(Solutions1,Solutions2,Solutions).

See file cllsLib.pl.

The second clause takes care of the base case, a constraint graph in which no node has
two incoming dominance edges. It is used only if the call to distribute/3 in the first
clause fails (as we shall see shortly, normalize/2 can never fail). Such a graph is a
solved form iff it has no cycles, which we check with the predicate hasCycle/1 (from
cllsLib.pl).

solve(Usr,[NormalUsr]) :-

normalize(Usr,NormalUsr),

\+ hasCycle(NormalUsr).

If the constraint graph does have a cycle, the second clause will fail as well. In this
case, the following final clause applies. It simply returns an empty list of solved forms.
We can’t just let it fail because in that case, the entire original call of solve/2 would
fail. This is wrong in general because it’s very possible that the original constraint has
solutions, but we have made some wrong choices along the way that have made our
current graph unsatisfiable.

solve(_Usr,[]).

?- Question!

Look at the implementation of hasCycle/1 in cllsLib.pl and explain in your own
words how this test works.

104 Chapter 6. Constraint Solving

6.3.3 Distribute

See file solveConstraint.pl.

The predicate distribute/3 (from solveConstraint.pl) implements the Dis-
tribution Rule (or Choice Rule (page 98)). It takes a constraint graph as its first argu-
ment, picks a node Z with two incoming dominance edges (from X and Y), and applies
the Distribution Rule to them. It returns the two constraint graphs that are obtained by
adding a dominance edge between X and Y in either direction. The predicate fails if the
input constraint doesn’t contain such a node Z with two incoming dominance edges.

distribute(usr(Ns,LCs,DCs,BCs),usr(Ns,LCs,[dom(X,Y)|DCs],BCs),usr(Ns,LCs,[dom(Y,X)|DCs],BCs)) :-

member(dom(X,Z),DCs),

member(dom(Y,Z),DCs),

X \== Y.

The two calls of member/2 check that there are in fact two dominance edges dom(X,Z)
and dom(Y,Z) in the list of dominance edges DCs of the incoming constraint. By
adding X \== Y, we make sure that X and Y are different nodes. Otherwise, it would
be possible to add dominances like dom(X,X).

6.3.4 (Parent) Normalization

See file solveConstraint.pl.

What remains to be implemented now is the normalization of constraints (see Sec-
tion 6.2.2). It is done in two steps: First, parent normalization is performed, and
secondly redundant dominance edges are removed. The predicate normalize/2 (in
solveConstraint.pl) calls the respective predicates. It accepts a constraint graph as
input, and returns the normalized graph.

normalize(Usr,Normal) :-

liftDominanceConstraints(Usr,Lifted),

elimRedundancy(Lifted,Normal).

Parent Normalization

The predicate liftDominanceConstraints/2 (from solveConstraint.pl) re-
cursively goes through all dominance edges. If there is a dominance edge dom(X,Y)

and the node Y is a child of the node Z via a solid edge, the dominance edge is lifted
and becomes dom(X,Z). Here is the code:

liftDominanceConstraints(Usr,Lifted) :-

Usr = usr(Ns,LCs,DCs,BCs),

mySelect(dom(X,Y),DCs,RestDCs),

idom(Z,Y,Usr),!,

liftDominanceConstraints(usr(Ns,LCs,[dom(X,Z)|RestDCs],BCs),Lifted).

liftDominanceConstraints(Usr,Usr).

6.3. Constraint Solving in Prolog 105

See file cllsLib.pl.

The predicate mySelect/3 removes the dominance edge dom(X,Y) from DCs and
the list RestDCs now contains the remaining dominance edges. Then, idom/3 (see
cllsLib.pl) succeeds iff the node Z immediately dominates the node Y, i.e. there is
a solid edge from Z to Y. If this is the case, the parent normalization is continued with
a constraint that is like the input constraint. Except for the list of dominance edges
which now contains all but the removed ("lifted") edge, plus the new edge dom(X,Z).
In other words, dom(X,Y) has become dom(X,Z).

In !!!UNEXPECTED PTR TO EX_EX.EX.CLLS.MEMBER4SELECT!!!, you can try
to reimplement this predicate using a simple member check instead of select.

6.3.5 Redundancy Elimination

The second normalization step described in Section 6.2.2 is the elimination of redun-
dant dominance edges. The implementation we present here doesn’t use the transitive
reduction algorithm we mentioned earlier, but simply goes through each dominance
edge in the graph and checks whether the lower end can still be reached from the up-
per end if the dominance edge is removed. This algorithm is slower than transitive
reduction, but much simpler.

elimRedundancy(usr(Ns,LCs,DCs,BCs),Irredundant) :-

mySelect(dom(X,Y),DCs,DCsRest),

reachable(Y,X,usr(Ns,LCs,DCsRest,BCs)),!,

elimRedundancy(usr(Ns,LCs,DCsRest,BCs),Irredundant).

elimRedundancy(Usr,Usr).

See file cllsLib.pl.

First, a dominance edge dom(X,Y) is removed from DCs. Second, it is checked whether
the node Y is still reachable from the node X (the predicate reachable/3 can be
found in cllsLib.pl). If so, the removed dominance edge was redundant. In this
case, the redundancy elimination continues with a constraint containing all remain-
ing dominance edges (DCsRest). Note that in this case, the cut prevents any further
backtracking.

But what happens if a dominance edge that is necessary for establishing some reacha-
bility in the graph is deleted? Well, in this case reachable/3 fails and backtracking
selects (and removes) another dominance edge instead, checking the reachability again
afterwards. Eventually all redundant edges will have been removed, at which point all
calls to reachable/3 will fail, and the second clause is used to return the irredundant
graph.

?- Question!

Look at the declaration of reachable/3 in cllsLib.pl and explain in your own
words, how reachability is checked there.

106 Chapter 6. Constraint Solving

6.4 Semantics Construction for Underspecified Semantics

6.4.1 The Semantic Macros

See file clls.pl.

Most of the semantic macros we need (to be found in clls.pl) are very simple
constraint graphs representing a single labeled node. Let’s look at the simple graphs
first.

6.4.1.1 The Simple Macros

See file clls.pl.

For example, the macro for proper names looks like this:

pnSem(Symbol,usr([Root],[Root:Symbol],[],[])).

That is, the meaning of the word ‘John’ (Symbol=john) is a node labeled JOHN:

JOHN �
The macros for nouns, transitive and intransitive verbs, and prepositions are similar

nounSem(Symbol,usr([Root],[Root:Symbol],[],[])).

tvSem(Symbol,usr([Root],[Root:Symbol],[],[])).

ivSem(Symbol,usr([Root],[Root:Symbol],[],[])).

prepSem(Symbol,usr([Root],[Root:Symbol],[],[])).

Prolog Variables Again

Note that the general semantics construction framework requires us to use variables
for the nodes – called Root in the macros mentioned above. On the other hand, in
Section 6.3.1 we said that we want to represent nodes as atoms. This is the same
trick we saw before when doing semantics construction with the λ-calculus. Again,
we will undo this cheat by "atomizing" all Prolog variables (nodes) after the semantics
construction is finished.

6.4.1.2 Macros for the Determiners

See file clls.pl.

Determiners get a slightly more complex semantics. Here are the semantic macros for
‘every’ (with the label uni) and ‘a’ (with label indef):

detSem(uni,usr([Root,N1,N2,N3,N4,N5,N6,N7,N8,N9],

[Root:lambda(N1),N1:lambda(N2),N2:forall(N3),N3:(N4 > N5),

N4:(N6@N7),N5:(N8@N9),N6:var,N7:var,N8:var,N9:var],

[],

[bind(N6,Root),bind(N7,N2),bind(N8,N1),bind(N9,N2)])).

6.4. Semantics Construction for Underspecified Semantics 107

detSem(indef,usr([Root,N1,N2,N3,N4,N5,N6,N7,N8,N9],

[Root:lambda(N1),N1:lambda(N2),N2:exists(N3),N3:(N4 & N5),

N4:(N6@N7),N5:(N8@N9),N6:var,N7:var,N8:var,N9:var],

[],

[bind(N6,Root),bind(N7,N2),bind(N8,N1),bind(N9,N2)])).

These structures look quite intimidating, but if you look at the corresponding constraint
graphs, you’ll see that e.g. the macro for ‘every’ is nothing but a description of the
term λPλQ � � x � P@x � Q@x � . To make it easier to check that the semantic macro
detSem(uni,...) given above really corresponds to this tree representation, we have
decorated the tree backbone with the respective PROLOG-variables (see below on the
right).

lam �
lam �� �
� �

@ �� var var � @ �� var var �

� Root� N1� N2� N3� N4� N6 � N7
� N5� N8 � N9

!!!UNEXPECTED PTR TO EX_EX.CLLS.QUANTUSR!!! lets you test whether you
understood these representations. Just in order to make life easier for us from now on,
we’ll abbreviate the graphs for determiners as follows:

�
every

We can do this safely because the root of the subgraph is the only node we’ll have to
refer to below. In !!!UNEXPECTED PTR TO EX_EX.CLLSEX1!!! you are asked to
simplify the semantic macros in our implementation dramatically using the same trick.

6.4.2 The combine-rules

See file clls.pl.

Now let’s have a look at the combine-rules that parallel the syntax rules and combine
the constraint graphs for subphrases to the constraint graph for a larger phrase.

The First Node is the Root

The general principle is that each constituent of the sentence is associated with a part
of the final constraint graph. We’re going to maintain the invariant that the first node
in the node list of such a partial graph is the root of this subgraph. The graphs for
different constituents are combined by adding constraints that relate their roots.

One simple but central predicate we make use of here is mergeUSR/2 (see cllsLib.pl).
It combines constraint graphs by merging their respective lists; the root of the merged
graph will be the root of the first (leftmost) graph that was given to mergeUSR/2. Best
you do !!!UNEXPECTED PTR TO EX_EX.CLLS.MERGEUSR!!! right away in or-
der to become familiar with this predicate.

Most of the combine-rules are trivial. They simply lift the semantics of some syntac-
tic category to that of a higher category without adding any further material. As an
example, see the rule

E&F � F&E
:

108 Chapter 6. Constraint Solving

combine(np1:A,[pn:A]).

We present the more complex combine-rules below, except for one (namely
E �E\��� L). We leave the formulation of this rule to you as !!!UNEXPECTED PTR TO

EX_CLLSEX2!!!.

6.4.2.1 D � E&F C F
Let’s first look at the rule that builds sentences out of an NP and a VP. (Think of a
sentence like ‘John walks’ for now; we’ll get to quantifiers later.) The combine rule
for this syntax rule is as follows:

combine(s1:S,[np2:NP,vp2:VP]):-

NP = usr([NPRoot|_],_,_,_),

VP = usr([VPRoot|_],_,_,_),

NewUsr = usr([Root],[Root:(VPRoot@NPRoot)],[],[]),

mergeUSR(merge(NewUsr,merge(NP,VP)),S).

Again, it may be helpful to look at the graph representation of this rule.

@ �}D� C F � E�F
As you can see, the new constraint graph describes λ-structures in which the VP mean-
ing is applied to the NP meaning. This is basically like our very first naive analysis of
how NPs and VPs are combined semantically. It still works because the trick that we
developed in order to get a uniform treatment of the NP semantics in λ-calculus is now
compiled into the combine rule for NPs, which we’ll deal with in a minute. For now,
just observe that we combine the verb phrase and the noun phrase straightforwardly
and according to our intuitions: The verb phrase is the functor and the noun phrase
its argument. The results we get (after β-reduction) are the same as with Montague
Semantics.

More technically, the clause of combine/2 first extracts the roots of the constraint
graphs for the two constituents, NPRoot and VPRoot. It then introduces a new node
and a new labeling constraint, and merges it with the subgraphs of the constituents.

For the example we suggested above, "John walks", the following happens. First, the
semantic macros provide the semantics on the lexical level:

John � JOHN usr([x1],[x1:john],[],[])

walks � WALK usr([x2],[x2:walk],[],[])

And here is the result of the combine-rule:

John walks @ �� WALK � JOHN
usr([x0,x1,x2],[x0:(x2@x1),x1:john,x2:walk],[],[])

This graph describes the λ-structure representing the λ-term Walk@ john, or written in
a more familiar way, Walk � john � .

6.4. Semantics Construction for Underspecified Semantics 109

6.4.2.2 E&F ��� If� E
Now let’s see how we can combine determiners and nouns into NPs. This is a slightly
complex but very interesting rule, as it takes care both of the correct binding of a
variable bound by a quantifier, and of the introduction of the dominance edges we need
in order to represent scope ambiguities.

The rule looks as follows:

combine(np1:NP,[det:DET,n2:N]) :-

DET = usr([DETRoot|_],_,_,_),

N = usr([NRoot|_],_,_,_),

NewUsr = usr(

[Root,N1,N2,N3,N4],

[N1:(N2@N3),N2:(DETRoot@NRoot),N3:lambda(N4),Root:var],

[dom(N4,Root)],

[bind(Root,N3)]),

mergeUSR(merge(NewUsr,merge(DET,N)),NP).

Again, this becomes more readable when written as a constraint graph:

@ �
@ �� � I
� � E lam � �

var � E&F
If you doubt that the clause of combine/2 given above really corresponds to the tree
representation we presented, you should do !!!UNEXPECTED PTR TO EX_EX.CLLS.COMBINE!!!
right now.

The root of an NP is a var-node.

The root of the constraint graph for the entire NP is the node Root, i.e. the node which
is labeled with var. Although this may seem a bit counterintuitive, it is extremely
useful considering how the NP will later combine with a VP (see Section 6.4.2.1). The
VP semantics will be applied to the root of the NP graph. That is, the verb semantics
will be applied to a variable that is bound by the quantifier – exactly what we want!
Consider the constraint for ‘a woman walks’ given below. We show the last step of
semantics construction and one parent normalization step.

E&F
and D before unification... ...after unification. ...after normalization.

@ �
@ �

� I
� �
A

E � WOMAN
lam ��
var � E&FD @ �

C F � WALK � E�F

@ �
@ ��

A

� WOMAN
lam � �

@ �� WALK var �

@ �
@ ��

A

� WOMAN
lam

@ �� WALK var �
Look at the leftmost graph. On top you see the representation of an NP as discussed
above. Here, the representation of the determiner A (abbreviated in the figure) and the

110 Chapter 6. Constraint Solving

noun representation WOMAN have already been integrated (by unification). Below you
can see the representation of an S where the VP WALK has already been found. The
next (and last) step in semantics construction is the integration of the NP into the S, i.e.
the unification of the root node of the NP and the NP node of the S.

The result of this unification can be seen in the middle graph. This constraint graph is
the underspecified representation for the sentence ‘a woman walks’. With the help
of one simple parent normalization step, we end up with the solved form of this
graph which can be seen on the right. A minimal solution hereof is the following
λ-expression:

A@WOMAN@ � λx �WALK@x �
which probably looks much more familiar to you. Now we can now fully realize just
how convenient binding constraints are. We can simply relate the variable and its
binder within a single semantics construction rule; they are connected forever with
an unbreakable link, and we don’t have to think at all about variable naming. We
could unify both NP nodes in the example above and got walk@var (we christened the
variable represented by var x in the λ-expression given above). If the NP is a proper
name as in ‘John walks’, the same mechanism unifies the NP node of the sentence with
JOHN as we have seen in Section 6.4.2.1. Finally, the remaining dominance edge from
in the solved form is one of those dominance edges that can lead to the representation
of a scope ambiguity in other configurations. Next, you can see this example with fully
expanded determiner.

6.4.2.3 Example: ‘A woman walks’

No Comment

Here you can see the example from above with fully expanded determiner.

@ �
@ �

lam �
lam �
" �! �

@ �� var var � @ �� var var �

� WOMAN
lam ��

@ �� walk � var

Make sure that the λ-expression corresponding to this graph is reducable to a normal
FO formula. This is the first part of !!!UNEXPECTED PTR TO EX_EX.CLLS.BEAUTY!!!.

6.4.2.4 C F ��B�C E�F , F&F � F��&�&FoE�F , and E � EoF�F
The combine-rules for C F ��B�C E&F and

F&F � Ff�W��FAE&F
work exactly like the rule D �E&F C F (see Section 6.4.2.1). Again, their function is simply to introduce an application:

combine(v1:V,[tv:TV,np2:NP]) :-

TV = usr([TVRoot|_],_,_,_),

NP = usr([NPRoot|_],_,_,_),

NewUsr = usr([Root],[Root:(TVRoot@NPRoot)],[],[]),

mergeUSR(merge(NewUsr,merge(TV,NP)),V).

6.5. Running CLLS 111

combine(pp:PP,[prep:Prep,np2:NP]) :-

Prep = usr([PrepRoot|_],_,_,_),

NP = usr([NPRoot|_],_,_,_),

NewUsr = usr([Root],[Root:(PrepRoot@NPRoot)],[],[]),

mergeUSR(merge(NewUsr,merge(Prep,NP)),PP).

Finally, here is the rule that combines a
E MO�&P and a

F&F
to form an

E
(think of phrases

like ‘therapist with a siamese cat’):

combine(n1:N,[noun:Noun,pp:PP]) :-

Noun = usr([NounRoot|_],_,_,_),

PP = usr([PPRoot|_],_,_,_),

NewUsr = usr(

[Root,N1,N2,N3,N4,N5,N6],

[Root:lambda(N1),N1:(N2 & N3),N2:(NounRoot@N4),N4:var,N5:(PPRoot@N6),N6:var],

[dom(N3,N5)],

[bind(N4,Root),bind(N6,Root)]),

mergeUSR(merge(NewUsr,merge(Noun,PP)),N).

?- Question!

Can you see what this rule does? Compare it to the local macros for the determiners
(see Section 6.4.1.2)!

6.5 Running CLLS

See file clls.pl.

Now, it is time to present the driver predicate clls. Here it is:

clls :-

readLine(Sentence),

parse(Sentence,UsSem),

resetVars,vars2atoms(UsSem),

% printRepresentations([UsSem]),

solve(UsSem,Sems),

% printRepresentations(Sems),

usr2LambdaList(Sems,LambdaTerms),

% printRepresentations(LambdaTerms),

betaConvertList(LambdaTerms,Converted),

printRepresentations(Converted).

You have already seen the first three calls triggering the semantics construction and
instantiating the Prolog variables in Section 4.5. Once we have constructed the con-
straint, solve/2 computes all its solved forms. Finally, usr2LambdaList/2 translates
the list of solved forms to a list of "traditional" λ-terms. All that is left to do is to
β-convert these terms.

112 Chapter 6. Constraint Solving

Check it out!

Here, you can see the five readings for ‘Every owner of a siamese cat loves a therapist’:
clls(silent,[every,owner,of,a,siamese,cat,loves,a,therapist]).

You may uncomment any of the calls of printRepresentations/1 if you wish to
inspect the constraint graphs more closely. For the above example, it will look like
this: clls(verbose,[every,owner,of,a,siamese,cat,loves,a,therapist]).

Code Summary

See file clls.pl. Driver, combine-rules, semantic Macros.
See file solveConstraint.pl. Solving: normalization and distribution.
See file cllsLib.pl. Working with USRs, tree predicates, translation of solved forms into λ-terms.
See file englishGrammar.pl. The DCG-rules and the lexicon (using module See file englishLexicon.pl.). From here, the combine-rules and lexical macros are called.
See file betaConversion.pl. β-conversion.
See file comsemLib.pl. Auxiliaries.
See file comsemOperators.pl. Operator definitions.
See file signature.pl. Generating new variables
See file readLine.pl. Reading the input from stdin.

6.6 Exercises

Exercise 6.1 Make sure that the clause of combine/2 given in Section 6.4.2.2 really
corresponds to the tree representation given there: Print out the tree and try to decorate
its nodes with all respective Prolog variables for the nodes.

Exercise 6.2 1. Write down the λ-expression that corresponds to the graph given
in Section 6.4.2.3. Reduce this λ-expression to a first order formula.

Hint: the right half translates into λx �WALK@x. In the left half, there are two
lam-nodes. Each translates into λPi where Pi is a new variable. The existen-
tial quantifier has to be treated likewise. var-nodes translate into the variables
bound by their binder.

2. Look at our implementation of the predicate translate/4 (see cllsLib.pl)
that translates solved constraints into λ-terms. Explain how the bindings are
handled!

See file cllsLib.pl.

This predicate converts solved constraints directly to λ-terms. Note that we only
compute one (minmal) solution for one solved form. But as we have discussed
(page 95) solved forms stand for classes of solutions. Which clause of our pred-
icate would we have to change in order to compute non-minimal solutions?

Exercise 6.3 Test whether you understand the semantic macro for the indefinite de-
terminer a. The "naked" tree given in the figure in Section 6.4.1.2 on the right is already
decorated with the PROLOG variables from the semantic macro detSem(indef,...).

Print out this tree or draw it on a piece of paper. Go through the semantic macro and
add the node labels and the binding edges to the tree.

6.6. Exercises 113

Exercise 6.4 See file cllsLib.pl.

Look at the two clauses of mergeUSR/2 (cllsLib.pl) and make sure that in the
resulting constraint, the root node of the leftmost input constraint really ends up in front
of all other nodes. Remember that we always interpret the first node of a constraint
as its root node. This means we have to be able to formulate our calls of mergeUSR/2
such that we can determine which node will finally be the root node.

Design a test call

USR_A = usr([nodeA1,nodeA2,...],[nodeA1:lA1,...]...),

USR_B = usr(nodeB1,...),

USR_C = usr(...),

mergeUSR(merge(merge(USR_A,USR_B),USR_C),Result).

to practically test this.

Exercise 6.5 Add a treatment of adjectives to the implementation of clls. The se-
mantic macro for an adjective is a USR for a simple labeled node. Procede as follows:
First, complete the semantic macro adjSem(_,_) for adjectives (to be found at the
bottom of clls.pl). Second, add a clause of combine to clls.pl according to the
following scheme.

E � �&� L E �
lam � E
! �

@ �� �&� L var �
�

@ �� E var �

Exercise 6.6 See file solveConstraint.pl.

The implementation of liftDominanceConstraints/2 we presented immediately re-
moves the old, lifted dominance edge with select/3 (see Section 6.3.4).

There is a problem if we use member/2 instead of select/3? Try it out! Why does this
problem occur? Can you think of an elegant solution to it?

Hint: look what predicates we’ve already got for cleaning up constraints!

Exercise 6.7 [optional]

See file clls.pl.

In the implementation of clls we presented, the meaning of a determiner as given in the
semantic macros is a relatively complex λ-structure (tree). It represents e.g. the λ-term
λPλQ � � x � P � x ��� Q � x ��� in the case of the universal quantifier. The only part of such
trees that is relevant for the semantics construction process is its root node. The rest of
the tree remains stable during the whole construction process: There is no place inside
these trees where further material can be inserted. To enhance the readability of the
underspecified structures, one can for example represent the meaning of an universal
quantifier as a node labeled every during the semantics construction process. Then,

114 Chapter 6. Constraint Solving

before the final β-reduction is done, these abbreviations can be be expanded into the
well-known λ-terms like λPλQ � � x � P@x � Q@x � .
Try to change the implementation of clls accordingly. You may proceed as follows.
First, replace the entries of the determiners in the semantic macros by simple la-
beled nodes (like the entries of nouns for example). Then, build a PROLOG mod-
ule ExpandQuantifiers that exports a predicate ExpandQuantifiersList/2. This
predicate should expand a list of λ-terms containing abbreviations like [every@man@lambda(A,walk@A)]
into the list [lambda(P, lambda(Q, exists(X,(P@X)&(Q@X))))@man@lambda(A,walk@A)]

Finally, integrate the predicate ExpandQuantifiersList/2 into the predicate clls.

Hint: use the predicate compose/3 (comsemLib.pl) to decompose terms like every@man@lambda(A,walk@A)
.

Exercise 6.8 [Mid-Term Project]

See file solveConstraint.pl.

Our implementation of solve/2 is a straightforward implementation of the enumer-
ation algorithm. It is an example of imperative programming. For example, the so-
lutions of two distributed constraints are computed at once and then they are solved
recursively. Finally, the results are appended.

The same could have been achieved in a more declarative fashion with backtracking
and two clauses of distribute. Reimplement the predicate in a more declarative
manner!

Hint: use Prolog search (like bagof) to enumerate all solutions.

7

Inference in Computational
Semantics

7.1 What is Inference, and how do we use it in Computational
Semantics?

7.1.1 What we already know about Logics

We have already learned a lot about the syntax and semantics of first-order logic. But
logical systems usually have a third component - a calculus. Before we look in detail
at this third component, we briefly recap the key logical concepts that we have seen so
far.

Formula sequence/tree of symbols x � y � f � g � p � 1 � π �#�:������!�� � ��"
Model something we understand natural numbers or sets
Interpretation maps formulae into models 4 4 three plus five 6 6&� 8
logical consequence A - � B, iff M - � B for all M - � A

Why is logic useful for us?

Logic studies formal languages and their relation to the world. This task is closely
related to our task in computational semantics, i.e. computing the meaning of natural
language utterances. Two of the advantages of using logic for this task are that logics
are are mathematically precise and relatively simple.

Consider the following points where we have already gained a lot from this precision
and simplification:

Formulae of formal languages (such as the language defined by the syntax of first-order logic
(page 9)) simplify sentences of natural languages: Problems of grammaticality no
longer arise. Furthermore, well-formedness can in general be decided by a simple
recursive procedure.

Models are what we use as a simplification of real-world situations. Models (page 6) simplify
the real world by concentrating on mathematically well-understood structures, namely
sets and relations. They allow us to make predictions about truth conditions of natu-
ral language sentences. Moreover they make it possible to precisely define semantic
notions, such as logical consequence (page 15).

116 Chapter 7. Inference in Computational Semantics

7.1.2 Calculi

From a theoretical perspective, talking about models (as we did it in Chapter 1) enables
us to define neatly e.g. which sentences follow from a particular sentence. But from
a computational perspective, using models to actually compute what follows from a
sentence is impossible. First of all, models may be infinite. But even if we restrict our-
selves to using finite models, the fact that the semantic notion of logical consequence
(as well as that of validity) is defined with respect to all models makes computation
intractable.

Assumptions, Inference, Conclusions

Therefore, logics typically have a third part, an inference system (also called a calculus
), which is a syntactic counterpart to the semantic notions. By saying that it is syntactic,
we mean that such a system works without recourse to meaning, by considering only
the syntactic structure of formulae. Hence a calculus gives us the syntactic counterpart
to the semantic concept of logical consequence (page 15). Formally, a calculus is a set
of rules that transform (sets of) formulae into other (sets of) formulae. The formulae
given as input are called assumption s, the resulting formulae are called conclusion s.
In what follows, we will use a tableaux calculus to infer what formulae follow from
some given other ones.

Proof

But before that, let us look at the syntactic counterpart of validity (page 14). A se-
quence of rule applications that transform the empty set of assumptions into a formula
A, is called a proof of A. To make this clear, let us turn to a very simple example.

7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus

In this section we will discuss the simplest non-trivial fragment of first-order logic
imaginable: A formal language which has only one constant symbol, and where atomic
formulae (page 9) have been abbreviated to propositional variables. We will call this
logic PH.

We have chosen this logic so that talking about it is simple, not that it covers any inter-
esting fragment of natural language. We want to make clear certain concepts that will
become important later, but we don’t want to go through the exercise of formulating a
calculus for a more expressive logic yet. Still you needn’t worry, we will do so soon!

As discussed above, a logic has three components:

Syntax

The set of well-formed formulae of PH is built from propositional variables: P� Q � R �������
and the logical operator of implication:

�
Semantics

The semantics of PH is determined by the following rules:

� 4 4 P 6 6 Mg � g � P �
� 4 4A � B 6 6 Mg ��B , iff 4 4A 6 6 Mg ��� or 4 4B 6 6 Mg ��B .

7.1. What is Inference, and how do we use it in Computational Semantics? 117

Calculus

The calculus is given by specifying its inference rules. Inference rules are generally
written as schemata of the following form:

A1 $�$�$ An
Name

C

Here the Ai and C are (schematic) formulae and Name is the name of the inference rule.
The rule signifies that whenever all of the formulae Ai (the so-called called antecedent
s or premise s) have already been derived, the formula C (the succedent or conclusion
) can also be derived.

Here are the four inference rules of our calculus:

K
P
� � Q �

P � S� P � � Q �
R ��� � ��� P � Q � � � P � R ���

A � B A
MP

B
A

Subst4B 5 P 6 A
The first two inference rules are special cases, where the antecedents are empty. Such
inference rules are commonly called axiom s. What makes them special is that their
conclusions can be derived without assumptions, that is at any time. The rule MP is
sometimes called modus ponens ; it codifies our intuition about the implication oper-
ator. The rule Subst allows to substitute arbitrary well-formed formulae for proposi-
tional variables. We will use the notation 4A 5 X 6 B, for the application of the substitution4A 5 X 6 , to the formula B. This replaces all occurrences of the propositional variable X
in B with the formula A. For example 4d� P � Q ��5 R 6�� R � R � is � P � Q � � � P � Q � .

7.1.4 Proofs in Hilbert Calculus

Proof

An occurence of a rule schema where all schematic formulae (like A, B etc.) have
been replaced by actual formulae of the language is called an instance of that schema.
A proof with our little calculus is simply a sequence of instances of the inference
rule schema, such that the antecedents of each rule are succedents of rules earlier in
the sequence. If we additionally allow formulae from a set H into the sequence, we
speak of a proof from the assumptions in H . Any formula that occurs in a proof
generated from our Hilbert calculus is provable (or provable from the assumptions in
H if it occurs in a proof from these assumptions). So intuitively, if we want to prove
a formula, we take a (possibly empty) set of assumptions and apply the inference rules
until we have produced our formula as the conclusion of some rule application.

Theorem

We will write H � C A if the formula A is provable from the assumptions in H in the
calculus C . We will call the relation � C the derivability or provability relation for C .

118 Chapter 7. Inference in Computational Semantics

We will simply write � C A if A is provable from the assumptions in H (so � C A a
shorthand for /0 � C A). A formula that is provable without any further assumptions is
called a theorem .

An Example Proof

Let us look at an example to fortify our intuition. We will prove the theorem A � A.

1 � P � � Q �
R ��� � ��� P � Q � � � P � R ��� S

2 � A � � Q �
R ��� � ��� A �

Q � � � A �
R ��� Subst � 1 � with 4A 5 P 6

3 � A � ��� A � A � � R ��� � ��� A � � A � A ��� � � A �
R ��� Subst � 2 � with 4d� A � A ��5 Q 6

4 � A � ��� A � A � � A ��� � ��� A � � A � A ��� � � A � A ��� Subst � 3 � with 4A 5 R 6
5 P

� � Q �
P � K

6 A � � Q � A � Subst � 5 � with 4A 5 P 6
7 A � ��� A � A � � A � Subst � 6 � with 4d� A � A ��5 Q 6
8 � A � � A � A ��� � � A � A � MP � 4 � 7 �
9 A � � Q � A � Subst � 5 � with 4A 5 P 6

10 A � � A � A � Subst � 9 � with 4A 5 Q 6
11 A � A MP � 8 � 10 �

There are two things to note about this proof.

� The inference rules can be applied in a purely schematic and syntactic fashion.
It does not play a role what the formulae that are manipulated actually mean.

� The actual proof proof is long, tedious, and in this particular case very un-
intuitive.

The last observation is negative. But it mainly has to do with the particular calculus
we’re using. We will discuss a more intuitive calculus (called semantic tableaux) later
(page 121).

The Axiomatic Method

The first observation in contrast is a positive one. Indeed it is the great pro of using
calculi (or the axiomatic method , as one also says): Instead of thinking about infinitely
many models for validity , we can consider provability , which can be exhibited by pure
syntactic formula manipulation. The only question that remains is how provability and
validity relate to each other. In other words: We want to justify our calculus in terms
of semantics again.

7.1.5 Properties of Calculi (Theoretical Logic)

In this section we will examine the relation between provability (�) and validity (- �)
(and more generally between derivability and logical consequence). Both are relations
on formulae. Ideally, they would co-incide, but there is no a-priori guarantee for that.
The two key notions with respect to this are:

Correctness (provable implies valid) A calculus C is called correct or sound , iff A � C B implies
A - � B.

7.1. What is Inference, and how do we use it in Computational Semantics? 119

Completeness (valid implies provable) A calculus C is called complete , iff A - � B implies A � C B.

If a calculus is correct and complete, provability and validity coincide (� A iff - � A).
As a consequence, syntactic formula manipulation can totally replace semantic consid-
erations.

The calculus presented in Section 7.1.3 is in fact correct and complete. Correctness
is easy to determine with the methods from Section 1.1.2. We just need to establish
that the succedent is a logical consequence of the antecedents for each inference rule.
For the axioms K and S this means that they have to be valid formulae (for all P� Q � R),
and MP and Subst that all interpretations that make the antecedents true also make
the succedent true. In fact, this is the case. Establishing completeness is much more
involved, and is beyond the scope of this course.

7.1.6 Sidetrack: Calculemus!

Greek Philosophers like Aristotle already realized that the validity of arguments at
a certain level does not depend on any particular circumstances of the world. For
example, the argument

‘Socrates is human’. ‘All humans are mortal’. ‘Therefore Socrates will die’.

is valid irrespective of facts such as aging or the inadvisability of accepting drinks
from your enemies. As we would put it, this is due to the coincidence between logical
consequence and derivability. The only thing that matters is the syntactic form of the
argument. Whenever we know ‘A is P .’ and ‘All P are Q .’ then we can conclude ‘A
is Q .’

Calculemus!

Later, in the 18th century the German philosopher Gottfried Leibniz (getting tired about
the endless debates of his colleagues about questions like “how many angels can dance
on a pinpoint”) dreamed of a formal language that could express all of natural language
(lingua universalis) and a calculus (calculus ratiocinator) that could compute all
truths of this language. He wanted to be able to call out to his colleagues Calculemus!
(let us just calculate who is right).

Today the discovery that syntactic and semantic determination of truth conditions can
be equivalent under certain conditions is still considered as one of the great achieve-
ments of the human mind.

In fact if one day a committee of aliens lands on planet Earth to determine whether
they should just blast it away to make way for a new intergalactic hyper-way, or if the
human race is intellectually advanced enough to be worth saving, then we should try
to bring this fact to their attention in order to save our planet (provided we’re on the
welcome comittee).

120 Chapter 7. Inference in Computational Semantics

7.1.7 Natural Language Semantics

Let us now relate all of this to what we’ve learned so far about natural language se-
mantics. Our overall aim is to develop a set of methods to determine the meaning of
natural language. If we look back, all we did was semantic construction. We estab-
lished translations from natural languages into formal languages like first-order logic
(and that is all you will find in most semantics papers and textbooks). Now, we have
just tried to convince you that formulae of these formal languages are themselves again
nothing but syntactic entities that can be processed on syntactic grounds in calculi. So,
where is the semantics? In fact, we have got it once we have a correct and complete
calculus.

Why is this true? Basically, our argument goes as follows: The semantics of a sentence
is reflected in what follows from it. The translation methods we already have give
us first-order logical formulas for sentences. Now we said above that we take the
logical consequence relation between such first-order formulae as a simplified version
of the ‘follows from’ relation between the sentences they translate. Now, a complete
and correct calculus captures this logical consequence relation between formulae -
in terms of their syntax. So it also captures the ‘follows from’ relation between the
corresponding sentences, and thus their semantics, in syntactic terms.

Let us consider the following diagram to shed more light on this situation:

Semantics
Construction

Consequences

Theoretical Logic

N L

L � wffo � Σ �

M ��� D � I �

��� � : - � N L � N L �.� N L

C : � � L � � L

- � � L � � L

I

induces

induces

 �¡¢£ ?

¤�¥

N
L ¦

§ ?

As we mentioned, the green area is the one generally covered by natural language se-
mantics (and all that we covered in the preceding chapters). In the semantics construc-
tion process, the natural language utterances (viewed here as ‘formulae’ of a language
N L) are translated to a formal language L (in our case first-order logic). Now the
argument given above shows that this is all that is needed to recapture the semantics of
N L . Even though it is not immediately obvious at first: Theoretical logic gives us the
missing pieces.

Let us reformulate our argument in the terminology used in the diagram. Since L is a
formal language of a logical system, it comes with a notion of model and an interpreta-
tion function I that translates L formulae into objects of such models. Models induce

7.2. Tableaux Calculi 121

a notion of logical consequence1 as explained in Section 1.1.2. The formal language L
also comes with a calculus C acting on L-formulae, which (if we are lucky) is correct
and complete (then the mappings in the upper rectangle commute2).

In natural language semantics we are interested in ‘follows from’ relations on natural
language utterances, which we have denoted by - � N L . If the calculus C of the logic L
is correct and complete, then it is a model of the relation - � N L . In this case we really
have a formal handle on the ‘follows from’ relation for natural language utterances if
we only specify our semantics construction (the green part) method and the matching
calculus.

7.2 Tableaux Calculi

7.2.1 Tableaux for Theorem Proving

Tableaux are data structures used in refutation-based procedures for automated theorem
proving. Tableaux are trees labeled with formulae. They are constructed starting from
a single (root) node, which is labeled with an input formula. From this node, a tree
is constructed by recursively decomposing complex formulae along the lines of their
logical connectives. Finally, the literals (page 10) on each branch of this tree tell us
what has to be true (and what has to be false) in some class of models of the input
formula, and (this is an important point) all branches of the tableaux taken together
represent all models of the input formula.

Closed Tableaux: No Model

If a branch of a tableaux contains a contradiction (e.g. the literals q and � q), this branch
is called closed . Branches that are not closed are called open . No models correspond
to a closed branch (because two contradictory literals cannot be true in any model). So
the nice thing is that if all branches of a tableaux are closed, we’re sure that there is
no model at all for its input formula. This is a direct consequence of the fact that a
tableaux enumerates all models of the input formula.

Here’s how we can make use of this fact in theorem proving: When trying to prove
that a formula is a theorem, we want to show that the formula is true in all models. But
we needn’t do that directly. As you know, it is a common technique in mathematics
to prove something by showing that its negation cannot be true. This is exactly how
tableaux proofs work: If we want to show that a formula is a theorem, we prove that
there is no way to make it false. So in order show that a given input formula is true in
all models, we will show that there is no model for its negation.

Constructing a Tableaux Proof

Now what does all of this mean in terms of tableaux? We start with the negation of our
suspected theorem, and construct a tableaux by decomposing it into subformulas step

1Relations on a set S are subsets of the Cartesian product of S, so we use R ¨ S ©7ª S to signify that R
is a (n-ary) relation.

2We say that arrows in a diagram commute, if we can compose the mappings on any path and always
arrive at the same result.

122 Chapter 7. Inference in Computational Semantics

by step. To prove that it really is a theorem if we have to arrive at a closed tableaux at
some point.

But how exactly do we construct the tableaux? Here’s an example. Let’s try to show
that the formula �%���«x¬ ®­W�8!¯�'��x¬!°�±­&��� is a theorem. As explained above, we
start with only a single node containing the negation of this initial formula. Instead of
using the � sign here, we indicate the top level negation that we’ve added to our input
formula by signing the formula with an � :

�'�%���«x8 /­&�k!)�'��x²!³�.­&�����|´
Signed Formulae

All formulae in our tableaux calculus will be signed in that way as either B or � . The
signs are best thought of as instructions that tell us that we have to make a formula true
or false, respectively. Of course these signs were not covered by our original definitions
in Chapter 1. Extending the syntax accordingly, it makes sense to adjust the definition
of ‘literal’: Literals are signed atomic formulae. This means that (in contrast to our old
definition) literals never have any connectives; we will no longer regard formulae with
a negation symbol (�) as literals, even if the scope of the negation is atomic.

Next let’s see how we can make our input formula false (following its sign). It has a
negation as its main connective. Thus we know that it is false iff its unnegated version
is true. So, we add a node (we give it number 1 here) to our tableaux with the respective
unnegated formula:

�'�%���«x8 /­&�k!)�'��x²!³�.­&����� ´ <
µ

: ���«x\ /­&�}!)�'�¶x;!³�.­W����·
Conjunctive Expansion

We mark formulae that we have already expanded by < . Now, look at the formula at
node 1. The sign tells us that we have to make this formula true. We can do so by
making both of its conjuncts true. So, we add two new nodes to our tableaux (we call
this a conjunctive expansion of a formula respectively a branch):

�'�%���«x8 /­&�k!)�'��x²!³�.­&����� ´ <
µ

: ���«x8 �­&�}!)�'��x8!��±­&����·{<
¸

: �«x8 ¹­W��·
º

: �'��x8!��±­&� ·
Up to now, we have found out that we make our input formula false iff we make both
(less complex) formulae x» 0­ and ��x�!)�.­ true. You might already see that this is
not possible, but a computer certainly won’t. So let us further expand these formulae!

7.2. Tableaux Calculi 123

7.2.2 Tableaux for Theorem Proving (continued)

Disjunctive Expansion

We continue our tableaux construction by expanding the formula x» ³­ . Under what
conditions is this formula true? There are two possibilities: Either x is true or ­ is true.
We express this in a tableaux by introducing a branching (we call this a disjunctive
expansion):

�'�%���«x8 /­&�k!)�'��x²!³�.­&�����|´K<
µ

: ���«x8 �­&�}!)�'��x8!��±­&��� · <
¸

: �«x8 �­&��·s<
º

: �'��x8!��±­&��·
¼

: x{· ½ : ­
·
On each new branch, we pursue one of the possibilities to make the decomposed for-
mula true. Now there is only one complex formula left to be expanded: ��x~!��.­ . This
expansion is like the second expansion again: The formula is true if both subformulae
are true. So, we add these formulae conjunctively again.

To which branch should we add the new formulae? The answer is: to both. The
expanded formula occurs on both branches and so both should get to see the result.

�'�%���«x8 /­&�k!)�'��x²!³�.­&�����|´K<
µ

: ���«x8 �­&�}!)�'��x8!��±­&����·{<
¸

: �«x8 �­&� · <
º

: �'��x²!³�.­&� · <
¼

: x{·
¾

: �'�¶xV��·
¿

: �'�±­&� ·

½ : ­
·
À

: �'��xV��·
Á

: �'�.­&� ·
This time there are four expansions we could apply next: We could expand node 6 or 7
on the left branch, or node 8 or 9 on the right one. We could in principle choose any of
them. But remember that we want to have a closed tableaux, i.e. we want each branch
to be closed. So it’s a good idea to expand the nodes 6 and 9 next. The expansion
of node 6 gives us xK´ on the left branch and the expansion of node 9 gives us ­W´ on
the right branch. These two expansions give us a closed tableaux (we indicate closed
branches by a Â)!

124 Chapter 7. Inference in Computational Semantics

�'�%���«x8 /­&�k!)�'��x²!³�.­&�����|´K<
µ

: ���«x8 �­&�}!)�'��x8!��±­&����·{<
¸

: �«x8 �­&��·s<
º

: �'��x²!³�.­&� · <
¼

: xK·
¾

: �'�¶xV��·s<
¿

: �'�.­W��·
µsÃ

: x ´
Â

½ : ­f·
À

: �'��xO��·
Á

: �'�.­W��·{<
µOµ

: ­ ´
Â

Signed Branch Closure

We call a branch closed iff there are two occurrences of the same atom with different
signs on this branch (like r ´ and r ·). So, we are done: We have generated a tableaux
proof for the theorem �%���«x8 /­&�}!,�'��x8!��.­W��� !
Exercise 7.1 Add annotations to the nodes of the tableaux above. The annotations
should indicate from where each node resulted, and why. For example, node 1 would
be annotated "from Input", and node 2 something like "from 1, making a conjunction
true". Additionally, the closure nodes (Â) should be annotated with the numbers of the
respective contradictory nodes.

7.2.3 Analytical Tableaux: A more formal Account

Let us now sum up what we’ve done in the example with the help of a few more concise
definitions.

Signed Formulae

The calculus of analytical tableaux analyzes a formula in a tree that represents a set of
case distinctions for satisfiability. The calculus we will use acts on signed formulae,
i.e. formulae decorated with an intended truth value. A formula A · signifies that the
calculus tries to satisfy the formula A , whereas A ´ shows that the calculus tries to
refute it.

Initial Tableaux

The tableaux proving process starts with an initial tableaux that contains only one node
with one signed formula.

7.2. Tableaux Calculi 125

Tableaux Inference Rules

The tableaux is then generated by applying the following inference rules

A ! B ·
T �'!:� ·

A ·
B ·

A ! B ´
T �'!:� ´

A ´AÄÄÄ B ´
� A · T �'�:� ·
A ´

� A ´ T �'�:� ´
A ·

Aα

Aβ α *� β
T �'Â@�Â

For the moment we have only given the rules for conjunction and disjunctions, since
the other connectives can be defined in terms of these (A B Å��%�'� A !@� B � , A � B Å� A B Å¹�%� A !o� B �). We will extend the calculus later (page 130).

These inference rules act on tableaux. They have to be read as follows: If the formulae
above the line appear in a tableaux branch, then the branch can be extended by the
formulae or branches below the line. There are two rules for each primary connective
- one for each sign. Additionally, there is a branch closing rule that adds the special
symbol Â (for "closed") to branches that contain contradictory literals.

Open, Closed, Saturated

We will call a branch in a tableaux closed iff it contains Â , and open otherwise. We will
call a tableaux closed, iff all of its branches are closed, and open otherwise. We use the
above tableaux rules with the convention that no occurence of a formula is expanded
more than once. We will call a branch (and also a complete tableaux) saturated if no
rule can be applied to it, sticking to this convention.

Termination

The convention helps us ensure that the tableaux construction process always termi-
nates (at least for the quasi propositional logic PLNQ that we will introduce in a minute
(page 126)). The inference rules just given always eliminate the primary logical con-
nective from their antecedent (except for T �'Â@�). So, their succedents always have
fewer logical connectives. As a consequence, the tableaux construction process termi-
nates when all of the connectives are used up and the formulae on all branches have
been reduced to literals (in other words, when the tableaux is saturated). Alternatively,
branches may be closed (by T �'Â@�) before they’re saturated. Of course they need not
be further expanded in this case either.

A stronger version of our convention allows rule application only if it adds new material
(i.e. if the result does not already occur on the branch). In Section 10.2.6, we will need
this stronger control mechanism when we deal with first-order tableaux expansion.

Tableaux Proof

As we have discussed already, if a branch is closed, this means that there is no model
for the formulae on that branch taken together; and if a tableaux is closed altogether,
this means that there is no model for the input formula at all. Constructing a tableaux
for Aα means building up an exhaustive case analysis of what is necessary to give A
the truth value α. If all branches are closed, this means that all cases in this analysis
lead to contradictions, and so A cannot have the truth value α.

We will call a closed tableaux with the signed formula Aα at its root a tableaux refu-
tation of Aα, and we will call a tableaux refutation of A ´ a tableaux proof for A. It

126 Chapter 7. Inference in Computational Semantics

refutes the possibility of finding a model where A evaluates to � . Thus A must evaluate
to B in all models, which is just our definition of validity.

Positive vs. Negative Calculi

So the tableaux procedure gives us a notion of proof and can thus be used as a calculus
for proving theorems. But as we have seen it does not prove a theorem directly by
deriving it from a set of axioms (like the calculus in Section 7.1.3 does). Instead it
proves it by refuting its negation. A proof that works indirectly like this is also called
a refutation proof . A calculus that leads to a refutation proof is called negative or
test calculus . Generally negative calculi have computational advantages over positive
ones, since they have a built-in sense of direction.

7.2.4 Using Tableaux to test Truth Conditions

Let us turn to some examples to back up the theoretical considerations in the last sec-
tion (page 124).

The Logic PLNQ

To make things more interesting, we will use our reasoning procedure with a fragment
(which we call PLNQ) of first-order predicate logic that allows us to express simple
natural language sentences, without introducing the whole complications of first-order
inference. PLNQ ("Predicate Logic with No Quantifiers") is a fragment of first-order
logic (page 9) without variables and quantifiers3

We will first prove the implication ‘If Mary loves Bill and John loves Mary then John
loves Mary.’. We do this by exhibiting a tableaux proof of the formula

� LOVE � MARY � BILL ��! LOVE � JOHN � MARY ��� � LOVE � JOHN � MARY �
which is equivalent to

� ��� LOVE � MARY � BILL �&! LOVE � JOHN � MARY ����!1� LOVE � JOHN � MARY ���
if we eliminate the defined connective

�
. By exhaustively applying the inference rules

above, we arrive at the following tableaux.

� ��� LOVE � MARY � BILL ��! LOVE � JOHN � MARY ����!:� LOVE � JOHN � MARY ����´��� LOVE � MARY � BILL ��! LOVE � JOHN � MARY ��� ! � LOVE � JOHN � MARY ���«·� LOVE � MARY � BILL � ! LOVE � JOHN � MARY ��� ·� LOVE � JOHN � MARY � ·
LOVE � JOHN � MARY � ´
LOVE � MARY � BILL ��·
LOVE � JOHN � MARY � ·Â

This tableaux has only one branch, which is closed. So the whole tableaux is closed
and constitutes a tableaux proof for our implication.

3This logic is equivalent to propositional logic in expressivity: atomic formulae (page 9) take the role
of propositional variables.

7.2. Tableaux Calculi 127

?- Question!

Annotate each of the nodes of the above tableaux with the rule that has been used to
add it.

As a second example let us now look at a variant problem

1. ‘Mary loves Bill or John loves Mary’ - � ‘John loves Mary’

2. � LOVE � MARY � BILL � LOVE � JOHN � MARY ��� � LOVE � JOHN � MARY �
3. �Æ�'�%�'� LOVE � MARY � BILL � ! � LOVE � JOHN � MARY ���&!1� LOVE � JOHN � MARY ���

To prove the entailment in (1 (page 127)) we represent it as an implication (2 (page 127)).
Recall that the deduction theorem (page 16) allows us to do so. We then eliminate the
implication, arriving at (3 (page 127)).

Intuitively, (1 (page 127)) does not hold, because in the situation where the antecedent
of the implication is true (i.e. Mary loves Bill), John need not love Mary. If we try to
prove the entailment using our tableaux method, we get:

�'�%�'�%�'� LOVE � MARY � BILL ��!1� LOVE � JOHN � MARY �����&!1� LOVE � JOHN � MARY ���«´�'�%�'� LOVE � MARY � BILL ��!1� LOVE � JOHN � MARY ���&!1� LOVE � JOHN � MARY ���«·� LOVE � JOHN � MARY � ·
LOVE � JOHN � MARY � ´�%� LOVE � MARY � BILL �&! LOVE � JOHN � MARY ���«·�'� LOVE � MARY � BILL �&!1� LOVE � JOHN � MARY ����´� LOVE � MARY � BILL ��´

LOVE � MARY � BILL � · � LOVE � JOHN � MARY ��´
LOVE � JOHN � MARY � ·Â

By now we’ve discussed thoroughly that a tableaux proof for a theorem is a closed
tableaux for its negation. Yet obviously, the tableaux we’ve just constructed is satu-
rated (so we cannot expand it any further) and not closed. In fact, as we’ve already
convinced ourselves above, our initial entailment conjecture doesn’t hold, and so there
is no tableaux proof for it.

In Section 9.1.3 we will look closer at open tableaux. We will study their relation
to models, and basically see that if a tableaux has any branches that are open and
saturated, we can read off a model for its input formula from each of them. Making
the following observation now will help us understand why: The literals on the open
branch of the above tableaux (marked green) taken together characterize the situation
in which the conjectured entailment fails to hold (namely the situation where Mary
loves Bill but John does not love Mary). In other words: They state the ‘minimal
requirements’ on a model for the (negated) input formula.

7.2.5 An Application: Conversational Maxims

Conversational Maxims

Now that we have a computational method for solving inference problems, let’s look
at a case where we can apply it in semantic interpretation. We shall use inference to
check whether a speaker obeys the conversational maxim s in his utterance. The notion
of conversational maxims was introduced by H.P. Grice in 1975. He postulates a set

128 Chapter 7. Inference in Computational Semantics

of constraints on discourses, which he formulates as maxims for the speaker. These
maxims characterize discourse as rational cooperative activity. The hearer can assume
that the speaker follows these maxims, and on this assumption can draw inferences to
the intended interpretation of the discourse: Often if one of multiple reading violates a
maxim, then it simply cannot be the the intended one.

Conversational Implicatures

In other cases a violation allows to infer ‘backwards’ to an intention or assumption on
the side of the speaker. Intentions and assumptions that can be inferred from violations
of the conversational maxims are called conversational implicature s.

Be cooperative!

Grice assumes that participants in a discourse follow a general cooperative principle .
This principle leads to more specific submaxims, falling into one of four categories:

1. Quality Try to make your contribution one that is true.

2. Quantity Make your contribution as informative as is required.

3. Manner Be relevant.

4. Relation Be perspicuous

Generally, Grice’s maxims are viewed as pragmatic in nature. As regards the maxims
of manner and relation, it may indeed not be easy to see how being relevant or be-
ing perspicuous could be defined solely in semantic terms, without reference to more
general factors such as e.g. the intentions, mutual knowledge or the sociolect of speak-
ers/hearers. In contrast, we can get a grip on the first two maxims without having
to tackle all of the complexities of pragmatics, if we use inference techniques on our
semantic representations.

7.2.6 The Maxim of Quality

We now show how we can use inference to check whether an utterance - given some
previous discourse - conforms to the maxims of quantity and quality (or, more pre-
cisely, we show how to detect a lot of cases where it doesn’t). We will formulate
inference tasks that help us decide this question and that we can give to (for instance)
a tableaux prover.

Quality

First, we shall look at the maxim of quality. An utterance must at least be consistent
with the preceding discourse in order to be true. Now this is definitely something we
can decide using a theorem prover.

7.2. Tableaux Calculi 129

An Inference Task

Let’s suppose we want to check the consistency of an utterance ϕ (more precisely
the formula representing the meaning of the utterance) with respect to a preceding
(consistent) discourse, which as a first approximation, we take to be the conjunction of
the logical forms of the n sentences uttered so far ψ1 !²������! ψn. How can we do this?

We proceed indirectly: We check whether ψ1 !²������! ψn ! ϕ is unsatisfiable. If so, then
we know that ϕ is not consistent with ψ1 !;������! ψn (because we have assumed that the
preceding discourse is consistent, we know that ϕ is to blame for the inconsistency).
Otherwise, we know that ϕ is consistent with ψ1 !²������! ψn.

How can we use our tableaux calculus to find out if ψ1 !\�����
! ψn ! ϕ ! ψ is unsatis-
fiable? Up to now, we’ve only seen how to prove theorems. But how can we reduce
inconsistency checks to this task? We just have to look at the negation of the formula
that we want to prove unsatisfiable. If this negation is a theorem, we know that the
unnegated formula is unsatisfiable. So we will take the negation of the conjunction for
the complete discourse (i.e. �%� ψ1 !������#! ψn ! ϕ �), and check if it is a theorem. This
theorem-check is where our tableaux-prover comes in. We feed the negated formula�%� ψ1 !Ç�����«! ψn ! ϕ �|´ to it and try to construct a closed tableaux. If we manage to build
one, we can ‘infer backwards’ a little.

Here is how, step by step:

1. �Æ� ψ1 !²�����#! ψn ! ϕ � is a theorem (this is what we’ve proven on our tableaux).

2. Hence the unnegated ψ1 !²������! ψn ! ϕ must be unsatisfiable.

3. This means that the discourse corresponding to ψ1 !²������! ψn ! ϕ is inconsistent.

4. But the previous discourse ψ1 !;�����#! ψn is consistent (by assumption).

5. Hence the inconsistency can be traced back to adding utterance ϕ.

6. Finally, this means that uttering ϕ after having uttered ψ1 !²������! ψn violates the
Maxim of Quality.

Let us look at a (very) small discourse as an example: ‘If Mutz is a Siamese cat, then
Mary likes her. Mutz is a Siamese cat.’. Given this ‘discourse’, we can use our tableaux
calculus to detect that the sentence ‘Mary doesn’t like Mutz’ violates the maxim of
quality. We have to construct a closed tableaux for the following input (since we do
not have any treatment of pronouns, we formalize ‘her’ as if it was ‘Mutz’):

�'�%��� SIAMESECAT(MUTZ)
�

LIKE(MARY,MUTZ) �K! SIAMESECAT(MUTZ) !k� LIKE(MARY,MUTZ) ��� ´
This is equivalent to:

�'�%���'�Æ� SIAMESECAT(MUTZ) !k� LIKE(MARY,MUTZ) ����! SIAMESECAT(MUTZ) !k� LIKE(MARY,MUTZ) ��� ´
As an exercise (page 132), convince yourself that this formula really yields a closed
tableaux.

130 Chapter 7. Inference in Computational Semantics

7.2.7 The Maxim of Quantity

Quantity

Let’s now turn to the maxim of quantity. To be ‘as informative as required’, an utterance
must (most of the time...) at least be informative at all. We can get a grip on this
minimal requirement using inference. The key idea is that an utterance must contain
something new to be informative. And to count as something new logically, the content
of the utterance must not be implied by the preceding discourse anyway. We know that
if it is implied, the implication with the preceding discourse as antecedent and the (not
so) new utterance as consequent will be valid.

The Inference Task

So (again given a preceding discourse ψ1 !8�����
! ψn) let’s suppose we want to to find
out whether some utterance ϕ is informative. As we said, we check whether

ψ1 !²�����#! ψn
� ϕ

is valid (that means, whether it is a theorem). In our tableaux calculus, we thus have to
attempt to construct a closed tableaux for the equivalent:

�Æ��� ψ1 !²������! ψn �&!o� ϕ � ´
If we manage to do so, we know that the new utterance is not informative and thus
violates the maxim of quantity. Otherwise, we shall take it to be informative.

As an exercise (page 132), we ask you to use PLNQ to check whether ‘Mary has a
husband.’ is informative in the context ‘If Mary is married then she has a husband. She
is married.’ (treating the pronouns as in our example above).

?- Discussion!

Give examples of violations of the maxims of quality and quantity that would not be
detected by our approach!

Let us emphasize again that Grice’s point is not that utterances violating any of the
conversational maxims are ill-formed in the sense of ungrammatical strings. Rather, a
speaker may violate a maxim on purpose, allowing the hearer to infer ‘backwards’ to
the speaker’s intention. Can you think of situations where this happens?

?- Discussion!

Our treatment of the informativity constraint is obviously oversimplified in that it
counts to many utterances as violating the maxim of quantity. The problem is that
we assume that all consequences of the complete discourse are always equally present
to a hearer. How could we solve (or at least alleviate) this problem?

7.2.8 Sidetrack: Practical Enhancements for Tableaux

Now that we’ve seen a first application, let’s make a practical improvement to our
tableaux calculus. So far, we have only given tableaux expansion rules for the connec-
tives ! and � . While it is possible to get by with rules for only these two connectives
in PLNQ, it is a bit unnatural and tedious: we always have to eliminate the other con-
nectives. In this section, we will make the calculus less frugal by adding rules for
them.

7.3. Tableaux Web-Interface 131

Derived Inference Rules

We add such new rules to our calculus as derived rule s, i.e. inference rules that only
abbreviate deductions in the original calculus. Generally, adding derived inference
rules does not change the logical behaviour of a calculus and is therefore a safe thing
to do. In particular, we will add the following three rules for the connective

�
to our

tableaux system.

A � B ·
A ´@ÄÄÄ B ·

A � B ´
A ·
B ´

A ·
A � B ·

B ·
Chaining

We will now convince ourselves that theses rules are derived rules. Take for instance
the third rule. It is so useful that we give it a name: We call it the chaining rule . The
green formulae on the tableaux are the ones we take over into our derived inference
rule.

A ·
A � B ·

B · abbreviates

A ·� A � B � ·�'�%� A !1� B ��� ·� A !1� B �|´
A ´Â � B ´

B ·
In a similar way we derive rules for other common connectives and È � . By the
way, it is a worthwhile exercise to spell out the abbreviated tableaux for some of the
derived rules.

A B ·
A · ÄÄÄ B ·

A B ´
A ´
B ´

A È � B ·
A ·
B · ÄÄÄÄ

A ´
B ´

A È � B ´
A ·
B ´ ÄÄÄÄ

A ´
B ·

With these rules, the tableaux we have seen before (page ??) has the following simpler
form:
��� LOVE � MARY � BILL �&! LOVE � JOHN � MARY ��� � LOVE � JOHN � MARY ��� ´� LOVE � MARY � BILL � ! LOVE � JOHN � MARY ����·

LOVE � JOHN � MARY ���|´
LOVE � MARY � BILL ��·
LOVE � JOHN � MARY � ·Â

7.3 Tableaux Web-Interface

Click here!4

4http://www.coli.uni-saarland.de/projects/milca/cgi-
bin/Tableaux/tableaux.cgi

132 Chapter 7. Inference in Computational Semantics

In the next chapter, we will discuss the implementation of our propositional tableaux
calculus just presented. If you want to use the calculus right away, have a look at our
Web-Interface5 . You can either generate tableaux for some given example formulae
or type in formulae yourself (using our familiar Prolog syntax). This might help you
doing your exercises.

Propositional example formulae like the ones we discussed in this chapter can be found
in the choice box Propositional. If you type in examples by hand, don’t care about the
QDepth input field. Later (page 164) in the context of first order tableaux, we will learn
what this argument is good for.

Try this!

Take for example the tableaux we have seen in Section 7.2.4 and compare it to the
tableaux our system generates:

love(mary,bill) & love(john,mary) > love(john,mary).

Note that you can feed the formula

love(mary,bill) & love(john,mary) > love(john,mary)

directly to our system. But of course you can also feed the equivalent formula without
defined connectives:

~((love(mary,bill) & love(john,mary)) & ~love(john,mary)).

Don’t forget to choose whether you want to make the formula true or false.

7.4 Exercises

In !!!UNEXPECTED PTR TO EX_EX.SEC_INFERENCE.TABLEAUX1!!!, you are
asked to add annotations to a given tableaux.

Exercise 7.2 Re-prove the valid formula A � A whose proof in the Hilbert calculus
(page 116) we have studied in Section 7.1.4 in our tableaux calculus. Think about the
difference between positive and negative calculi (page 126).

Exercise 7.3 [You have to read the sidetrack on derived inference rules (page 130)
to do this exercise.] To see the value of the derived inference rules, prove or refute the
formula � p È � q �²È � � q È � p � .
Exercise 7.4 In Section 7.2.6 we claim that the utterance ‘Mary doesn’t like Mutz’
is inconsistent with the discourse ‘If Mutz is a Siamese cat, then Mary likes her. Mutz
is a Siamese cat.’ because we can construct a closed tableaux for the formula:

�'�%� SIAMESECAT(MUTZ)
�

LIKE(MARY,MUTZ) �K! SIAMESECAT(MUTZ) !k� LIKE(MARY,MUTZ) � ´
5http://www.coli.uni-saarland.de/projects/milca/cgi-

bin/Tableaux/tableaux.cgi

7.4. Exercises 133

resp. the equivalent:

�'�%�'�Æ� SIAMESECAT(MUTZ) !k� LIKE(MARY,MUTZ) ���K! SIAMESECAT(MUTZ) !k� LIKE(MARY,MUTZ) � ´
Construct this tableaux.

Then construct the tableaux needed to check whether ‘Mary has a husband.’ is infor-
mative in the context ‘If Mary is married then she has a husband. She is married.’
(treating the pronouns as in the example above).

For both examples, you may either use the derived inference rules from Section 7.2.8,
or start of with a formula that uses only ! and � .

134 Chapter 7. Inference in Computational Semantics

8

Tableaux Implemented

8.1 Implementing PLNQ

8.1.1 Literals

The recursive predicate tabl/3 implements the core of our tableaux system.

The first argument of tabl/3 is the input formula. In the first call, this is the formula
with which we start our tableaux. The second argument (InBranch) stores the literals
we have derived so far on the branch under construction. In the first call this argument
will just be the empty list [], but we need it as an accumulator in the recursion.

The last argument (OutBranch) of tabl/3 will finally contain the model we’ve con-
structed on some branch (as a list of literals). In Chapter 9 we will learn how to use
tableaux for a task called model generation. In this setting, OutBranch will be the
output of our predicate. But for the time being, you can safely ignore this argument
except when we mention it explicitely.

The predicate tabl/3 has six clauses. The base case is for literals, whereas the recus-
rive clauses handle complex formulae. We will first look at the base case. It is the last
clause in the program, after the clauses for the complex formulae, so we can be sure
that its input F is a literal. (Of course to be sure of this, we additionally have to include
cuts in the other clauses to prevent backtracking to the ‘literal case’). Here it is:

tabl(F,InBranch,OutBranch) :-

OutBranch = [F|InBranch],

\+ clash(OutBranch).

In this clause, we determine whether F is compatible with our input model. We add F to
InBranch, then test if it was compatible. If it was, we return the result (in OutBranch).
Otherwise the clause fails. Remember that InBranch contains all the literals that we
have already derived on the current branch. If the new literal we’re considering con-
tradicts any of these facts, the current branch is closed. So in effect we signal branch
closure by letting the above clause of tabl/3 fail.

The compatibility check we do is actually a negated incompatibility check. It is
done by calling the auxiliary predicate clash/1 on OutBranch (which is equivalent
to InBranch together with the new literal F).

The predicate clash/1 is implemented as follows:

136 Chapter 8. Tableaux Implemented

clash(List) :-

member(true(A),List),

member(false(A),List).

In our implementation we simply translate the signs of our calculus (B�5K�) into the
Prolog atoms true respectively false. Our predicate clash/1 looks whether the
list Literals contains the same atomic formula A twice, once signed true and once
signed false.

?- Question!

A simpler clash test would suffice for our purposes (and make the program more effi-
cient). Do you have an idea how to implement one?

8.1.2 Complex Formulae: Negation

See file propTabl.pl.

We now have dealt with the literal case. But we still have to deal with complex for-
mulae. Let us start with the clauses for negation, directly modeled on the rule T �'�¶·{�
(page 125).

tabl(true(~A),InBranch,H) :-

!,tabl(false(A),InBranch,H).

tabl(false(~A),InBranch,H) :-

!,tabl(true(A),InBranch,H).

These clauses are almost self-explaining. They simply strip off the negation symbol
and turn the sign of the formula. The cuts are there to prevent backtracking to the
clause for literals, which would also match.

The recursive call covers the branch of the tableaux below the negated formula. Gen-
erally, all clauses for complex formulae will consist of recursive calls to tabl/3 on the
decomposed input. Failure in one of these calls always means that the corresponding
part of the tableaux is closed. In Section 8.1.5 we illustrate all this by an example.

8.1.3 Complex Formulae: Conjunctive Expansion

See file propTabl.pl.

We now look at the clause for positive conjunction, which corresponds to the rule
T �'!2� · (page 125). Again, the cut prevents backtracking to the clause for literals.

tabl(true(A & B),InBranch,OutBranch) :-

!,tabl(true(A),InBranch,K),

tabl(true(B),K,OutBranch).

8.1. Implementing PLNQ 137

To make a conjunction true, we first make the first conjunct true. Then we take what
model we’ve generated for the first conjunct (contained in K) and use it as input to make
the second conjunct true. Note that here we really need the last argument of tabl/3.

If the second call to tabl/3 succeeds in the end, OutBranch contains all the literals
generated when verifying both the first and second conjunct.

This is related to the way we would normally (with pen and paper) construct a tableaux
as follows: Each one of the two recursive calls to tabl/3 in this clause covers one part
of the branch below the conjunctive formula. If any of these two calls fails, so will the
whole clause containing them. This is correct because both calls cover part of the same
branch, and closure in any of these parts should affect the branch as a whole.

8.1.4 Complex Formulae: Disjunctive Expansion

See file propTabl.pl.

Let’s finally look at conjunctions in a negative context (i.e. disjunctions). Remember
that the rule T �'!2� ´ (page 125) introduces a branching. If we find a negated conjunc-
tion, we have to falsify either the first or the second conjunct. We express this ‘either...
or...’ in Prolog by writing two clauses, each of them covering one of the two branches:

tabl(false(A & _),InBranch,H) :-

tabl(false(A),InBranch,H).

tabl(false(_ & B),InBranch,H) :-

!,tabl(false(B),InBranch,H).

In the first clause, tabl/3 is called with the first conjunct (signed false) as input.
If this call succeeds, everything is fine and we get the resulting open OutBranch as
output. Prolog will then simply forget about the second clause (resp. disjunct/branch).
Otherwise (i.e. if the first call fails), Prolog backtracks to the next clause in the pro-
gram, the second clause for negative conjunction. There tabl/3 is called with the
second conjunct as input, generating the resulting OutBranch. This corresponds to the
second branch of the T �'!:� ´ -rule.

Note that this time we put a cut only in the second of the two clauses. The reason
is that we want to allow backtracking from the first clause to the second one. But
of course we still do not want to have backtracking to the clause for literals: If both
of the clauses for the negative conjunction fail, the cut in the second clause prevents
any further backtracking. So this call of tabl/3 fails. This is exactly as it should
be, because in this situation our program has found a contradiction on both branches
opened by the T �'!:� ´ -rule. Hence the whole subtableaux for the negative conjunction
is closed.

8.1.5 An Example - first Steps

Here comes an example that will help us understand how the clauses of tabl/3 are
related to the construction of a tableaux as we would usually draw it. Let’s take the
formula �%��� RUN(JOHN) !~� SLEEP(MARY) �
!;� SLEEP(MARY) ��� , and suppose we want
to make it false. This should result in a closed one-branch tableaux, containing the
contradiction SLEEP(MARY) · vs. SLEEP(MARY) ´ . Now let’s see how our program
finds this tableaux.

138 Chapter 8. Tableaux Implemented

Computation Tree

We represent Prolog’s computation using a so called computation tree . This tree shows
the sequence of calls that Prolog has to execute in order to prove its main goal (the one
given in the initial call). Each node of a computation tree corresponds to a state of
the computation. Each node contains a stack with the goals that have to be proven at
the corresponding state of the computation. The topmost goal on the stack is always
the one just under consideration at that state. If this goal produces new subgoals,
they replace it on top of the stack in the next state (i.e. at the daughter node in the
computation tree). If a goal succeeds, it is removed, but the resulting instantiations of
variables are kept and used for the goals on the stacks below in the tree, which are still
to be processed.

Computation trees branch whenever there are multiple clauses compatible with a call
(i.e. in the case of a disjunction in the Prolog code). The branchings correspond to
backtracking points in the programm. The computation tree for our running example
does not branch, but we will soon see one that does.

Initial State

We start with an initial tableaux consisting of our input formula only, and a computa-
tion tree with only one node that contains the top goal:É.Ê�Ê RUN(JOHN) Ë É SLEEP(MARY) ÌVË Ê SLEEP(MARY) Ì|Ì+Í Î

tabl(false(Ï (run(john)& ...)),[],Out)

Steps One and Two

In the following step, the negation symbol is stripped off and the sign of the whole
formula is turned from � to B . We don’t show the tableaux and computation tree for
this step. We directly look at the next one, where the conjunction is handled. From now
on, we will abbreviate RUN(JOHN) as P and SLEEP(MARY) as Q. The dotted boxes on
the tableaux indicate how the formulae on the tableaux derive from each other: All
formulae within a box (transitively) derive from the topmost one in that box. So the
tree and tableaux after handling the first conjunction look as follows:

Notice that now for the first time, the stack in our computation tree contains two goals.
This is because we had to handle a conjunction in step (1) and the clause of tabl/3
for conjunction consists of two subgoals, namely the two recursive calls to tabl/3 on
the two conjuncts. The call for the first conjunct is top - Prolog will first consider this
goal.

8.1. Implementing PLNQ 139

Looking at the Tableaux

But what does this mean on the side of the tableaux? It means that the tableaux will (for
some time) grow "in the middle": below the formula we’ve added for the first conjunct
(the blue one), but above the one for the second conjunct. Thus the next formulas are
added inside the dotted box around the first conjunct.

8.1.6 An Example - final Step

Let’s now look at the final step of the computation, when the program finds the contra-
diction false(P) vs. true(P) and fails:

How did we get here?

How did we get here? In step (3), there are three goals on the stack: The top goal from
step (2) has produced two new subgoals, which are now on top. The third goal is the
one that was second in step (2). It remains untouched for the time being. Steps (4) and
(5) merely consist of the obvious recursive calls triggered by the subgoals on the stack.

140 Chapter 8. Tableaux Implemented

Literals

In steps (3) and (5), tabl/3 is called on a literal. Therefore these are the steps where
output arguments get instantiated. We’ve indicated this by notating the corresponding
assignments to the right of the stack at the respective nodes. In step (3) Out2 is instan-
tited to [true(P)], and in step (5) Out1 gets determined to [false(Q),true(P)]. If
there were no other goals on the stack in step (5) this would be the output of the whole
computation.

Finding the Contradiction

But there still is the goal that was put on the stack in step (2) (corresponding to the
rightmost conjunct in the original input formula). Finally, in step (6) this goal becomes
top of the stack and is processed. The literal true(Q) is added to the incoming branch
and a clash/1 test is performed (in the computation tree we’ve left out the clash/1-
subgoals that come from tabl/3 calls on literals. You may have noticed this already
at steps (3) and (5)). Because true(Q) contradicts false(Q) on the incoming branch,
there is a clash and the computation fails.

In our example, there are no possibilities for doing anything else now. The fail means
that Prolog answers no, all previous instantiations are undone and the variable for the
outgoing model of our top level call (Out) remains undetermined. This reflects the fact
that the tableaux for our input formula has only one branch, and that this one branch is
closed, i.e. contains no model.

But next, we’ll look at a case where there is an alternative branch that remains open.
We’ll have a branching computation tree there, and Prolog’s fail will trigger back-
tracking.

8.1.7 Another Example

Suppose we are falsifying the formula:

�'�%��� RUN(JOHN) !k� SLEEP(MARY) �K!o� SLEEP(MARY) ������!}�Æ� CUSTOMER(MARY) ! CUSTOMER(JOHN) �
We will abbreviate this formula as �Æ��� P !Ç� Q �&! Q �&!Ç�Æ� R ! S � . Notice that the main
connective of this formula is a conjunction and the first conjunct is exactly the same
formula as in the last example. Expanding this conjunction (under negative polarity -
we said that we want to falsify the formula) leads to the following branching tableaux
and computation tree:

A Branching

8.1. Implementing PLNQ 141

See file propTabl.pl.

The tableaux has two branches according to our rule T �'!:� ´ . The left one is exactly
as in our last example and will end up closed. The computation tree also branches,
and here again the left branch is as in our last example and will end in a fail. But
why does the computation tree branch? Look at the clauses of tabl/3: There are two
clauses that match for a negative conjunction. One leads to a recursive call on the left
subformula, the other to a recursive call on the right one. The two branches of the
computation tree correspond to these two matching clauses.

Backtracking and Computation Trees

The branches of the computation tree are visited from left to right. After a while the
fail on the left branch is reached (i.e. the left branch of our tableaux closes). As we
know, fail triggers backtracking. On our computation tree, this means that Prolog
goes upward from the fail to the next branching point above, and chooses the next
branch to the right to continue its computation. The branch to the left is discarded (and
so are all instantiations that took place below the branching point).

Hence the right conjunct of our original input formula is further expanded, adding to
the right branch of the tableaux. Finally, when the right conjunct is fully broken down
into literals, the top-level output argument Out is instantiated to [true(R), true(S)].

142 Chapter 8. Tableaux Implemented

What is the result?

Now we know that our input formula (page 140) is no theorem. Moreover, we have
generated a (in fact the) counter example in OutBranch: If customer(mary) and
customer(john) are true, the whole input formula is false.

8.1.8 Two Connectives

Notice that we’ve only discussed (and in fact that we’ve only implemented) tableaux
rules for the connectives � and ! so far. This made things simpler for us, and as you
probably know it is always possible to treat all other connectives as defined in terms of
these two.

See file comsemLib.pl.

We will now give an implementation of the predicate naonly/2 that takes a formula
which uses the full set of connectives to an equivalent one that uses only � and ! . All
we have to do is to replace the defined connectives according to their definitions:

naonly(~(X),~(Z)) :-

!,naonly(X,Z).

naonly(X & Y, Z & W) :-

!,naonly(X,Z),

naonly(Y,W).

8.2. Wrapping it up (Theorem Proving) 143

naonly(X v Y,~(~(Z) & ~(W))) :-

!,naonly(X,Z),

naonly(Y,W).

naonly(X > Y,~(Z & ~(W))) :-

!,naonly(X,Z),

naonly(Y,W).

naonly(X,X) :- !.

We have to use cuts in the first clauses because we don’t want to allow backtracking
to the last one (which always matches). If we didn’t, we would get additional spurious
solutions with only parts of the input formula converted.

8.2 Wrapping it up (Theorem Proving)

The file prop.pl contains a simple driver for theorem proving:

theorem(Formula) :-

naonly(Formula,ConvFormula),

\+ tabl(false(ConvFormula),[],_).

Test it! theorem(walk(john) v (~walk(john))).

All Files

Here’s a summary of the files that make up the implementation we’ve discussed:

See file propTabl.pl. The core of the implementation: tabl/3 and clash/3

See file comsemLib.pl. Auxiliary predicates: naonly/2 and toconj/2

See file prop.pl. The wrapper for model generation and theorem proving: modGen/3 and theorem/1.
See file comsemOperators.pl. Our usual operator definitions

8.3 Exercises

Exercise 8.1 Implement the derived inference rules from Section 7.2.8 using the
ideas in this chapter. Include in your solution the examples that you used to test your
implementation.

Exercise 8.2 Draw a tableaux for, and run the implemenation with the input:

�'�%�'�Æ� WALKS(JOHN) ! WALKS(MARY) ��!k�%� WALKS(MARY) ! RUN(MARY) ������!~�'� WALKS(JOHN) !}� RUN(MARY)

If you expand the first conjunct first (as our implementation does), the second conjunct
will have to be expanded on two branches.

Make sure you understand how this is done in our implementation. You can either
perform a trace or draw a computation tree.

144 Chapter 8. Tableaux Implemented

Exercise 8.3 In Section 7.2.1 we used little check marks (<) to signify that a formula
had been expanded. In Section 7.2.3, we said that we do not expand formulae twice
in order to ensured termination of the tableaux construction process. Now there’s no
obvious equivalent to such a technique in our implemenation. It terminates although it
does not keep any explicit record of which formulae have already been expanded. Why
doesn’t it keep on expanding the same formulae for ever? In other words: How does
our program know when a tableaux is saturated?

9

[Sidetrack] Model Generation

9.1 Using Model Generation for Natural Language Interpretation

9.1.1 Why Model Generation?

In the following we will use a model generation procedure to model discourse under-
standing. This approach takes us one step beyond what we’ve done so far. Take for ex-
ample the sentence ‘John loves Mary and Mary hates John’. Up to now we would have
said that understanding this sentence (at least for a computer) consisted in constructing
the formula LOVE(JOHN,MARY) ! HATE(MARY,JOHN). From now on, we say that un-
derstanding the sentence also involves deriving the literals � LOVE(JOHN,MARY),HATE(MARY,JOHN) 	 .
Why should we be so keen on deriving � LOVE(JOHN,MARY),HATE(MARY,JOHN) 	 al-
though we’ve already got their conjunction LOVE(JOHN,MARY) ! HATE(MARY,JOHN).
What’s so special about a set of implied literals compared to a complex formula that
implies them? The answer is that they represent the truth conditional content of the
sentence in its basic form. This makes them interesting in many respects:

Formally, a set of literals derived from a formula specifies a model for that formula (and that’s
why we call the process of deriving it model generation). We discussed the rela-
tion between sets of literals and models in Section 2.1.4. In our example, the literals� LOVE(JOHN,MARY),HATE(MARY,JOHN) 	 specify a model with a domain consisting
of JOHN and MARY, where John loves Mary and Mary hates John. We shall even
sloppily say that the literals are this model.

Technically, a flat list of literals is a nicer and more easily accessible data structure than a for-
mula with recursive structure. We can view model generation as a normalization-like
postprocessing step after semantics construction. Additionally we already have a tool
that works on input of that form: Our model checker from Chapter 2. We could give
it the model [love(john,mary), hate(mary,john)] and have it decide whether
forall(X, love(X,mary)) is true in this model or not.

Conceptually, the literals derived by a model generation procedure are more fundamental than the
complex formula they are derived from. Ideally they stand for basic, logically indepen-
dent facts that characterize a real-world situation where the complex formula would be
true. By logically independent, we mean that the truth of each such basic fact depends
only on the way the real world is, not on the truth of any other facts.

146 Chapter 9. [Sidetrack] Model Generation

Complex sentences are in general not logically independent of one another. For exam-
ple, the truth of the complex sentence ‘John loves Mary and Mary hates John’ interferes
with that of ‘John loves Mary or Mary hates John’. In contrast the basic fact ‘John loves
Mary’ may or may not hold in a situation, independently from the equally basic ‘Mary
hates John’ (and independently from all other facts): There can be two situations that
only differ in whether John loves Mary or not.

Of course it is a strong idealization to assume that all literals that we derive from the
semantic representations we’ve discussed are really logically independent. For instance
the two literals LOVE(JOHN, MARY) and HATE(JOHN, MARY) obviously should not be
said to be independent - either John loves Mary or he hates her, but normally not both
at the same time. The problem here is that our semantic treatment of single words is by
far not fine-grained enough. We basically translate each verb or noun into one single
predicate symbol of its own. But there exist various meaning relations between single
words. The area of lexical semantic s takes such relations as one starting point for
working out elaborate models of the internal structure of word meanings.

Cognitively, a set of literals can serve as an approximation of what is called a mental model in
the psychological literature. It is assumed that mental models are what constitutes
believes and knowledge about the real world in human minds. Communication by
natural language is then viewed as a process of transporting parts of the mental model
of the speaker into the the mental model of the hearer. Therefore, the interpretation
process on the part of the hearer is a process of integrating the meaning of the utterances
of the speaker into his mental model.

We can take (sets of) literals as the currency for the information transferred in this
process. What makes this choice of currency particularily interesting is that sets of
literals are well-defined and have enough internal structure to allow us to formulate
empirically testable hypotheses. For example they give us a means of claiming that we
transfer more information by uttering ‘John loves Mary and Mary hates John’ than by
just saying ‘Mary hates John’. In the first case the hearer potentially has to integrate
two literals (i.e. two ‘pieces of information’) into her mental model, compared to only
one in the latter case. We could thus e.g. predict that understanding the first sentence
would consume more resources than understanding the second one.

9.1.2 Tableaux for Model Generation with PLNQ

So for the above reasons we would like to have a technique that derives all literals that
a formula implies, that is, we would like to have a model generation procedure . And
in fact, we already have one. Look again at the tableaux (page ??) by means of which
we have attempted to prove the entailment ‘Mary loves Bill or John loves Mary’ - �
‘John loves Mary’.

The tableaux is saturated and still open. This tells us that our proof failed, which is cor-
rect. But the tableaux contains further useful information: The (green marked) literals
on the open branch give us a counter-model for the entailment, namely � LOVE � MARY � BILL �w·O� LOVE � JOHN � MARY .
So, as a by-product of the proof, the tableaux has generated a model for its input for-
mula (the negation of the entailment to be proven). We will now use this property of
our tableaux calculus directly for model generation. Note that models from now on are
signed. The model from above may equivalently be written � LOVE � MARY � BILL �
��� LOVE � JOHN � MARY ��	 .

9.1. Using Model Generation for Natural Language Interpretation 147

To find models for a formula, we will simply build a tableaux for this formula with
positive polarity (B). In the end, each (open) branch of that tableaux will tell us one
way of making the formula true - in other words it will contain a model for it.

Let us look at an example, the (admittedly a little unnatural) sentence ‘John doesn’t
love Mary and if John doesn’t love Mary then Mary loves Bill’, which we represent by
the formula:

� LOVE(JOHN,MARY) !\�'� LOVE(JOHN,MARY)
�

LOVE(MARY,BILL) �
which is equivalent to

� LOVE(JOHN,MARY) !\�'�%�'� LOVE(JOHN,MARY) !1� LOVE(MARY,BILL) ���
�
Now, which models does this formula have? Before we run our tableaux algorithm,
let us give an intuitive formulation of how the models for our formula should look.
The first part of our input sentence tells us that John does not love Mary. So, this
fact must definitely be reflected in every model. The second part alone (the implica-
tion‘if...then...’) is true in two kinds of model: Either in a model where John loves
Mary or in one where she loves Bill. Now since we already know that John doesn’t
love Mary, we know that only the second alternative is possible. So there is only one
model for our sentence, namely the one where John doesn’t love Mary but Mary loves
Bill.

Here’s the tableaux:
� LOVE(JOHN,MARY) !8�'�Æ�'� LOVE(JOHN,MARY) !1� LOVE(MARY,BILL) ����·� LOVE(JOHN,MARY) ·�%� LOVE(JOHN,MARY) !1� LOVE(MARY,BILL) � ·

LOVE(JOHN,MARY) ´� LOVE(JOHN,MARY) !1� LOVE(MARY,BILL) ´� LOVE(JOHN,MARY) ´
LOVE(JOHN,MARY) ·Â

� LOVE(MARY,BILL) ´
LOVE(MARY,BILL) ·

This tableaux is saturated and has one open branch, representing a model for the input
formula. As you can see the tableaux once had two open branches while it was being
constructed. At that time these two branches represented two different models under
construction for the input formula. But our calculus found out that the literals on the
left branch are contradictory. Hence this branch was discarded as it does not represent
a model. So now there remains one open branch in our tableaux, and its literals taken
together represent exactly the model we described above:

� LOVE(JOHN,MARY) ´ � LOVE(MARY,BILL) · 	
Our tableaux calculus made use of the information given in the first part of the sentence
while processing the rest. It then automatically made the right decision in discarding
the left branch. So it arrived at the same result as we did in our intuitive considerations.

?- Question!

Look at the tableaux again. Which formula expansion resulted in the branching? In
terms of models, why does this expansion have to introduce a branching? And why is
the closure of the left branch appropriate?

148 Chapter 9. [Sidetrack] Model Generation

9.1.3 Tableaux Branches and Herbrand Models

In this section we explore the relation between literals on saturated branches and mod-
els in more detail. Put in more professional terms, there’s one general property of
tableaux calculi of which we take advantage in model generation: The set of literals on
an open saturated tableaux branch corresponds to a Herbrand model (page 22) for the
input formula of the tableaux.

A Second Look at our Example

To fortify our intuition, we will study our example above, where the set of literals on
the open branch is

� LOVE � JOHN � MARY � ´ � LOVE � MARY � BILL � · 	
and build such a model.

Let us recap: A Herbrand model H is a model (a pair � D � I � of a domain and an in-
terpretation function) where individual constants are interpreted "as themselves". Our
formula mentions “Mary”, “John”, and “Bill”, so let us take D: ��� MARY � JOHN � BILL 	
and fix I � MARY ��� MARY, I � BILL ��� BILL, I � JOHN ��� JOHN.

So the remaining task is to find a suitable interpretation for the predicate LOVE that
makes LOVE � JOHN � MARY � false and LOVE � MARY � BILL � true. This is simple: we just
take I � LOVE �3����Ð MARY � BILL Ñ�	 . Indeed we then have 4 4 LOVE � MARY � BILL � LOVE � JOHN � MARY �|6 6 M �B and 4 4 LOVE � JOHN � MARY �|6 6 M �³� according to the definition of the interpretation
function (page 6).

More Formally

Now let us generalize what we have just done for our example to arbitrary sets of
literals coming from a saturated open tableaux branch. Let LI T be such a set of
literals. Note that LI T necessarily is contradiction-free : It cannot contain literals A ·
and A ´ at the same time; otherwise the branch would be closed.

Fixing the Domain

We take the domain of interpretation to be isomorphic to the set C � LI T � of individual
constants occurring in LI T . The simplest thing to achieve this isomorphism, is just
to take D: � C � LI T � and take I to be the identity function on individual constants
I � IdC :C � D . This means that all constant symbols will simply denote themselves.
Note that choosing D this way is the most general possibility as long as we assume
all individuals to be distinct. If we wanted to be able to express equality between
induividuals (say between Mary and Bill, in which case we would know that he/she
loves him/herself), we would have to add more structure to our domain, shifting to
normal models (page 16).

Herbrand models

Now we can give a formal definition of Herbrand models. We will call a model a
Herbrand model , iff D is a set C of individual constants and I is the identity on C .

9.1. Using Model Generation for Natural Language Interpretation 149

Interpreting Predicates

The only thing still to be done now is fixing the interpretation of predicates so that they
satisfy the literals in LI T . Again, we make the choice that commits us least. So we
choose the extension of our predicates that makes exactly the positive literals in LI T
true. That is we take

I � p ������� c1 �������#� cn �Ò- p � c1 �������#� cn � · � LI T 	
for every n-ary predicate p that occurs in LI T . Note that I � p � is well-defined, since
LI T does not contain contradictions. In result, each predicate will be interpreted as
the set of those tuples of constant symbols that appear as arguments in positive literals
for the respective predicate in LI T .

What have we achieved?

Now we have fully specified a model M ��� D � I � , such that 4 4A 6 6 M � α for each Aα �
LI T . In other words, we have found a model that satisfies all literals in LI T .

On the other hand, for any model M , the set

LI T � M � Σ � : ��� Aα -A atomic � α �04 4A 6 6 M 	
of literals is contradiction-free, since 4 4Ó$ 6 6 M is a function. So contradiction-free sets of
literals are representations of models. Note that this is why we sloppily say that some
set of literals is a (Herbrand) model. If this sounds familiar, that’s no wonder. We have
done the same argumentation when we had to represent models (page 21) in Prolog.

9.1.4 Tableaux generate Herbrand Models

The literals on an open saturated tableaux branch B are a Herbrand model H , as we
have convinced ourselves above. Is this all we wanted to show? No! We still have to
argue that H is also a model for the input formula of the tableaux.

From the Literals to the Input Formula

The argument goes as follows: The tableaux inference rules are made up in a way that
whenever a model satisfies the succedent, it also satisfies the antecedent (which is im-
mediate from the semantics of the principal connectives). So, if H is a model of the
literals of B , then it is also a model of the complex formulae on B which were decom-
posed into these literals during the tableaux construction. Transitively, this argument
shows that H is a model of all formulae on B .

In particular, H is a model for the input formula of the tableaux, which is on B by
construction. So the tableaux procedure is also a procedure that generates explicit
(Herbrand) models for the input formula of the tableaux. Every branch of the tableaux
corresponds to a (possibly) different Herbrand model.

150 Chapter 9. [Sidetrack] Model Generation

Finite Model Property

As we have already seen (page 125), tableaux saturation always terminates for PLNQ.
As a consequence, every Herbrand model we generate is represented by a finite set of
literals. But if we look at the construction of such a Herbrand model, we see that it is
also finite in a different sense: its domain is finite. Because all of the Herbrand models
generated for PLNQ formulae by our tableaux procedure are finite, and our tableaux
procedure is complete, we can be sure that satisfiable PLNQ formulae always have a
finite model. This property of a logic is called the finite model property .

Decidability

Another consequence of termination (page 125) of tableaux saturation together with the
fact that tableaux enumerate all possible models is that model generation is a decision
procedure for satisfiability (page 12) in PLNQ, i.e. an algorithm that will determine
the satisfiability of any PLNQ formula in a finite time.

9.2 Discourse understanding

9.2.1 Building Discourse Models

World Knowledge

One big advantage of tableaux is that they come with an in-built possibility to keep
around knowledge that’s assumed to be ‘already there’. Be it world knowledge, the
content of previous sentences, or a new sentence - simply put it on the tableaux, and
you can use it. Putting this formally, let’s generalize the notion of an initial tableau
(page 124). Instead of allowing only one initial signed formula at the root node, let’s
allow a linear tree whose nodes are labeled with signed formulae. We will for instance
start model generation for the sentence ‘If Mutz is a cat, Mutz likes Hansi.’ with the
following tableaux, already containing the world knowledge that Hansi is a canary and
Mutz is a cat (we’ve enclosed the formula for the actual input sentence in a box):

CANARY(HANSI) ·
CAT(MUTZ) ·

CAT(MUTZ)
�

LIKE(MUTZ, HANSI) ·
Online Process

Now what exactly are we going to do with tableaux to model discourse understand-
ing? We think of the hearer (or reader) in a discourse as internally maintaining a
tableaux that represents the current set of alternative models for that discourse. Now
the hearer’s understanding is an online process that receives as input the logical forms
of the sentences of the discourse one by one. The hearer has a mechanism for choosing
a preferred model (i.e. branch) from the open branches of his internal tableaux. He
also maintains a set of deferred branches that can be re-visited if the preferred branch
gets closed in the course of further processing.

9.2. Discourse understanding 151

Append, Saturate, Choose

Upon input, the given logical form is appended to the tableaux as a leaf to all branches.
The hearer then saturates the current (i.e. the preferred) tableaux branch, exploring the
set of possible models for the sequence of input sentences. If the subtableaux generated
by this saturation process contains open branches, then he chooses one of them as the
new preferred model, marks some of the other open branches as deferred, and waits
for further input. If the saturation yields a closed sub-tableaux, he backtracks. This
means that he selects a new preferred branch from the deferred ones, and continues
the tableaux expansion on this branch. Backtracking may be repeated until success-
ful, or until some termination criterion is met. In this case discourse processing fails
altogether.

9.2.2 A first Example

Let us now look at an example of tableaux-based discourse processing. Assume that
we hear the sentence ‘If Mary smokes, Mary looks pale and feels sick.’ Let us further
assume that we process this sentence without any further knowledge whatsoever. This
is cognitively implausible, but it facilitates the presentation: We simply start with an
empty tableaux. Understanding this sentence gives us the following tableaux:

SMOKE(MARY)
� � PALE(MARY) ! SICK(MARY) · �

SMOKE � MARY ��´ PALE(MARY) ! SICK(MARY) ·
PALE � MARY � ·
SICK � MARY � ·

This tableaux has two branches, both saturated and open. So, there are two models that
make this discourse true. In other words, there are two situations that are described
by this sentence. Either Mary does not smoke, or Mary is pale and feels sick. As we
argued above, we now have to decide which model we prefer.

?- Question!

It is an open question what kind of information influences such decisions. Do you have
any ideas? (We encourage you to speculate!)

Let’s take the second model (on the right branch) to be our preferred model (without
any compelling reasons), and assume that the sentence ‘Mary does not feel sick, Mary
is hungry.’ is uttered next. We proceed as follows: First, we add the corresponding
formula to all branches of our tableaux:

SMOKE(MARY)
� � PALE(MARY) ! SICK(MARY) · �

SMOKE � MARY � ´
� SICK(MARY) ! HUNGRY(MARY) ·

PALE(MARY) ! SICK(MARY) ·
PALE � MARY ��·
SICK � MARY ��·

� SICK(MARY) ! HUNGRY(MARY) ·
We then start further expanding our preferred branch:

152 Chapter 9. [Sidetrack] Model Generation

SMOKE(MARY)
� � PALE(MARY) ! SICK(MARY) · �

SMOKE � MARY � ´
� SICK(MARY) ! HUNGRY(MARY) ·

PALE(MARY) ! SICK(MARY) ·
PALE � MARY ��·
SICK � MARY ��·

� SICK(MARY) ! HUNGRY(MARY) ·
� SICK(MARY) ·

HUNGRY(MARY) ·
SICK(MARY) ´

T �'Â@�
But what has happened? Our preferred branch has become inconsistent. So, we back-
track and expand the other branch (which is still open). As a result, we get the follow-
ing tableaux:

SMOKE(MARY)
� � PALE(MARY) ! SICK(MARY) · �

SMOKE � MARY ��´
� SICK(MARY) ! HUNGRY(MARY) ·

� SICK(MARY) ·
HUNGRY(MARY) ·

SICK(MARY) ´

...
T �'ÂÔ�

The left branch (which is the new preferred branch) is saturated. So we’ve ‘understood’
our little discourse by building a model where Mary is hungry, and where she’s neither
smoking nor feeling sick. Note that the tableaux would close altogether if it would turn
out later in the discourse that Mary is indeed smoking. In this case, there would be no
model for the discourse at all, and we would know that at least one of the previous
utterances must have been false.

9.2.3 A Second Example

The example before has shown that tableaux offer a data structure rich enough for
maintaining different ways of understanding (parts of) a discourse. By organising
tableaux expansion the way we do, in particular by concentrating on the expansion
of one branch at a time, we can model the process of incrementally understanding a
discourse. As we have seen in the example, this involves discarding one branch (i.e.
partial model) and starting the model building process anew based on another branch
if we encounter an inconsistency.

But using the ability to detect inconsistencies built into our model generation approach,
we can do much more than we’ve seen so far. We can deal with lots of other kinds of
ambiguities in the sentences we process. As our next case study, let’s use inconsitency
detection to resolve a syntactic ambiguity. The sentence in (Sentence 1 (page 152))
has two syntactic readings (2 (page 152)) and (3 (page 152))

1. Sentence 1:‘Peter loves Mary and Mary sleeps or Peter snores.’

2. Reading 1: � LOVES � PETER � MARY �&! SLEEPS � MARY � � SNORES � PETER �
3. Reading 2: LOVES � PETER � MARY �&! � SLEEPS � MARY �& SNORES � PETER � �

Of course normally such an ambiguity would be resolved in the syntax- or semantic
construction-component, e.g. on the base of prosodic information. But for the sake of

9.3. Wrapping it up (Model Generation) 153

our example, let’s assume our system isn’t that clever. Thus at first, we will have to
consider both of the above readings in parallel. We can do so by simply building two
tableaux, one per reading.

Let us first look at Reading 2 (page 152).

LOVES � PETER � MARY �&!8� SLEEPS � MARY �� SNORES � PETER ��� ·
LOVES � PETER � MARY ��·� SLEEPS � MARY �& SNORES � PETER ���«·

SLEEPS � MARY ��· SNORES � PETER �«·
We see that model generation gives us two models. In both, Peter loves Mary. But in
the first one, Mary sleeps, while in the second one Peter snores. If we take the logically
different input (Reading 1 (page 152)), we obtain different models:

� LOVES � PETER � MARY �&! SLEEPS � MARY ���� SNORES � PETER � ·
LOVES � PETER � MARY �&! SLEEPS � MARY � ·

LOVES � PETER � MARY � ·
SLEEPS � MARY ��·

SNORES � PETER � ·

Let’s continue the discourse with:

� Sentence 2:‘Peter does not love Mary.’

We have to extend the second tableaux to:
� LOVES � PETER � MARY ��! SLEEPS � MARY ���& SNORES � PETER � ·

LOVES � PETER � MARY ��! SLEEPS � MARY � ·
LOVES � PETER � MARY � ·

SLEEPS � MARY ��·
� LOVES � PETER � MARY � ·
LOVES � PETER � MARY �|´Â

SNORES � PETER � ·
� LOVES � PETER � MARY �«·
LOVES � PETER � MARY � ´

On this tableaux, we now have exactly one model. And the first tableaux closes alto-
gether when extended with our second sentence.

?- Question

Check this claim!

This means that we’ve resolved all ambiguities. The choice of models has been reduced
to one, which constitutes the intuitively correct reading of the discourse (Sentence 1
(page 152) and Sentence 2 (page 153)).

9.3 Wrapping it up (Model Generation)

World Knowledge

You can think of world knowledge as a collection of formulae stating facts about the
world. Typically, there will be basic facts like SIAMESECAT(MUTZ) and rule-like facts
like

�
x � SIAMESECAT(X) �Õ" y � OWN(Y,X).

154 Chapter 9. [Sidetrack] Model Generation

modGen(Formula,WKNumber,Model) :-

wk(WKNumber,WK),

toconj([Formula|WK],Conjunction),

naonly(Conjunction,Converted),

tabl(true(Converted),[],Model).

We have to give the world knowledge as a list of formulas. This list has to be put in the
database together with a number, as a term wk(N,Formulas). Our predicate modGen/3
accesses the world knowledge by the number given as second argument, then conjoins
it with the input formula (using toconj/2, which we won’t discuss here). It then calls
tabl/3 to make the resulting conjunction true.

To give an example, we have added the toy world knowledge wk(1,[man(john),love(john,mary)]).
You can try the following test call modGen(love(john,mary)>woman(mary),1,M).

A listing of all necessary files can be found in Section 8.2

9.4 Exercises

Exercise 9.1 1. Construct a model generation tableaux to represent the following
discourse: ‘Fido is the dog and Mimi is the cat. Jane owns the dog or Jane owns
the cat. Jane does not own Fido.’

2. Now show, using the model generation calculus, that adding the sentence ‘Jane
does not own Mimi’ to the discourse above leads to a contradiction.

Clarification: We assume that ‘the dog’ is mapped to a constant d, where the informa-
tion DOG � d � is in the world knowledge. Likewise for the cat.

Exercise 9.2 Look again at the example in Section 9.1.2. Instead of the somewhat
clumsy sentence quoted there, let us now consider a small discourse similar in mean-
ing: ‘If John doesn’t love Mary then Mary loves Bill. John doesn’t love Mary.’. How
would our tableaux approach process this discourse? Construct the tableaux.

Compare your tableaux to the one you would build to validate the intuitively correct
argument ‘If John doesn’t love Mary then Mary loves Bill. John doesn’t love Mary.
Thus Mary loves Bill.’

Exercise 9.3 Project!

[This is a project (mid- or end-term)]

Modify our model generation procedure (page 143) for PLNQ such that it can process
discourse (i.e. multiple sentences) as sketched in Section 9.2.

You may (as in our implementation for single sentences) abstract over the question
which is the preferred model (branch). This means that you simply take the first model
the implementation generates as the preferred one. In this case Prolog’s search strat-
egy, and in particular the order of the two disjunctive clauses of tab/3, effectively
determine which model is prefered. The only thing you have to work out is how to
store the alternative branches so that they can be backtracked to if subsequent expan-
sions lead to branch closure on the preferred one.

9.4. Exercises 155

Alternatively, you can re-implement the tableaux procedure such that the tableaux is
explicitely represented. There are various ways of doing this: you may e.g. repre-
sent a tableaux branch as a list of formulae (and hence a tableaux as a list of lists
(branches)). This is what’s done in the famous textbook by Melvin Fitting. Or you may
assert tableaux nodes to the database and establish the connection between the nodes
by specifying the children of each node. Any such explicit representation will give you
more freedom in controling the tableaux expansion.

156 Chapter 9. [Sidetrack] Model Generation

10

First-Order Inference

10.1 The Step to First Order

10.1.1 Why First-Order Inference?

As a logician, it’s just a normal thing to ask if it’s possible to extend what you’ve
done for propositional logic to first-order logic. But apart from this there’re especially
good reasons to do so if you’re interested in computational semantics: As a matter
of fact, natural language contains lots of quantified NPs, which are formalized using
quantifiers. Thus if we want to be able to infer from such sentences, we must have a
treatment of quantifiers in our calculus.

Quantification in natural language...

In PLNQ we could only formulate (and therefore only infer from) particular statements
about named entities. Up to now we could infer from the premisses

� ‘Mary sleeps.’ and ‘If Mary sleeps then Mary snores.’

that Mary snores. But we could for instance neither express the generalization ‘Every
man snores.’, nor could we infer from this and ‘John is a man.’ that John snores. In
order to express the premiss of this argument, we have to let quantifiers into PLNQ,
thus arriving at the language of full first-order logic. And in parallel our calculus has
to be able to work with them in order to validate such arguments.

...and in world knowledge

But the omnipresence of quantification in natural language is not the only reason why
we want to have first order inference. We are particularily interested in deriving the
consequences that follow from our world knowledge together with some particular nat-
ural language sentence that’s been uttered. Remember we argued above (page 150)
that it is a great advantage of our tableaux based model generation method that we
can readily infer from any kind of background knowledge by simply including it on
the (initial) tableaux. But world knowledge characteristically consists of generaliza-
tions, such as ‘Every cat is furry.’ or ‘Every human has a father.’. So we need quan-
tified formulae to formalize world knowledge (such as

�
X CAT(X)

�
FURRY(X) and�

X HUMAN(X)
� " Y FATHER(Y,X)). This means that inference becomes essentially

first-order if we take world knowledge into account.

158 Chapter 10. First-Order Inference

In fact both of the above arguments are also small lies. There’s a lot of teritorry that
lies between propositional and first-order logic, and it may well be that we don’t really
need full first-order logic and inference for the described tasks. There’s a lot of research
going on that tries to answer two questions:

� How much of first order logic do we need in order to formalize exactly those
cases of quantification that really occur in natural language and world knowl-
edge, no more and no less?

� How can we use clever formalizations and representations to support just the
kinds of inferences we need, without bothering about the full complexities of
first-order inference.

We will see in this chapter where we get using full first order logic. One thing we’ll
learn this way is to appreciate why it is so important to study what’s in between propo-
sitional and first-order.

10.1.2 Extending our Calculus: The Universal Rule

In this section we extend our calculus to first-order logic with quantifiers. To do so, we
have to add a treatment of quantification to the inference processes discussed so far.
This means that we have to give rules for the quantifiers under both polarities.

New Rules: T � � � · , and T � � � ´
Remember we confined ourselves to a minimal set of propositional connectives (only� and !), treating the others as defined. Likewise we shall confine ourselves here to
giving rules for the universal quantifier

�
and think of the existential " as defined in

terms of the equivalence " XP Ö×� � X � P. Due to this equivalence, the rule for the
universal quantifier with negative polarity (T � � � ´) is in essence a rule for existential
quantification. We will sometimes call it ‘the existential rule’ (in contrast to T � � � · ,
‘the universal rule’). We will later (page 172) give derived rules that deal with the
existential quantifier directly.

The Universal Rule

Let’s first have a look at the universal rule. Whenever we have a generalized sentence,
we know that we can put it concretely about every single individual we know of. When
we have

�
x � A, then we must also have A for any individual that we ever come to know

of. Let’s think of ‘we have A for an individual named c’ as ‘we know A, with all
occurences of the variable x in A replaced by the constant c’. Then, the following rule
is a straightforward formalization of our considerations:

�
x �A ·

...
c � H

T � � � ·4 c 5 x 6 A ·

10.1. The Step to First Order 159

Multiple Applications

To understand this rule, we have to introduce the concept of a Herbrand base (H)
of a tableaux branch. The Herbrand base of a tableaux branch is the set of constant
symbols occuring on that branch. The rule T � � � · allows to instantiate the scope of the
quantifier with any constant symbol of the Herbrand base (the notation 4 c 5 x 6 A means
that we substitute c for all occurences of x in A). It may be necessary to apply the
T � � � · rule to one and the same formula A with multiple or even all constants on a
branch. To achieve a complete calculus we thus have (in contrast to all other rules) to
allow for multiple application of this rule to one formula.

Up to now, we have only made sure that the rule is justified if we read it from the
antecedent to the succedent. But remember (page 149) that it is crucial that the rules
are also justified read in the other direction, i.e. the truth of the succedent guarantees
the truth of the antecedent. But in fact, this is also the case here: when we have A
for any individual that we ever come to know of, then we must also have

�
x � A. It can

be shown that we can safely stick to cases where all individuals are named by some
constant for tableaux-inference.

Let us now look at an example where one universal formula has to be instantiated
twice to close a tableau. We will construct a tableaux proof for �Æ�'�%� RUN(JOHN) !
RUN(MARY) �7! � X RUN(X) � . Intuitively, we would expect this to be a theorem. It
states that it’s impossible that John and Mary don’t run, but still everyone runs. This is
clearly a truism. And in fact with our new rule, we can have a tableaux proof of this
formula as follows (we’ve coloured the premiss and results of the T � � � · -rule pink):

Using it

�%�'�%� RUN(JOHN) ! RUN(MARY) ��! � x � RUN(X) � ´�%� RUN(JOHN) ! RUN(MARY) ��! � x � RUN(X) ·�%� RUN(JOHN) ! RUN(MARY) �«·�
x � RUN(X) ·

RUN(JOHN) ! RUN(MARY) ´
RUN(JOHN) ´
RUN(JOHN) ·Â

RUN(MARY) ´
RUN(JOHN) ·
RUN(MARY) ·Â

We achieve the closed tableaux by first instantiating the universal quantification with
JOHN (closing the left branch) and then with MARY (closing the right branch). Intu-
itively, to show that neither John nor Mary runs, we have to derive this fact once for
each of them. One instantiation alone would not suffice.

?- Question!

As we will learn, the possibility to re-apply the T � � � · -rule represents the main compu-
tational problem of first order inference. Can you already see why it is so problematic?

10.1.3 The Existential Rule

What does an existential (respectively the equivalent negative universal) statement tell
us? Intuitively, if we know that ‘Somebody smokes’ (respectively that ‘It’s not the
case that everybody doesn’t smoke’), then all we know is that there is somebody who

160 Chapter 10. First-Order Inference

smokes, but we have no clue who it is. It may be someone we know of (say John or
Bill), but it may just as well be someone we don’t know yet. Therefore, the existential
statement does not warrant the conclusions ‘John smokes’ or ‘Bill smokes’ - claiming
any of these we would commit ourselves too much. John and Bill may both be non-
smokers and ‘Somebody smokes’ still be true. But what we can do is give the unknown
smoker a name that we invent only for him (we might call him ‘N.N.’). So we can be
sure that we don’t say anything wrong about someone we already know of; we can let
Bill and John remain non-smokers in a world where nevertheless somebody smokes.
This idea is formalized in the following rule:

Existential Rule

�
x �A ´

T � � � ´4wnew 5 x 6 A ´
Introducing a Witness

We take the scope of a negative universal quantification and substitute a brand new
constant wnew for the quantified variable. The new constant is also called a witness or
skolem constant . It is like the new name that we decided to invent for the smoker in
our example. Because that witness constant is not contained in any of the formulae on
the tableaux so far, the tableaux cannot close on a direct contradiction between any of
these formulae and the coclusion of the T � � � ´ -rule. Let’s look at an example:

...
SMOKE � JOHN �|´
SMOKE � BILL �|´�
x �=�'� SMOKE � x ����´� SMOKE � w0 �|´

SMOKE � w0 � ·
In the second but last line, we have invented the witness w0 for the scope of the existen-
tial quantification. We have generated a model in which John and Bill do not smoke,
but nevertheless somebody (whom we call w0) smokes.

The fact that our new constant cannot immediately be involved in closing the tableau
does not imply that it cannot ever be involved in closing it. Contradictions may arise
with consequences of universally quantified formulae, because once a witness constant
has become available, it can be used with the T � � � · -rule. Let us look at a tableaux
where this happens. The formula

�
x � MAN(X) 8� MAN(X) is obviously valid. It is

equivalent to
�

x �>�%� MAN(X) !@� MAN(X) � (‘it is not the case that there exists a man that
isn’t a man.’), for which we now give a tableaux proof:�

x �>�%� MAN � x �&!1� MAN � x ����´�%� MAN � w1 �&!1� MAN � w1 ���|´
MAN � w1 �&!1� MAN � w1 � ·

MAN � w1 � ·� MAN � w1 ��·
MAN � w1 �|´Â

In the first step, we again invent a witness (w1, ‘the man that is no man’) for the
scope of the existential quantification. We then derive a contradiction for this witness,

10.1. The Step to First Order 161

about which we know nothing else and did not make any further assumptions. Yet
of course we could have derived that contradiction with any other choice of constant
instead of w1, too. So the fact that we could derive it does not mean that our policy of
inventing new constants has failed. On the contrary we have to be able to derive such
contradictions involving universal quantification for our calculus to be complete.

10.1.4 Rule-like World Knowledge and Computational Nightmares

Something we could not deal with using the methods from Section 7.2 was knowledge
like ‘Every man has a father’. In full first-order logic, such knowledge is very easy to
write down: �

x � MAN � x � � " y � MAN � y ��! FATHER � y � x �
But in a calculus such formulas are as dangerous as they’re useful. To understand why,
let’s look at a tableaux constructed from our father-son-rule and the fact MAN(JOHN) · .�

x � MAN � x � � " y � MAN � y �&! FATHER � y � x � ·
MAN(JOHN) ·

MAN(JOHN)
� " y � MAN � y ��! FATHER � y � JOHN � ·

MAN(JOHN) ´Â " y � MAN � y ��! FATHER � y � JOHN �«·
MAN � c0 �&! FATHER � c0 � john � ·

MAN � c0 � ·
FATHER � c0 � JOHN �«·

MAN � c0 � � " y � MAN � y �&! FATHER � y � c0 ��·
MAN � c0 �|´Â " y � MAN � y ��! FATHER � y � c0 ��·

MAN � c1 ��! FATHER � c1 � c0 � ·
MAN � c1 � ·

FATHER � c1 � c0 � ·
MAN � c1 � � " y � MAN � y �&! FATHER � y � c1 ��·

...

� " -Constellation

What’s happening here? Intuitively, our tableaux is generating and endless chain of fa-
thers: John is a man, therefore he has a father. The father is a man as well and therefore
he also has father who is a man again... . More formally, the pattern is as follows: The
universal quantification is instantiated. This directly results in an implication, which
is expanded next. While one of the resulting branches closes immediately, we get an
existential quantification on the other one. And here we get into trouble. We have to
introduce a new constant - but now we have got all it takes to produce exactly the same
constellation again. We can re-instantiate the universal quantification (with our new
constant) and finally get a new existential quantification, giving us a third constant etc.
The crucial point is that we can go on like this forever. We can always produce new
constants, allowing us to re-apply the universal rule indefinitely. We call such a pattern
a
� " -constellation .

10.1.4.1 Consequences for Model Generation

We did not start our tableaux with a (negated) theorem in the example before. This
means what we hoped for was to arrive at a saturated tableaux, containing a model for
our input. But we obviously never will.

162 Chapter 10. First-Order Inference

Infinite Model

Nonetheless there is of course a model for our input. To convince ourselves of this, let
us just take the set of natural numbers as the domain and choose I � MAN � as the set of
natural numbers I � JOHN �^� 0, and I � FATHER � to be the set of pairs � n � n Ø 1 � , where n
is a natural number. Then ‘Every man has a father’ just means ‘Every natural number
has a successor’, which is of course true in the natural numbers. The set of natural
numbers is infinite and this is why our tableaux couldn’t generate it. But the fact that
our model generation procedure couldn’t find a model based on the natural numbers
does not contradict the claim that it would have found a finite model if there was one.

Finite Model Property

In essence, we have just shown by an example that full first-order logic no longer has
the finite model property (page 150) (in contrast to PLNQ). Up to now, models have
always been finite. With rule-like formulae such as the one we have been looking at,
it is now possible to force models to be infinite. Of course the finite model property
has now become highly desirable for our application of model generation in discourse
interpretation - losing it is a considerable disadvantage.

Model Human Behaviour

But this consideration is largely theoretical, since we humans also face the same in-
finiteness problems; We could derive infinite chains of ancestors with the same world
knowledge as well, yet we stop short of this in practice. To model this behaviour the
model generation procedure would have to be equipped with a criterion when to stop
saturation, even if it is not (theoretically) complete. Defining such a criterion is a cur-
rent topic in research. In our implementation (as in most other implementations), we
tackle the problem of infiniteness by simply fixing the maximal number of instantia-
tions of an existential quantifier. If you allow 10 instantiations, our system will generate
exactly 10 fathers for the example above and halt.

10.1.4.2 Consequences for Theorem Proving

As we’ve already said, the presence of quantifiers gives a huge boost in expressivity.
We were happy to benefit from this fact. But with the loss of the finite model property
we can now see the dark side of it. The consequences also extend to the use of tableaux
for theorem proving. We can already easily see that if quantifier alternations like the� " -constellation in our example can keep us busy forever, we must be careful that they
do not keep us from finding contradictions that would close our tableaux.

Loosing Decidability

In short, all our problems relate to the fact that first-order satisfiability is no longer
decidable. So we have bought the added representational power with a loss of compu-
tational tractability. But we know what the problems are, and with this in mind, we can
continue our theoretical considerations. Still for the implementation of our calculus,
we really have lost something essential. Recall (page 149) that decidability of PLNQ,
termination of the tableaux calculus for it, and termination of our implementation were
all closely connected. Now that we’ve lost decidability, we cannot have a complete
and correct calculus that terminates in general. Of course we have to keep this in our

10.2. Implementing First-Order Tableaux 163

mind when we extend our implementation - we will see that termination comes only
at the cost of completeness. We will always have to invest a good deal of thought and
work to arrive at an implementation that terminates but still gives useful results in many
interesting cases. This is what we will do in the next section.

?- Question!

Things could be worse: At least first order satisfiability is semi-decidable . This means
that whenver a formula is not satifiable, we can find this out by a finite computation - a
matter of great importance to tableaux based theorem proving. Why is it so important?

10.2 Implementing First-Order Tableaux

10.2.1 The Existential Rule

Let us recapitulate our two new rules. Let us first look at the T � � � ´ -rule. In Prolog,
we write negative universal formulas as false(forall(x,Scope)). When we en-
counter an existential formula, we first introduce a new constant and then generate a
new formula by substituting the new constant for the quantified variable x in Scope.
E.g. false(forall(x,walk(x))) will license false(walk(c7)) where c7 is a new
constant.

See file foTabl.pl.

If we ignore the additional arguments of tabl/6 for a moment, our implemented
T � � � ´ -rule (to be found in foTabl.pl) should be relatively easy to understand:

tabl(false(forall(X,Scope)),InBranch,OutBranch,QuantsIn,QuantsOut,Qdepth) :-

!,newconst(NewConst),

subst([X:NewConst],Scope,NewFormula),

tabl(false(NewFormula),InBranch,OutBranch,QuantsIn,QuantsOut,Qdepth).

See file signature.pl. See file substitute.pl.

The call to newconst/1 (from signature.pl) creates a new constant of the form
c1,c2... (using a counter). The predicate subst/3 (from substitute.pl) in the
case at hand does the same as the substitute/3 we used in earlier chapters. It takes
a substitution, e.g. [x:c7,y:c5] and a formula as input and returns the result of
applying the substitution to the formula.

10.2.2 Universal Rule: Which Individuals to use?

As we have seen, our implementation of the T � � � ´ -rule does not differ essentially from
the propositional rules: We decompose an input formula and continue the tableaux
building process with a less complex output formula. This means, that we practically
throw away the input formula once we have decomposed it.

164 Chapter 10. First-Order Inference

Quantifier must see all individuals

Can we proceed like this in the T � � � · case as well? We can’t. Recall that (in contrast
to all other rules) we have to be able to apply the T � � � · once with every individual.
Suppose that a branch stands for the model � MAN(JOHN),WOMAN(MARY) 	 at some
time. If we now analyse a quantified formula like

�
x � LIKE � x � TWEETY � , it’s not enough

to apply T � � � · only once, say with JOHN. We have to be able to instantiate its scope
with both individuals and get LIKE(JOHN,TWEETY) and LIKE(MARY,TWEETY) . And
moreover if later a new individual, say c7 is introduced, we have to be able to conclude
LIKE(C7,TWEETY) . So simply throwing away the quantified formula will never be
possible. We have to keep it somewhere in case we have to re-apply T � � � · later.

Store the quantifier

How can we do this in our implemetation? Our solution is quite simple: Whenever
we analyse a formula of the form true(forall(X,Scope)), we not only instantiate
Scope with one of the currently known individuals. We additionally put the quantified
formula on a list so that we can re-use it later on. This is why our tabl/6 predicate
now has the additional arguments QuantsIn and QuantsOut. They serve to store the
quantified formulae thus collected. We will refer to the list represented by this pair of
arguments together as quants in the next sections.

Passing through

Thus each part of a tableaux may add one or more quantifiers to our quants-list (much
like it possibly extends the model (branch), (see Section 8.1.1)). If you look at the
conjunctive clause with the new arguments, you can see that the second call of tabl/6
gets the resulting quantifier list (QuantsOut1) of the first call of tabl/6 as input:

tabl(true(A & B),InBranch,OutBranch,QuantsIn,QuantsOut,Qdepth) :-

!,tabl(true(A),InBranch,K,QuantsIn,QuantsOut1,Qdepth),

tabl(true(B),K,L,QuantsOut1,QuantsOut,Qdepth),

list_to_set(L,OutBranch).

The second call can thus see the universally quantified formulae found in the first call
(and possibly re-apply T � � � · to them).

10.2.3 Restricting the Application of the Universal Rule

There may be infinitely many individuals.

But we immediately run into the next trouble. The interplay between " - and
�

-quantifiers
may introduce infinitely many new individuals to a tableaux. Consequently the two
input formulae

�
x � MAN � x �%�Ù" y �=� MAN � y �^! FATHER � y � x ��� and MAN(JOHN) would

be enough to let our program (in its present form) go off forever generating fathers
MAN(JOHN),MAN(C1,FATHER(C1,JOHN)),MAN(C2,FATHER(C2,C1)) ����� . We have to
control when and how often T � � � · is (re-)applied .

Limiting instantiations

The solution to this is simple: We allow each quantifier only a limited number of
instantiations. This is what the third new argument of tabl/6 (Qdepth) is for: It
formulates the upper bound on the number of instantiations.

10.2. Implementing First-Order Tableaux 165

Completeness lost

It is important to understand that this solution makes our algorithm incomplete: It may
always happen that we only allow for n instantiations, where the (n+1)th instantiation
would have closed our tableaux. So, we might fail to find out that some formula is a
theorem only because we have stopped our tableau construction process too early. Still
there is one thing we can do: We can use iterative-deepening . That means we can
increase our Qdepth and re-run the tableaux construction (e.g. during lunchtime) to
get a more exhaustive result. Iterating this process, we can approximate completeness,
and this is all we can hope for. As we’ve discussed, there’s a price we have to pay for
the expressivity of first order logic: Satisfiability (and validity) is no longer decidable.
Therefore no terminating implementation of a first-order calculus can ever be complete.

New instantiations

It is clever to make sure that a new instantiation is generated each time we expand
a universal quantifier. One does not want to waste Qdepth on generating the same
instantiations twice or more. We ensure this by attaching a list to each quantifier on our
quants-list that records which individuals have already been used with some particular
quantifier. So, each quantifier is put on the quants-list in a tuple of the form:

(forall(X,Scope),Inds)

The list Inds tells us to which individuals have already been used with the quantifier.
At the same time we can read off the list how often it has been instantiated in total.

10.2.4 Universal Rule: The Prolog Clause

See file foTabl.pl.

We are now prepared to look at the implementation of the T � � � · clause of tabl/6.
This clause generates the first instantiation of a

�
-quantifier-scope and puts the quanti-

fier on the quants-list. In a minute, we will turn to the more subtle matter of when and
how to do the subsequent instantiations with other individuals.

tabl(true(forall(X,Scope)),InBranch,OutBranch,QuantsIn,QuantsOut,Qdepth) :-

!,hbaseList(InBranch,HBase),

member(Ind,HBase),

subst([X:Ind],Scope,NewInstantiation),

tabl(true(NewInstantiation),InBranch,OutBranch,[(forall(X,Scope),[Ind])|QuantsIn],QuantsOut,Qdepth).

See file comsemLib.pl.

First, hbaseList/2 (from comsemLib.pl) generates the current Herbrand base
from the current model. Then member/2 picks some individual from the Herbrand base
and subst/3 generates the first (and therefore trivially new) instantiation of the quan-
tifier’s scope. For example, if our formula at hand is true(forall(x,walk(x))) and
the current model (InBranch) is [true(woman(mary)),true(man(john))], HBase
will be instantiated to [mary,john]. The new instantiation will then be true(walk(mary)).

In the recursive call to tabl/6, the QuantsIn-list is extended by a tuple of the form
(forall(X,Scope),[Ind]). In our example, this is the tuple (forall(x,walk(x)),[mary]).
So, if we want to instantiate the quantifier again later on, we know that we have already
instantiated it once before, namely with mary.

166 Chapter 10. First-Order Inference

Who is *?

By definition, the universe of a model must not be empty. This means we must never
have an empty Herbrand base. In order to avoid this, hbaseList/2 is designed such
that it never returns an empty list. If there is no constant on the branch so far (i.e. in
the ‘developing’ model), we put in a joker individual * instead. One result of this is
that we always have a constant for the first instantiation of a quantifier.

10.2.5 Universal Rule: Subsequent Instantiations

In the previous section, we have seen how we store a universal quantifier. What remains
to be discussed is how to re-use the quantifiers from our quants-list. This happens in
the base case of tabl/6 (whenever we arrive at a literal). Before we look at the details,
let us consider again the corresponding part of the implementation for PLNQ.

One propositional base clause

In the implementation of PLNQ we have the following (base) clause for literals:

tabl(F,InBranch,OutBranch) :-

OutBranch = [F|InBranch],

\+ clash(OutBranch).

Reaching this clause, the only thing to do is to add the new literal to the current model.
If there is a contradiction, the predicate fails and we know we are on a closed branch.
Otherwise we are...

1. ...either inside some tableau branch (if this was the last step of the first call of a
conjunctive expansion). In this case, the second call takes over, or we are...

2. ... at the leaf of a saturated branch. In this case, we are done with this branch.

Four first-order base clauses

In the case of first-order expansions, the situation is different. If we reach an atomic
formula, there may be quantifiers on our list that still can (and must) be applied. This
gives us some choices. Therefore we now have four clauses ((a)-(d)) instead of our
former single base clause. The first clause is harmless - it is almost identical to the
base clause of our old implementation and does not have to care about quantifiers at
all. It looks for a contradiction on our branch including the new literal. If it it finds
one, it signals this using fail, and we know that the branch is closed (like in the old
implementation).

See file foTabl.pl.

% (a)

tabl(F,InBranch,OutBranch,_,_,_) :-

OutBranch = [F|InBranch],

clash(OutBranch),!,fail.

10.2. Implementing First-Order Tableaux 167

We do not want to (in fact we mustn’t) consider any of the other clauses of our extended
base case once we have found a clash. Hence the cut immediately after the clash test.
But if the clash/1-test itself fails, we are not yet behind the cut. We can (and must)
thus try the next clauses.

10.2.6 Subsequent Instantiations: Instantiate

Fairness

The rest of our four clauses together manage the successive fair instantiation of the
quantifiers collected on the quants-list. In short, our strategy is to always make one in-
stantiation of one quantifier every time we raech an atomic formula. Then we continue
our tableaux with the instantiated scope. The next time we derive an atomic formula,
we shift to the next quantifier, instantiate it, go on with the instance etc. If we shift past
the end of our quants, we start again at the beginning. Rotating like this, we ensure
fairness - every member of quants will get its share.

Enforcing termination

As far as described, our strategy would keep on rotating and instantiating the quants
indefinitely. Of course we have to control this somehow. This is where the Qdepth

argument comes in: We instantiate each quantifier at most Qdepth-times. Additionally,
as we argued above, we will only make instantiations if they contribute something new.

The second base clause does all this. It takes a quantifier from the quants list, checks
the side conditions just discussed, and eventually generates a new instance. Plus - after
all it’s a clause for literals - it extends the branch we’re on by its input literal.

% (b)

tabl(F,InBranch,OutBranch,[(forall(X,Scope),SoFarInds)|RestQuants],QuantsOut,Qdepth) :-

length(SoFarInds,LengthInds),

LengthInds =< Qdepth,

hbaseList([F|InBranch],HBase),

member(Ind,HBase),

\+ member(Ind,SoFarInds),!,

subst([X:Ind],Scope,NewInstantiation),

append(RestQuants,[(forall(X,Scope),[Ind|SoFarInds])],NewQuants),

tabl(true(NewInstantiation),[F|InBranch],OutBranch,NewQuants,QuantsOut,Qdepth).

Let us go through the code in more detail. First, we use Prolog arithmetics to check if
the given Qdepth is not exceeded. Second, with the help of member checks, we look
for an individual that has not been used with the quantifier yet (i.e. we check if any
instantiation would contribute anything new). If there is one, we take it (and the cut
commits us to stick to the clause we are in). We then generate the new instantiation
with our individual as explained earlier.

Finally, there is the recursive call with our new formula (the instantiated scope), where
we have added the input literal F to our model. We know that there is no clash with that
formula so far, because otherwise clause (a) would have applied. Note that we append

168 Chapter 10. First-Order Inference

the quantifier tuple we have considered to the back of the quants-list. This is how we
implement ‘rotating’ the quants-list.

The clause we’ve seen will fail once it arrives at a quantifier that has either used up
it’s full Qdepth or that has already been instantiated with all the individuals currently
known. Next, we will see what happens in clauses (c) and (d), which handle these
cases.

What are all the cuts for?

But before we go on, let us comment some more on the cuts in the clauses we’re
looking at: Note that we make double use of Prolog failure. On the one hand the
explicit fail in clause (a) means as much as ‘This branch is closed’. Backtracking
should in this case directly lead to the next branch of the tableaux. But on the other
hand we also use failure and backtracking to navigate between the three clauses (b), (c)
and (d). As we shall see, one of these clauses will always succeed. The cut in clause
(a) expresses the ‘difference in meaning’ between these two uses of fail.

We are right now talking about what happens if we do not reach the cut clause (a), that
is if our branch is not closed and we must backtrack to clauses (b)-(d). As we have
seen above, clause (b) generates new instantiations of the first universial quantifier on
the quants list if possible. Next we will see what clauses (c) and (d) do in case clause
(b) fails.

10.2.7 Subsequent Instantiations: If we can’t instantiate

What do we have to do if the two base clauses explained before fail? In this case, we
have reached an atomic formula, there is no clash and (more interestingly) we could
not instantiate the first quantifier of our list. Hence we must be in one of two situations:

1. We have just finished expanding the first recursive call of a conjunctive expan-
sion (i.e. the expansion of the first conjunct). In this case we just pass through
our complete quants-list to the second conjunct and let it care for the subsequent
instantiations. Maybe the second conjunct will produce more individuals. This
may allow us to re-instantiate some of the quantifiers that could not find any new
individuals before.

2. Or we are at the leaf of an otherwise saturated branch. In this case we will
recursively try to instantiate all quantifiers on quants as often as possible.

Clause (c) handles the first of the discussed cases. It passes on the list of quantifiers:

% (c)

tabl(F,InBranch,[F|InBranch],Quants,Quants,_) :- !.

This leaves us with the second case: We’re at a (current) leaf and want to work through
the quantifiers that remain on our quants-list. Notice that we know that the first quanti-
fier on the list can never be used again. Either it has used up its Qdepth or it has already
been used with all the individuals there are. We know this because it’s the reason why

10.3. Running First-Order Tableaux 169

we got here - otherwise the heading quantifier would have been instantiated in the last
call to clause (b).

Clause (d) thus throws away the now useless quantifier and starts a recursive call with
the rest of our quants-list:

% (d)

tabl(F,InBranch,OutBranch,[_|RestQuants],QuantsOut,Qdepth) :-

tabl(F,InBranch,OutBranch,RestQuants,QuantsOut,Qdepth).

10.000$ Question!

We have claimed that clause (d) applies if and only if its input formula F is at a current
leaf of the tableaux. Now the 10.000$ question is: ‘Why? How do we know when
we’re at a leaf, and how do we enforce that clause (d) is applied then?’. The answer to
this is a little tricky. First of all, we have to ensure that clause (d) is applied at all. To
do so, we instantiate QuantsOut with [] when we call our tabl/6-predicate at top-
level. Otherwise, our program would always use clause (c) when it reaches a quantifier
that it cannot instantiate in clause (b). The quantifier would ‘block’ all others and our
program would happily produce a full list of quantifiers on QuantsOut (headed by the
‘blocking’ quantifier), most of which could probably still be instantiated. By requiring
that QuantsOut (finally) be empty, we force our program to apply clause (d) to remove
the ‘blocking’ quantifier. In effect, we ensure that all quantifiers are instantiated as
often as their Qdepth and the Herbrand base of the branch permit.

The answer

Now here is the central point of the answer to our question: If we reach a leaf (which is
the last step in the construction of a branch), coindexing tells us that QuantsOut has to
be the empty list - due to our top-level call. If there are quantifiers left on the QuantsIn
list, we cannot enter the non-recursive clause (c) because the ...,Quants,Quants, ...

in its head clashes. So we correctly choose clause (d).

So much for the‘if’-direction in our claim that clause (d) is applied if and only if its
input formula is at a current leaf. Now for the only if : The cut in clause (c) takes care
of this. We will always choose clause (c) instead of clause (d) whenever we’re not at
a current leaf (i.e. we are expanding some ‘first conjunct’). Clause (c) comes first in
the program, and no constraints are put on the value of QuantsOut at inner nodes of a
tableaux branch. Only at a leaf, the head of clause (c) won’t match because we’ve set
the empty list as QuantsOut at top-level. Now the cut in clause (c) ensures that none of
our previous choices to enter (c) is backtracked on this clash and redone entering (d).
In effect clause (d) can only be used to empty a quants list that has been built before,
not to build another one instead.

10.3 Running First-Order Tableaux

See file fo.pl.

We now provide driver predicates and give you a listing of all files you need in order to
experiment with first-order theorem proving or model generation. The driver predicates
(found in fo.pl) aren’t very exciting:

170 Chapter 10. First-Order Inference

modGen(Formula,Model,Qdepth) :-

naonly(Formula,ConvFormula),

tabl(true(ConvFormula),[],Model,[],[],Qdepth).

modGen(_,_,_) :-

format("~nNo model found!~n",[]).

We have added a clause for existentially quantified formulae to naonly/2 that re-writes
formulae of the form " x �A into the equivalent � � x �>� A . The call to tabl/6 requires the
outgoing quantifier list to be empty. We argued in the last section that this is important
for the control of the quantifier instantiations.

Try it!

modGenWrite/3 is a version of modGen/3 producing formatted output. Try it out:
modGenWrite((forall(x,man(x)>(exists(y,man(y) & father(y,x)))) & man(john)),M,10).

In this example, you can see that we really have to control the application of the quan-
tifiers. For this input, our system might generate fathers till the end of time. Only our
limited Qdepth ensures that it halts as soon as it has generated 10 fathers.

The driver for theorem proving (also found in fo.pl) is even simpler:

theorem(Formula,Qdepth) :-

naonly(Formula,ConvFormula),

\+ tabl(false(ConvFormula),[],_,[],[],Qdepth).

You can test it like this: theorem((forall(x,man(x)v~man(x))),10).

Modules

See file fo.pl. The drivers for model generation and theorem proving.
See file foTabl.pl. The tableaux itself: tabl/6
See file comsemLib.pl. naonly/2, hbaseList/2
See file comsemOperators.pl. Operator definitions.
See file substitute.pl. subst/3

See file signature.pl. newconst/1

10.4 Model Generation with Quantifiers

10.4.1 A New Problem

How do our rules fare if we want to generate models with our tableaux calculus?
There’s no problem with the T � � � · -rule. Obviously, a model for a universal quan-
tification may - in fact even has to - contain all the literals that come from any instance
of the scope. And our rule allows to derive all of them (one after another). Let us look
at a tableaux for ‘Mutz is a siamese cat and Tiger is a siamese cat’, where we know
that ‘Every siamese cat purrs’ (to get a smaller tableaux, we use the derived inference
rule for implication from Section 7.2.8):

10.4. Model Generation with Quantifiers 171

A model that we like �
X � SIAMESECAT � X � � PURR � X ��� ·

SIAMESECAT(MUTZ) ·
SIAMESECAT(TIGER) ·

SIAMESECAT(MUTZ)
�

PURR(MUTZ) ·
SIAMESECAT(TIGER)

�
PURR(TIGER) ·

SIAMESECAT(MUTZ) ´Â PURR(MUTZ) ·
SIAMESECAT(TIGER) ´Â PURR(TIGER) ·

The only branch that finally remains open on this tableaux contains a model where our
world knowledge about purring siamese cats has been applied to Mutz as well as to
Tiger: Both purr.

But now let’s turn to the T � � � ´ -rule. Let’s look at a tableaux for the discourse ‘Mutz is
asleep. Tiger isn’t purring. There is a siamese cat that’s purring.’ We get the following
tableaux:

A model that we don’t like

SLEEP(MUTZ) ·� PURR(TIGER) ·� � X �%� SIAMESECAT � X �&! PURR � X ��� ·
PURR(TIGER) ´�

X �%� SIAMESECAT � X �&! PURR � X ��� ´�%� SIAMESECAT � wnew ��! PURR � wnew ��� ´
SIAMESECAT � wnew ��! PURR � wnew ��·

SIAMESECAT � wnew ��·
PURR � wnew ��·

This is a little disappointing. Of course we have generated a model for our input
formula, but we have learned nothing new about Mutz or Tiger. Instead our calculus
has invented a brand new siamese cat, and tells us that this cat purrs.

The problem

The core problem is that our T � � � ´ -rule is designed to introduce a new constant ev-
ery time it is applied. In effect it only generates models that have a new individual
for each existential quantification. Such models are often strongly non-minimal. Non-
minimality doesn’t matter for theorem proving. But in model generation, we also want
to get smaller models where existential quantifications are instantiated with individuals
that are already there in the model. As we’ve convinced ourselves, we cannot achieve
this by simply instantiating with one of the individuals that are already on the tableau.
Otherwise we could incidentally say something wrong about that individual, introduc-
ing an unwarrranted contradiction (e.g. notice that if we had instantiated with TIGER

on the above tableaux, we would have closed it without any good reason).

10.4.2 A special Rule for Model Generation

Still there’s one thing that we can do to exploit the information in an existential quan-
tification also with respect to the individuals that we already know of: We can enumer-
ate all the individuals we know of, plus a new one, disjunctively. In terms of tableaux
this means we will continue on a branch of its own with each of the constants that are

172 Chapter 10. First-Order Inference

already there, and on yet another one with a newly invented constant. This is done by
the following rule, which we will use instead of T � � � ´ when generating models:

A new rule... �
x �A ´ H ��� a1 �������#� an 	

T � � � ḿg4 a1 5 X 6 A ´@ÄÄÄ ����� ÄÄÄ 4 an 5 x 6 A ´ÔÄÄÄ 4wnew 5 x 6 A ´
The rule makes a case distinction between the cases that the scope holds for one of the
already known individuals (those in the Herbrand base) or a currently unknown one
(for which it introduces a witness constant wnew).

Let us look at our example again, this time with the T � � � ḿg-rule applied:

...fixes our problem

SLEEP(MUTZ)ÚÛ PURR(TIGER)ÚÛsÜ X Û
Ý SIAMESECAT Ý X Þ�ß PURR Ý X ÞmÞ ÚÜ X ÛfÝ SIAMESECAT Ý X Þ�ß PURR Ý X ÞmÞdà
PURR(TIGER)àÛfÝ SIAMESECAT(MUTZ) ß PURR(MUTZ) Þdà

SIAMESECAT(MUTZ) ß PURR(MUTZ)Ú
SIAMESECAT(MUTZ)Ú

PURR(MUTZ)Ú
Û
Ý SIAMESECAT(TIGER) ß PURR(TIGER) Þdà

SIAMESECAT(TIGER) ß PURR(TIGER)Ú
SIAMESECAT(TIGER)Ú

PURR(TIGER)Úá
Û
Ý SIAMESECAT Ý wnew Þ�ß PURR Ý wnew ÞmÞdà

SIAMESECAT Ý wnew Þ�ß PURR Ý wnew Þ Ú
SIAMESECAT Ý wnew Þ Ú

PURR Ý wnew Þ Ú
On the rightmost branch we get the model we could already generate with our old
T � � � ´ -rule. The middle branch, where we instantiated the quantified formula with
TIGER, closes because we know that PURR(TIGER) ´ . But on the leftmost one we get a
model that we couldn’t generate before: Mutz purrs.

As an exercise (page 174), convince yourself that the rule T � � � ḿg is admissible!

10.5 Sidetrack: Derived Rules for the Existential Quantifier

" x �A ´
...

c � H
T �'"�� ´4 c 5 x 6 A ´

" x �A ·
T �'"�� ·4wnew 5 x 6 A ·

" x �A · H ��� a1 �������#� an 	
T �'"�� ·mg4 a1 5 X 6 A · ÄÄÄ ����� ÄÄÄ 4 an 5 x 6 A · ÄÄÄ 4wnew 5 x 6 A ·

In analogy to the T � � � -rules, we will call the T �'"�� ´ -rule universal and the T �'"�� · -rules
existential . It’s probably obvious why our defined rules do what they should do.

10.6 Project: Adding Equality to our Calculus

logical constant

Generally, extending a logic with a new logical constant - equality is counted as a log-
ical constant , since its semantics (page 16) is fixed in all models - involves extending
all three components of the logical system: the language, semantics, and the calculus.

10.6. Project: Adding Equality to our Calculus 173

Two new rules

We have already considered the logical ramifications of this extension in Section 1.3
(we have just added a binary relation � to the vocabulary, and 4 4 a � b 6 6 M �,B , iff4 4 a 6 6 M �â4 4 b 6 6 M). Thus we can concentrate on the calculus side here: We add two in-
ference rules (a positive and a negative) for the new principal constant.

a � H
a � a ·

a � b ·
Aα

4 b 5 a 6 Aα

H ã� the Herbrand Base
the set of constants occurring on
the branch

An example

The following example shows how the second of the two rules works: If we simplify
the translation of definite noun phrases, so that the phrase ‘the teacher’ translates to a
concrete individual constant THE_TEACHER (of course one could think of more prin-
cipled ways to treat definite noun phrases), then we can interpret (1 (page 173)) as (2
(page 173)).

1. ‘Mary is the teacher. Peter likes the teacher’.

2. MARY � THE_TEACHER and LIKES � PETER � THE_TEACHER �
Thus interpreting (1 (page 173)) leads to the following model generation tableau:

MARY � THE_TEACHER ·
LIKES � PETER � THE_TEACHER ��·

LIKES � PETER � MARY ��´
In particular, we can test whether our two sentences entail that ‘Peter likes Mary’ using
the method from the last section: the tableaux

MARY � THE_TEACHER ·
LIKES � PETER � THE_TEACHER ��·

LIKES � PETER � MARY � ´
LIKES � PETER � THE_TEACHER � ´Â
confirms our intuition that Peter likes her.

A new closure rule

There’s one small complication: An equality statement can be contradictory in itself.
For example, there can be no model already for the literal � MARY � MARY (respec-
tively MARY � MARY ´) alone. Thus we must close a tableaux branch on such a state-
ment (and obviously we don’t have to find a ‘partner’ for it, like normally when we
look for contradictions). This is captured in the following rule:

a � H
a � a ´
Â

174 Chapter 10. First-Order Inference

The project

Extend our implementation of first-order tableaux to include a treatment of equality as
just discussed. [Hint: First of all you will of course have to decide what symbol to use
for equality. You shouldn’t use = or == for this purpose, because both already have a
meaning in Prolog. You can e.g. use === or eq instead.]

10.7 Exercises

Exercise 10.1 Run the implementation and perform some traces.

Exercise 10.2 Implement the existential rule for model generation (Section 10.4.2).
[Hint: Mind where you put cuts. Look at the disjunctive rule.]

Exercise 10.3 [Theoretical]

The way we use hbaseList/2 in the universal rule we strictly speaking do not get the
full Herbrand base of the branch at the time of the call: We only consider the literals on
the branch, hence we can only see constants that occur in literals. Why is this enough?

Exercise 10.4 The way we control the universal rule isn’t fully fair (which means
that even if we use iterative deepening (page 164), we won’t truly approximate com-
pleteness with our implementation). To understand the problem, let’s look at the input
formula

�
xMAN � x �V!1��� � y " zFATHER � z � y ���V! � u " vMOTHER � v� u ����· . In this example our

implementation will use up any given QDepth for
�

xMAN � x � on the fathers generated
from

�
y " zFATHER � z � y � . So it will never have any QDepth left to instantiate with moth-

ers when it reaches
�

u " vMOTHER � v� u � . Try out the following call. It consists of two
calls to modGenWrite/3, one with QDepth 10 and one with 20 (plus some additional
output):

Try it!

modGenWrite(forall(x, man(x)) & (forall(y, exists(z, father(z,y))) & forall(u, exists(v, mother(v,u)))),_,10),nl,nl,write(’next:’),modGenWrite(forall(x, man(x)) & (forall(y, exists(z, father(z,y))) & forall(u, exists(v, mother(v,u)))),_,20).

Thus with such input formulae, the QDepth isn’t distributed in a fair manner over new
individuals coming from all conjuncts. Do you have an idea how to fix this? Can you
implement your idea?

Exercise 10.5 [Theoretical]

We say that an additional rule of a calculus is admissible if it doesn’t make the calculus
incorrect or incomplete. This exercise deals with the admissibility of T � � � ḿg. It is
obvious that our tableaux calculus doesn’t become incorrect if we exchange T � � � ´
for T � � � ḿg: We cannot close any tableaux with T � � � ḿg that we couldn’t close with
T � � � ´ . The reason is that whenver a tableaux remained open with the old T � � � ´ -rule,
the branch with the new constant remains open if we use the T � � � ḿg instead. But why
does the calculus remain complete? In other words: Why don’t we have more tableaux
that remain open if we use T � � � ḿg instead of T � � � ´ ?
Exercise 10.6 Give the (sub)tableaux that the derived rules for the existential quan-
tifier given in Section 10.5 abbreviate.

11

Discourse Representation Theory

11.1 Discourse Phenomena

11.1.1 Anaphoric Pronouns

Pronouns are words that refer to objects in the text or situation in which they are uttered.
We will focus on anaphoric pronoun s (pronouns that refer back to textual antecedents)
and will mainly consider the personal pronouns ‘he’, ‘she’ and ‘it’. Let’s look at the
following discourse with an anaphoric pronoun:

‘A woman walks. She smokes.’

This discourse consists of two sentences. The second sentence contains the pronoun
‘she’ which refers to the noun phrase ‘a woman’ introduced by the first sentence. Let’s
try to translate this sentence into first-order logic, and let’s try to do this in a systematic
way. Recall from Chapter 1 that a sensible formula for the first sentence would be:

" x � WOMAN � x �&! WALK � x ���
But what would be an appropriate first-order logic formula for the second sentence?
One way to proceed is to translate the pronoun ‘she’ as a free variable:

SMOKE � x �
Now we can put together the translations of the two sentences together and get the
following first-order formula for the entire discourse:

" x � WOMAN � x �&! WALK � x ��! SMOKE � x ���
This formula is true in a model where there is an individual that has the properties of
being a woman, walking, and smoking, and therefore correctly describes the meaning
of our example discourse.

However, note that some mysterious operations took hold of the existential quantifier
when we put the single translations of the two sentences together. After analysing the
first sentence, the scope of the existential quantifier was restricted to WOMAN � x �ä!
WALK � x � . But its scope expanded after integrating the second sentence in order to
include ! SMOKE � x � . In other words, we didn’t construct this representation in a
systematic way.

176 Chapter 11. Discourse Representation Theory

11.1.2 Donkey Sentences

A similar problem is also manifested in so-called donkey sentence s. (Incidentally,
the example sentences that led to increased study of anaphoric pronouns in discourse
in formal semantics, due to Peter T. Geach, staged as main characters donkeys and
farmers.) One of the most famous donkey sentences is: ‘ Every farmer that owns a
donkey beats it. ’

If we use our systematic method of translating into first-order logic and use free-
variables to translate pronouns, we would get something similar to:

�
x � FARMER � x �&!1" y � DONKEY � y �&! OWN � x � y ����� BEAT � x � y ���

However, this is not a correct translation since there is an occurrence of a free variable
(namely, the occurrence of y in BEAT(x,y)). In other words, it is not a logical sentence.
So let’s try to repeat the trick that we applied in our previous example and extend the
scope of the existential quantifier.

�
x " y � FARMER � x �&! DONKEY � y �&! OWN � x � y ��� BEAT � x � y ���

Unfortunately, our “scope-extending-trick” doesn’t work in this case. This formula
does not assign the right truth conditions for the donkey sentence (Why is this so? Try
to imagine a situation where there is a farmer owning a donkey and a pig, and not
beating any of them. The above formula will be true in that situation, because for each
farmer we need to find at least one object that either is not a donkey owned by this
farmer, or is beaten by the farmer. Hence, if this object denotes the pig, the sentence
will be true in that situation.).

A correct translation into first-order logic for the donkey sentence seems to be:

�
x
�

y � FARMER � x �&! DONKEY � y �&! OWN � x � y ��� BEAT � x � y ���
Recall from Chapter 3 that we translate determiners such as ‘every’ with universal
quantifiers, and that the indefinite articles (such as ‘a’ and ‘some’) are translated into
existential quantifiers. However, this seems not the case for donkey sentences. As
the translation above shows, the indefinite noun phrase ‘a donkey’ is translated as a
universal quantifier.

In other words, our approach about being systematic when it comes to translating nat-
ural language to semantic representations seems not to rhyme with a correct treatment
of indefinite noun phrases: depending on the context, sometimes they are translated as
existential quantifiers, and sometimes as universal quantifiers. But exactly when?

Exercise 11.1 Give a first-order translation for the sentence ‘If a farmer owns a
donkey, he beats it.’ Explain which quantifiers you chose to translate the indefinite
noun phrase and motivate your choice.

11.2. Discourse Representation Structures 177

11.1.3 Another Puzzle

Before we propose a solution to deal with these unpleasant mismatches between natural
language and first-order logic, let’s have a look at a different, but somehow related,
puzzle. Consider the following sentence:

‘It’s not the case that no woman walks.’

�:�:" x � woman � x �&! walk � x ���
In first-order logic, this formula is equivalent with the translation for ‘A woman walks’.
However, although it is possible to continue this sentence with ‘She smokes’, it sounds
ungrammatical for

‘ It’s not the case that no woman walks. *She smokes. ’

This observation leads to the conclusion that describing meaning in terms of truth-
conditions alone might be appropriate for sentences, but certainly it is not enough to
capture the meaning of discourses. There seems to be something else going on that
blocks anaphoric references - something that we are unable to capture with our simple
first-order translations for discourse.

11.2 Discourse Representation Structures

11.2.1 A First Example

Let’s go through some examples to get a view of what it is to think in terms of these
Discourse Representation Structures. Here is a first example:

As can be seen from this first example, a DRS is presented as a box-like structure,
with so-called discourse referent s in the top part of the box and conditions upon these
discourse referents in the lower part of the box. There are two discourse referents in
this example (x and y), denoting ‘a woman’ and ‘she’, respectively. Discourse referents
are entities mentioned in the discourse to which pronouns potentially can refer to. In
our example, an anaphoric link has been established between ‘she’ and ‘a woman’ by
virtue of the condition y=x.

One intuitive way of thinking of DRSs is to view them as partial descriptions of situ-
ations. In the example above we have a DRS describing a situation with two entities
denoting the same object, an object which has the properties of being a woman, walk-
ing, and smoking.

11.2.2 Accessibility Constraints

The structure of DRSs plays a crucial role in pronoun resolution. In DRT, anaphoric
pronouns are only allowed to refer to discourse referents that are accessible. As we
will see shortly, DRSs are defined recursively, and accessibility is defined in terms of
how the DRSs are nested into each other. Consider the following discourse and its
DRS translation:

This DRSs contains one complex condition, where two DRSs are conjoined by the
�

operator. This implicational condition can be interpreted as follows: if we are able to

178 Chapter 11. Discourse Representation Theory

extend the current situation with an entity having the property of being a woman, then
this entity must walk. This complex condition is triggered by the use of the universal
quantifier ‘every’, and has interesting consequences for pronoun resolution.

Now, what DRT stipulates is that discourse referents introduced by anaphoric pronouns
can only establish links with accessible discourse referents. The discourse referent x
introduced by ‘Every woman’ is not accessible from the viewpoint of discourse referent
y, introduced by the pronoun ‘She’, because it is declared at a level deeper than the
discourse referent of the pronoun. Hence DRT predicts that ‘every woman’ is not
allowed as antecedent for the anaphoric pronoun ‘she’. (And this is correct, hence the� in the example).

But what exactly pins down this idea of accessibility? Before discussing some more
examples, let’s first give a formal definition of the syntax of DRSs and then define
accessibility more precisely.

11.2.3 Syntax of DRSs and DRS-Conditions

1. If x1 �������#� xn are discourse referents (n å 0) and C1 ��������� Cm (m å 0) are DRS-

conditions then the following is a DRS:
x1, . . . , xn

C1, . . . , Cm

2. If R is a relation symbol of arity n (n 9 0), and x1 ���d�d�d� xn are some discourse
referents, then R � x1 ���d�d�d� xn � is a DRS-Condition;

3. If τ1 and τ2 are first-order terms, then τ1 � τ2 is a DRS-Condition;

4. If B and B � are DRSs, then B
�

B � and B B � are DRS-Conditions;

5. If B is a DRS, then � B is a DRS-Condition;

6. Nothing is a DRS or DRS-Condition unless it can be shown to be so using clauses
1-5.

Here, first-order terms (clause 3) denote either discourse referents or constants. We
sometimes refer to DRS-Conditions of the form licensed by clauses 2-3 as ‘basic’
conditions, while those licensed by clauses 3-5 are called complex conditions. Note
that, in a way, DRSs bear a lot of similarities with the first-order logic formula syntax.
As in first-order logic, we have the boolean connectors (

�
, , �) to create nested

boxes and express implication, disjunction, and negation. But unlike first-order logic,
we don’t have explicit conjunction, and we don’t have explicit quantifiers. With a
formal definition of the syntax of DRSs at our disposal, we are now in a good position
to define subordination (a relation between DRSs), which then opens the way to define
accessibility.

11.2.4 Subordination

Let B and B � be DRSs. Then B subordinates B � only if one of the following conditions
hold:

1. B contains a DRS-condition of the form � B ’ ;

11.2. Discourse Representation Structures 179

2. B contains a DRS-condition of the form B � � B � � , for some DRS B � � ;
3. B

�
B � is a DRS-condition of some DRS B � � ;

4. B contains a DRS-condition of the form B � B � � or B � � B � , for some DRS B � � ;
5. Some DRS B � � subordinates B � , and B subordinates B � � .

It is important to realise that subordination is defined differently for
�

and , although
they are both two-place connectors in the DRS language.

11.2.5 Accessibility

Now, accessibility is informally defined as follows. Discourse referents of DRS B are
accessible from DRS B � only if one of the following two conditions hold:

1. B subordinates B � ;
2. B and B � denote the same DRS.

Accessibility is by no means the only criterion for an antecedent to be classified as
‘suitable’ for an anaphoric pronoun. Many factors play a role in pronoun resolu-
tion, ranging from prosodic and syntactic information to topic-focus articulation and
common-sense knowledge - discourse structure is just one of the factors that constrain
resolution. Nevertheless, accessibility is a useful constraint, so let’s look at some more
examples supporting DRT.

11.2.6 Discourse Structure and Accessibility

Let’s look at some more examples that show that DRS structure plays a central role
for determining the possibility of anaphoric links between pronouns and their poten-
tial antecedents. Indefinite noun phrases normally introduce their discourse referents
“locally” and hence are not accessible from outside a negation or implication.

First consider the following example:

Here we first construct a DRS for the first sentence, creating two discourse referents
(x for John, and y for his watch). On interpreting the second sentence, the DRS gets
extended and the pronouns ‘he’ and ‘it’ get resolved to John and his watch, respectively.

If we change this example slightly, using a conditional in the first sentence, we will get
the following DRSs:

As we can see from this DRS, an ‘if’ connector introduces an implicational condition.
Note that the indefinite noun phrase æ nl � a valuable watch 	 is introduced in an embed-
ded sentence (Further note that the DRS-conditions for the proper name æ nl � John 	 are
introduced in the main DRS. In a few moments we will explain why proper names
behave this way.)

If we now attempt to continue the discourse with a pronoun referring to this watch, we
fail to do so:

The reason why DRT correctly predicts this impossible anaphoric link runs as follows:
The discourse referent v for the pronoun ‘it’ cannot be linked to y, because the DRS in

180 Chapter 11. Discourse Representation Theory

which v is introduced subordinates the DRS in which v is declared. Hence, the y is not
accessible for v, and DRT correctly predicts this impossibility.

In this example an anaphoric link between ‘it’ and æ nl � a milk shake 	 is allowed since
the discourse referent y (denoting æ nl � a milk shake) is accessible for discourse ref-
erent v, introduced by the pronoun. In the following example, where we introduced
negation, an anaphoric link is blocked, because here y is not accessible for v:

Similar observations can be made with respect to disjunction. The reader is asked to
attempt the following exercise to find out what DRT predicts on anaphoric links to
antecedents in disjunctive clauses.

Exercise 11.2 Analyse the following examples and translate them into DRSs. Are
anaphoric links between the pronoun ‘it’ and ‘an apple’ permitted?

1. ‘Bill eats an apple. It is delicious.’

2. Bill eats an apple or a pear. It is delicious.

What do you think about this example?

� Bill eats an apple or a pear. The apple is delicious.

11.2.7 Proper Names

So far we have mainly discussed the relationship between anaphoric pronouns which
have indefinite noun phrases as textual antecedents. We have seen that in contexts of
negation, implication, and disjunction, DRT correctly predicts the impossibility of an
anaphoric link between pronoun and antecedent. But matters are different with proper
names.

Proper names always seem accessible for anaphoric links with pronouns, even if they
occur inside a negation, implication or disjunction. DRT deals with the observation by
promoting the discourse referents and conditions of proper names to the global DRS,
or put differently, the outermost box.

Here is an example illustrating this point:

So, rather than introducing the discourse referent for ‘Mary’ in the consequent of the
implicational condition (the DRS on the right-hand side of

�
), it is contributed to the

top level of the DRS. Since y, the referent for ‘Mary’, is in the outermost box, it is
accessible for any follow up pronouns. Therefore, the pronoun ‘she’ can pick up the
discourse referent of ‘Mary’, and DRT correctly predicts that the discourse is felicitous.

11.2.8 Donkeys again

Let’s return to the donkey sentences again and see how DRT analyses them. Consider
the example ‘Every farmer that owns a donkey beats it.’ again:

Both ‘every farmer’ and ‘a donkey’ introduce a discourse referent in the antecedent
DRS of the implicational condition. The pronoun ‘it’ introduces the discourse referent
z in the consequent of the implicational condition. Following the definition of acces-
sibility, the discourse referent y introduced by ‘a donkey’ is available as antecedent, a
link that is established by the DRS-condition z � y.

11.3. Interpreting Discourse Representations 181

11.2.9 Accessibility and Discourse Structure: Summary

The examples showed us how noun phrases introduce discourse referents and how
pronouns co-refer to some of these noun phrases by referring to their discourse refer-
ents. Not all discourse referents are available for pronouns: the internal structure of
discourse representations constrains the accessibility of discourse referents. The posi-
tion of a discourse referent in the DRS determines whether it can be referred to by a
pronoun, or put differently, whether it is accessible or not.

Accessibility itself is formally defined using the notion of subordination between DRSs.
Informally, a DRS subordinates another DRS if the first encapsulates the second. A
special case of subordination are implicational DRS-condition, where the antecedent
DRS subordinates the consequent DRS. For a precise formalisation of subordination
please see the definition (page 178).

11.3 Interpreting Discourse Representations

11.3.1 Embedding Semantics

The idea behind the “embedding semantics” is that DRSs are viewed as partial models.
Now, what does this mean? Basically, it means that a DRS is true with respect to a
model (for example one which describes the real world) if it can be embedded in that
model. An embedding succeeds if the discourse referents of the DRS can be mapped
onto entities of the model’s domain in such a way that all the conditions of the DRSs
are fulfilled in this model.

Recall from Chapter 1 that we define models as ordered pairs ? D � F 9 , with D a non-
empty finite domain of entities, and F an interpretation function mapping constants of
the DRS language to elements or tuples of elements of D. As usual, we have FR � Dn

M
for an n-place predicate symbol R. Now consider the DRS for:

This DRS is true with respect to a model ? D � F 9 if we can find an assignment f such
that f � x ��� F � WOMAN � , f � y ��� F � DOG �
� and Ð f � x �
� f � y ��Ñ±� F � WALK � . This is the key
intuition behind the partial match, and this will give us some idea as to how to define
the model embedding semantics for DRSs in a formal way. Viewing assignments as
partial functions from discourse referents to elements of DM, we come to the following
definition:

11.3.2 Embedding Semantics for DRSs (Definition)

Assignment f verifies a DRS with discourse referents U and conditions C (Ð U � C Ñ) in
a model M �1? D � F 9 if there is an extension f � of f with the following properties:

1. f � is defined for U and for all discourse referents occurring in basic conditions
in C;

2. If R � x1 ���d�d�d� xn � is in C then Ð f �+� x1 �
���d�d�d� f �'� xn ��Ñ�� FM � R � ;

3. If τ1 � τ2 is in C then f �u� τ1 ��� f �+� τ2 � ;

182 Chapter 11. Discourse Representation Theory

4. If B � � B � � is in C then every assignment that verifies B � and agrees with f � on
all discourse referents that are not in UB ç , also verifies B � � .

5. If B �� B � � is in C then either there is an extension of f � that verifies B � in M or
there is an extension of f � that verifies B � � in M;

6. If � B � is in C then no extension of f � that is defined for all elements of UB ç ,
verifies B � in M.

According to the embedding semantics, two DRSs can have the same truth conditions
while having different anaphoric potential. Put differently, the embedding semantics
only describes the logical meaning of DRSs, not the discourse meaning. For this rea-
son, the embedding semantics is sometimes referred to as a static semantics. Reformu-
lations of the semantics of DRSs, where the interpretation of a DRS is described as a
relation between assignment functions, capture the intuitions behind discourse mean-
ing by describing meaning in terms of context change potential. Such approaches are
known as dynamic semantics, and we will give a formal definition for dynamically
interpreting DRSs.

11.3.3 Meaning as Context Change Potential

Defining DRS interpretation in terms of context change potential is done by relating
each DRS with an ingoing and outgoing assignment function. But there are some other
technical changes we make as well. First, we define an assignment f as a ‘total’ func-
tion (in other words, f is defined for any discourse referent used in a DRS). Second,
the interpretation function 4 4O6 6 DRS yields a set of assignment functions for conditions,
and a set of pairs of assignment functions for DRSs. And finally, we need a device to
express differences of assignment functions with respect to a set of discourse referents.
We will write f ��4 x1 �������#� xn 6 f meaning that assignment f � differs at most from f in the
values it assigns to the discourse referents x1 �������#� xn.

11.3.4 Context Change Potential Semantics for DRSs (Definition)

1. 4 4 x1,. . . ,xn

C1,. . . ,Cm

6 6 M= ��� f � f �m�Ò- f �+4 x1,. . . ,xn 6 f and f �W�»4 4C1 6 6 M �������#� f �W�è4 4Cm 6 6 M 	 ;
2. 4 4 R(x1,...,xn) 6 6 M = � f -�Ð f � x1 �
���d�d�d� f � xn ��Ñ�� FM � R ��	 ;
3. 4 4 x=y 6 6 M = � f - f (x) = f (y) 	 ;
4. 4 4B �

B � 6 6 M =� f - if for all f � : � f � f �=���è4 4B 6 6 M, then there is a f � � such that � f �u� f � �d���è4 4B ��6 6 M 	
5. 4 4B B � 6 6 M =� f - there is a f � such that � f � f �m�%��4 4B 6 6 M or there is a f � such that � f � f �m�%�4 4B �é6 6 M 	 ;
6. 4 4�� B 6 6 M = � f - there is no f � such that � f � f � �.�è4 4B 6 6 M 	 .

11.3. Interpreting Discourse Representations 183

In clause 1, the interpretation of a DRS is a set of pairs of assignment functions, where
the second assignment function differs from the first assignment function possibly only
with respect to the discourse referents in the domain of the DRS. The second assign-
ment function must satisfy all conditions appearing in the DRS.

The intuition behind Clause 1 can be explained by viewing the ways a DRS is able
to change the discourse context: the first embedding of the pair represents the current
context, the second the change to the current context taking the meaning of the DRS
into account. Hence, in this way, DRSs are not interpreted solely in terms of truth
conditions (the logical meaning) but also in terms of their context change potential
(discourse meaning).

The clauses 2–6 define the interpretation of DRS-conditions, denoting sets of assing-
ment functions. Clauses 2 and 3, for instance, interpret basic conditions as the set of
assignment functions that satisfy the basic condition with respect to the model. Clause
4 handles implicational conditions, clause 5 disjunction, and clause 6 negation.

11.3.5 Translations to First-Order Logic

Apart from giving a direct semantics for DRSs (as we formulated for the embedding
semantics and for the context change potential semantics), it should be noted that it is
also possible to translate the representations of DRT into first-order logic syntax. Once
we are able to do that, we can just use the interpretation methods for first-order logic
to give a semantics to DRSs.

The translation from DRSs to first-order logic is surprisingly simple, and can be ac-
complished by defining a translation function (4Ó� 6 f o, from DRS or DRS-conditions to
first-order formulas) as follows.

4dÐ�� x1 �������#� xn 	
��� γ1 �������#� γm 	�Ñ|6 f o def�(" x1 $�$�$�" xn ��4 γ1 6 f o !²$�$�$�!\4 γm 6 f o �
This maps the discourse referents to existentially quantified variables, and recursively
translates the conditions. The remaining clauses deal with the DRS-conditions. Basic
conditions simply map to themselves, viewed as first-order atomic formulas:

4 R � x1 �������#� xn �|6 f o def� R � x1 �������#� xn ��4 τ1 � τ2 6 f o def� τ1 � τ2

Moreover, complex conditions formed using � and are also straightforwardly han-
dled; we simply push the translation function in over the connective, leaving the con-
nective unchanged:

4�� B 6 f o def�(�%4B 6 f o

4B1 B2 6 f o def�ê��4 B1 6 f o \4 B2 6 f o �
Finally, complex conditions formed using

�
are translated as follows.

4dÐ�� x1 �������#� xn 	
��� γ1 �������#� γm 	�Ñ � B 6 f o def� � x1 $�$�$ � xn ����4 γ1 6 f o !²$�$�$�!84 γm 6 f o ����4B 6 f o �

184 Chapter 11. Discourse Representation Theory

Translations as above are known to preserve the logical meaning. That is, given a
model M and an assignment f , it can be shown that a DRS B is true in M with respect
to f iff 4B 6 f o is satisfied in M with respect to assignment f .

In the next section we will implement this translation in Prolog, and implement a way
of building DRSs for English expressions in a systematic way.

11.4 Implementing DRT in Prolog

11.4.1 DRSs in Prolog

We will represent DRSs in Prolog as terms of the form drs(D,C), where D is a list of
terms representing the discourse referents, and C is a list of other terms representing
the DRS conditions. To represent complex conditions we use the same operator def-
initions as for first-order logic (but note that we are not going to use the operator for
conjunction, since we don’t need it in DRT).

Let’s consider an example, the DRS for:

And in Prolog we represent this DRS as:

drs([],[drs([X],[man(X)]) > drs([],[walk(X)])]).

The translation function discussed in the previous section (page 183) can now be im-
plemented in Prolog as follows. We will use two predicates for this task: drs2fol/2,
translating DRSs to first-order formulas, and cond2fol/2, translating DRS-conditions
to first-order logic syntax.

drs2fol(drs([],[Cond]),Formula):-

cond2fol(Cond,Formula).

drs2fol(drs([],[Cond1,Cond2|Conds]),Formula1 & Formula2):-

cond2fol(Cond1,Formula1),

drs2fol(drs([],[Cond2|Conds]),Formula2).

drs2fol(drs([X|Referents],Conds),exists(X,Formula)):-

drs2fol(drs(Referents,Conds),Formula).

The way these three clauses recursively interact in the translation is by first working on
the discourse referents, followed by translating the DRS-conditions. The third clause
translates the discourse referents into existentially bound variables, the first clause
translates exactly one DRS-condition, the second clause translates DRSs with at least
two DRS-conditions.

cond2fol(~ Drs, ~ Formula):-

drs2fol(Drs,Formula).

11.4. Implementing DRT in Prolog 185

cond2fol(Drs1 v Drs2, Formula1 v Formula2):-

drs2fol(Drs1,Formula1),

drs2fol(Drs2,Formula2).

cond2fol(drs([],Conds) > Drs2, Formula1 > Formula2):-

drs2fol(drs([],Conds),Formula1),

drs2fol(Drs2,Formula2).

cond2fol(drs([X|Referents],Conds) > Drs2, forall(X,Formula)):-

cond2fol(drs(Referents,Conds) > Drs2,Formula).

cond2fol(Condition,Formula):-

\+ Condition = (~_),

\+ Condition = (_ v _),

\+ Condition = (_ > _),

Formula=Condition.

Translating the DRS-condition is done by using the five clauses above for cond2fol/2.
Straightforward are the first two clauses dealing with negation and disjunction. The
third and fourth clause cover implicational conditions, and introduce universal quanti-
fiers for discourse referents declared in the antecedent DRS of implications. The fifth
clause, finally, deals with basic conditions.

11.4.2 DRS Threading

Now that we are familiar with the syntax and semantics of the DRS language and
with coding DRSs in Prolog, it is time to implement DRT for a fragment of English.
Working with DRSs, as we will see shortly, is rather different than working with first-
order formulas, and we will need to introduce some new machinery for constructing
DRSs and performing pronoun resolution. Nevertheless, we will be able to reuse a lot
of the software engineering work we did in the previous chapters - we will still be using
semantic macros and semantic combination rules, and we will essentially use the same
lexicon and grammar as before.

However, the way we will construct DRSs will be radically different from what we
have seen before. We will use a method call threading, due to Johnson and Klein, a
very intuitive approach to building semantic representations. Given a syntactic tree of
an English expression, a DRS is threaded around the nodes of this tree in a left-to-right
top-down way, thereby accumulating information in the DRS as it goes along.

11.4.3 A First Example

Let’s look at a first example. How would threading work for intransitive verbs?

186 Chapter 11. Discourse Representation Theory

in . . . out

. . .

.

.

.

smokes (IV)

. . .

.

.

.
SMOKE(x)

Note that the domain of the outgoing DRS is equal to the domain of the ingoing DRS,
and that the condition set of the outgoing DRS consists of the conditions of the ingoing
DRS ‘plus’ the basic condition introduced by the verb. It is clear that the node has
simply made the expected semantic contribution as it was threaded through the DRS.

In the threading approach every node is associated with an ‘ingoing’ DRS, and an ‘out-
going’ DRS, and the difference between the ingoing and outgoing DRS is exactly the
information that is contributed by the syntactic category. The good news is that think-
ing in terms of ingoing and outgoing DRSs can be coded in Prolog in a straightforward
and declarative way. To capture the effect of the previous diagram, the semantic macro
for an intransitive verb must be:

ivSem(Sym,[arg:Arg,drs:Drs,ana:[in:A,out:A]]):-

compose(Cond,Sym,[X]),

Arg = [subj:X,obj:_],

Drs = [in:[drs(D,C)|S],

out:[drs(D,[Cond|C])|S]].

There are three important points to be made at this point. First, note that a semantic
representations is not a single unit, but a recursive feature structure. On the top level
we have arg, for argument information, and drs, containing the in- and outgoing DRS,
labelled by in and out respectively. The third top-level feature ana collects constraints
on anaphoric bindings as we will see later.

Second, note that we are keeping track of the discourse referent X used as the argument
of the verb. Thirdly, note that we are not threading a single DRS around nodes (as
shown in the diagram), but a list of DRSs. The reason for this extra bookkeeping will
become clearer shortly when we will be discussing more complex examples.

Let’s now give a threading analysis of the sentence ‘Mia dances’. First, we need to add
a lexical entry for the proper name ‘Mia’. Proper names introduce both a discourse
referent and a condition. The following diagram shows what happens when a node
labelled by ‘Mia’ is threaded through a DRS:

11.4. Implementing DRT in Prolog 187

. . .

in Mia (NP) out

. . .

.

.

.

Mia (PN)

. . . x

.

.

.
x=MIA

The following semantic macro turns this picture into a set of constraints:

pnSem(Sym,[arg:[index:X],drs:Drs,ana:[in:A,out:A]]):-

Drs = [in:[drs(D,C)|S],

out:Out,

restr:_,

scope:[in:[drs([X|D],[X=Sym|C])|S],

out:Out]].

As this macro shows, we introduced a number of new features here. Besides in and
out, we also have restr and scope. These will play a role when we introduce quan-
tified noun phrases (as we will explain in a moment), and the reason that we use them
here for proper names is to keep the semantic representations in our grammar uniform
and consistent.

That’s the situation in the lexicon. So let’s now see what happens as the DRS repre-
senting the previous discourse slides its way around the parse tree for ‘Mia dances’ (in
the following diagram we assume that the initial DRS is empty):

in Mia dances (S) out

Mia (NP) dances (VP)

x

x=MIA

DANCE(x)

Mia (PN)
x

x=MIA
dances (IV)

The semantic rule that takes care of the threading of the NP and VP nodes is coded as
follows:

188 Chapter 11. Discourse Representation Theory

combine(s1:S,[np2:NP,vp2:VP]):-

S = [drs:Sem,ana:[in:A1,out:A3]],

NP = [arg:[index:I],drs:Sem,ana:[in:A1,out:A2]],

VP = [arg:[subj:I,obj:_],drs:Drs,ana:[in:A2,out:A3]],

Sem = [in:_,out:_,restr:_,scope:Drs].

These constraints ensure that the information is packed into the DRS correctly. Note
that the extra arguments percolated upwards by the noun phrase and verb phrase are
unified; this ensures the correct bindings of the discourse referent with its conditions.

In Section 11.4.7 when we discuss pronon resolution, we will see how constraints on
anaphoric bindings are collected in the ana feature. What you can see here already is
that these constraints are passed through such that all constraints end up on the sentence
level.

11.4.4 A second example (universal quantification)

How does DRS-threading extend to sentences containing determiners such as ‘every’.
Let’s give a threading analysis of æ nl � Every man runs 	 .
The semantic information associated with the the determiner ‘every’ is a complex
structure: an implicational condition consisting of two DRSs. This is shown in the
analysis for the noun phrase æ nl � every man 	 (we assume that the ingoing DRS is
empty):

in every man (NP) out

every (DET)
x

man (N)
x

MAN(x)

� � � x

MAN(x)

� �

The outgoing DRS for ‘every’ is the ingoing one to which an implicational condition
(that is, an arrow linking two sub-DRSs) has been added. We don’t yet know what
the contents of these sub-DRSs are, so we represent each of them with a black hole� . Actually, we do know a little more: this implication is a universal quantification,
hence the antecedent black hole must contain a discourse referent x; this is indicated
by the third threading arrow. How is the condition set of the antecedent to be filled?
By the contribution of the noun (‘man’ in this example), as the fourth threading arrow
indicates. In short, once we’ve threaded every node in the noun phrase through the

11.4. Implementing DRT in Prolog 189

initial DRS, we will have successfully filled in the antecedent black hole and now are
ready to pass on the resulting incomplete DRS (incomplete because the consequent
is still just a black hole) to the rest of the sentence for further threading. But before
going any further, let’s express this noun phrase analysis in Prolog. First, the semantic
marcro determiners that introduce universal quantification:

detSem(uni,[drs:Drs,ana:[in:A,out:A]]):-

Drs = [in:[drs(D,C)|S],

out:[drs(D,[Y>Z|C])|S],

restr:[in:[drs([],[]),drs(D,C)|S],out:[Y|T]],

scope:[in:[drs([],[]),Y|T],out:[Z|_]]].

Note that we have added two DRS-threading pairs: restr, which builds the DRS for
the restriction (the first � , represented by the Prolog variable Y), and scope which
builds the DRS for the nuclear scope (the second � , represented by Z). The outgoing
DRS equals the ingoing DRS plus a new implicational condition.

Now for the combine rule that combines a determiner and a noun to form a noun phrase:

combine(np1:NP,[det:Det,n2:N]):-

NP = [arg:Arg,drs:Drs,ana:[in:A1,out:A3]],

Det = [drs:Drs,ana:[in:A1,out:A2]],

N = [arg:Arg,drs:Restr,ana:[in:A2,out:A3]],

Drs = [in:_,out:_,restr:Restr,scope:_].

Here Drs stands for the DRS-pair corresponding to the the overall DRS, and Restr

for the DRS-pair that fills the first hole (the restriction of the quantifier). So, we now
have an analysis for ‘Every man’, but this contains a black hole marking the missing
nuclear scope information. How do we fill it? The verb phrase takes care of this, as the
following analysis shows:

in every man runs (S) out

every man (NP) runs (VP)
RUN(x)

x

MAN(x)

� �

x

MAN(x)

�
RUN(x)

190 Chapter 11. Discourse Representation Theory

That is, we start threading the VP with an empty DRS and substitute the result for the
black hole in the consequent of the implicational condition introduced by ‘every’.

This completes our threading analysis of ‘Every man runs’, and all important the in-
gredients of DRS-threading have now been discussed.

11.4.5 Grammar rules for discourse

To finish off, we’ll extend our grammar with some rules for discourse:

d2(D2)--> d1(D1), {combine(d2:D2,[d1:D1])}.

d1(D1)--> s2(S2), {combine(d1:D1,[s2:S2])}.

d1(D1)--> s2(S2), d1(D2), {combine(d1:D1,[s2:S2,conj,d1:D2])}.

d1(D1)--> s2(S2), {lexicon(coord,_,Word,Type)}, Word, d1(D2), {combine(d1:D1,[s2:S2,Type,d1:D2])}.

The first four rules allow us to make small discourses by sequencing sentences (we
have introduced a new category D for ‘discourse’). The second set of rules cover basic
sentences and conditionals.

11.4.6 Driver predicate

It remains to design a driver predicate that gives the sentence to the DCG, outputs the
DRS, translated the DRS into first-order logic and display the results as well.

drt:-

readLine(Discourse),

d2(DRS,Discourse,[]),

printRepresentations([DRS]),

drs2fol(DRS,FOL),

printRepresentations([FOL]).

For instance, suppose we want to build the DRS for the discourse that contains of the
sentence ‘John walks’ followed by æ nl � A woman smokes 	 . To do this, consult the file
drt.pl, start the DRT parser (by typing drt. at the Prolog prompt), and type in an
example discourse:

?- drt.

> A man loves a woman. He smokes.

1 drs([A,B],[smoke(A),male(A),love(B,A),woman(A),man(B)])

1 exists(A,exists(B,smoke(A) & (male(A) & (love(B,A) & (woman(A) & man(B))))))

Note that the lists are built from right to left; that is, the most recent information comes
first in the list.

11.4. Implementing DRT in Prolog 191

Exercise 11.3 Change the program in such a way that proper names are floated to
the top DRS. There are two ways of doing this. The first method is using an explicit
DRS that collects all proper names, which then will be merged with the DRS of the
sentence once it is parsed. Another method, more elegant but also more technically
demanding, is to extend the stack of DRSs that we already use for threading with a
global DRS (first member of the stack) to collect all proper name information.

11.4.7 Pronoun Resolution

The DRT implementation is able to resolve anaphoric pronouns as well, including
those appearing in donkey sentences. Let’s have a look at some examples (the second
example is actually an instance of a donkey example):

> A man walks. He smokes.

1 drs([A],[smoke(A),male(A),walk(A),man(A)])

1 exists(A,smoke(A) & (male(A) & (walk(A) & man(A))))

> Every man that loves a woman likes her.

1 drs([],[drs([A,B],[love(B,A),woman(A),man(B)])>drs([],[like(B,A),female(A)])])

1 forall(A,forall(B,love(B,A) & (woman(A) & man(B))>like(B,A) & female(A)))

How did we implement this? Let’s have a closer look at the semantic macro for pro-
nouns:

proSem(Sym,[arg:[index:X],drs:Drs,ana:Ana]):-

Drs = [in:[drs(D,C)|S],

out:Out,

restr:_,

scope:[in:[drs(D,[Cond|C])|S],out:Out]],

compose(Cond,Sym,[X]),

Ana = [in:A,

out:[accessible(X,[drs(D,C)|S])|A]].

At first glance this semantic macros bears a great resemblance with the semantic macro
for proper names. But there are two differences. The first difference is that there is no
new discourse referent introduced. The second difference is that we add a contraint
accessible(X,...) to our list of binding constraints. This constraint requires that
there must be an accessible discourse referent for Xin the incoming DRS.

11.4.8 Implementing accessibility

What’s left to do is implementing accessibility. In the previous section we gave a nice
and clean recursive definition of accessibility. Perhaps surprisingly, we will not follow

192 Chapter 11. Discourse Representation Theory

the formal definition to give its counterpart in Prolog. This is because the threading
apparatus already gives us direct hands on accessibility. Recall that we don’t just thread
a single DRS along the nodes of the syntax tree - we use a list of DRSs. This list
mirrors exactly the DRSs that are accessible from any given point in the syntax tree. A
beautiful example of how this stacking of DRSs works was given in the DRS threading
example for ‘every man runs’ above.

Let’s return to the semantic macro for pronouns and the constraint on anaphoric bind-
ing accessible(X,...). As we have seen, the constraints are handed through all
combine/2 predicates and end up on the sentence level and finally on the discourse
level. The rest of the story is easily told. On the discourse (d2) level, a recursive predi-
cate checkConstraints/1 is called and handed over the list of constraints. They have
the form of PROLOG predicate calls (e.g. accessible(X,[drs(D,C)|S])) and are
simply called recursively:

combine(d2:Drs,[d1:D1]):-

D1 = [drs:[in:[drs([],[])],out:[Drs]],ana:[in:[],out:Ana]],

checkConstraints(Ana),

bindingDrs(Drs).

checkConstraints([]).

checkConstraints([X|L]):-

call(X),

checkConstraints(L).

Finally, the predicate accessible/2 looks in the space of DRSs, and then picks out
one of the discourse referents (simply by using member/2). Because the threading rules
for universal quantification, disjunction, and negation are set up, we will be sure that
these discourse referents are accessible.

accessible(X,Space):-

member(drs(D,_),Space),

member(X,D).

11.4.9 Binding constraints

There are several constraints governing the resolution of pronouns to textual antecedents.
The structure of discourse, a constraint which we implemented using the notion of ac-
cessibility, is just one of them. Let’s have a look at the binding constraint, illustrated
by the following sentences:

In the first example, the pronoun ‘him’ cannot have ‘John’ as antecedent. However, in
the second example, the pronoun ‘himself’ can only have ‘John’ as antecedent. (‘him-
self’, ‘herself’, and so on, are called reflexive pronouns.)

Even though the intuitions beyond the binding constraint seem relatively easy to grasp,
it is surprisingly hard to implement them. This is not only because there is an interplay
between syntax and semantics, but also because there are subtle relaxations in the use
of reflexive pronouns in other contexts (at least this holds for English). Consider for

11.4. Implementing DRT in Prolog 193

instance the following example, where both the use of a normal pronoun or a reflexive
pronoun are felicitous:

For these reasons, we will focus on ordinary pronouns in the scope of this chapter,
and implement the binding constraint for pronouns in object position by checking the
DRS for illegitimate DRS-conditions. Here the use of a simple heuristic will do: we
won’t allow basic DRS-conditions that have two identical arguments. This will prevent
pronouns in object position of a transitive verb to refer to the subject noun phrase.
The reader is asked to do the following exercise to get a full understanding of the
implementation of this constraint in the DRS threading program.

Exercise 11.4 The binding constraint heuristic is implemented with the help of the
predicate bindingDrs/1 in drt.pl. Check out the definition of this predicate, and
find out when it is used. Think of cases where this heuristic might give the wrong
predictions. Also think of ways to extend this heuristic to cover reflexive pronouns.

11.4.10 Sortal Constraints

Another obvious constraint on resolving pronouns is of semantic nature. The English
pronouns ‘he’ and ‘him’ refer to male objects, ‘she’ and ‘her’ to female objects, and
‘it’ normally to non-human objects. Our basic implementation ignores these kinds of
sortal constraints, and happily identifies ‘John’ as an antecedent for the pronoun ‘she’:

> John walks. She smokes.

1 drs([A],[smoke(A),female(A),walk(A),A=john])

1 exists(A,smoke(A) & (female(A) & (walk(A) & A=john))

As our computer program doesn’t have any information as to which John is male or
female, it won’t stumble over the fact that we refer to ‘John’ with the pronoun ‘she’.
So what would be a good way of introducing these sortal constraints in our DRT im-
plementation?

First of all we need the sortal information of the pronoun at our disposal. Actually, this
information is already present in the DRS, as we have specified this in the lexicon. For
the example above, the pronoun ‘she’ introduced the DRS-condition female(A).

Secondly, we need more information about other entities. We need to know, for in-
stance, that John is a male, that women are female, the females are disjoint from males,
and so on. In other words, we need a semantic ontology stipulating semantic relations
between entities.

Finally, we need to use this ontology to filter out DRSs that violate sortal constraints.
An interesting way of doing this is to translate the ontology into a first-order theory,
use the first-order translation of the DRSs, and use a theorem prover (for instance
the tableaux-based theorem prover we developed earlier in the course) to check for
inconsistent information.

Exercise 11.5 Extend the grammar and lexicon with the possessive pronouns ‘his’,
‘her’ and ‘its’. Hint: think of these pronouns as determiners.

194 Chapter 11. Discourse Representation Theory

11.5 Running DRT

The driver predicate is explained in Section 11.4.6.

Try this out: drt([every,owner,of,a,siamese,cat,loves,john],SEM), printRepresentations([SEM]).

All files

See file drt.pl. The drivers for DRS construction and the semantic macros.
See file drs2fol.pl. The translation from DRT to predicate logic.
See file discourseGrammar.pl. Grammar rules for discourse.

11.6 Compositional Approaches to DRT

The method of DRS-threading clearly has a lot going for it. This construction method
is declarative and suggestive in the way to think about meaning in terms of context
change potential. But on the other side, the construction rules get complicated and
the level of complexity will further increase if one attempts to add other linguistic
phenomena.

An alternative way of constructing DRSs is to use the lambda calculus as we have been
doing in Chapter 4 for building first-order logic representations for English expres-
sions - in other words, formulating a purely compositional account. This is a tempting
direction to take, but applying the lambda-based techniques to DRSs will inevitably
lead to several practical and theoretical problems. (And that’s why we refrained from
using the lambda calculus in this chapter). Let’s identify the most important of these
problems - the interested reading is referred to the “further reading” section at the end
of this chapter for pointers to the literature.

First of all, one needs a new operator to merges two DRSs and a process that transforms
merged DRSs into an ordinary DRS (merge-reduction). An example illustrating the
merge operator ; and merge-reduction is the following:

This sounds straightforward, but a number of technical problems are lurking behind
the corner. What, for example, if discourse referents with the same name are declared
in two DRSs that are part of a merge. A case in point is the following DRS:

Does this mean these discourse referents denote the same object? Or do we want to
rename one of them and then allow merge-reduction? Or shall we disallow merging in
such cases (thereby closing off the scope of one discourse referent)?

Another obstacle that arises when combining the lambda calculus with a formalism
based on dynamic semantics is the way variables are treated. Discourse referents can
be viewed as objects that can bind variables out of their syntactic scope. This will
lead to technical problems when combined with lambda-bound variables - variables
that have a static semantics. As a result, we need to extend the process of β-conversion
to avoid accidental bindings. Moreover, without postulating further constraints in the
formalism, bindings can appear to be ambiguous. Consider, for instance the following
example:

During β-conversion the argument will be duplicated and the two resulting occurrences
of y will have different status: in the consequent of the implication y will be bound,

11.7. Further Reading 195

but in the disjunction, y will be free. This leads to a bizarre situation in the unreduced
DRS expression above: is the occurrence of y in the argument free or bound?

Nevertheless, leaving some of these theoretical issues beside, using the lambda calcu-
lus can be of immediate practical importance when used as a pure “glue-language”. In
other words, we will use lambda-abstraction, functional application, and beta-conversion
just as means to build discourse representations structures, and hence are not interested
in semantically interpreting intermediate results. Probably the most convenient way
of implementing the merge is to use a renaming operation on discourse referents to
prevent clashes among variable names during the process of merge-reduction.

11.7 Further Reading

11.7.1 References

� Gamut, L.T.F. (1991): Logic, Language, and Meaning. Volume II. Intensional
Logic and Logical Grammar. The University of Chicago Press.

� Kamp, H. (1981): A Theory of Truth and Semantic Representation. In Groe-
nendijk, J., T.M.V. Janssen and M. Stokhof: Formal Methods in the Study of
Language. p. 277-322. Mathematical Centre, Amsterdam.

� Kamp, H. and U. Reyle, Uwe (1993): From Discourse to Logic; An Introduc-
tion to Modeltheoretic Semantics of Natural Language, Formal Logic and DRT.
Dordrecht, Kluwer.

� Kohlhase, M., S. Kuschert and M. Pinkal (1996): A Type-Theoretic Semantics
for λ -DRT. In P. Dekker, and M. Stokhof, Proceedings of the Tenth Amsterdam
Colloquium. Pages 479-498. ILLC/Department of Philosophy, University of
Amsterdam.

� Kuschert, S. (1999): Dynamic Meaning and Accommodation. PhD Dissertation.
Universit æ "at des Saarlandes.

� Muskens, R. (1996): Combining Montague Semantics and Discourse Represen-
tation. Linguistics and Philosophy 19 (143-186).

� Van der Sandt, R. A. (1992): Presupposition Projection as Anaphora Resolution.
Journal of Semantics 9 (333-377).

� Zeevat, H. (1989): A Compositional Approach to Discourse Representation The-
ory. Linguistics and Philosophy 12 (95-131).

196 Chapter 11. Discourse Representation Theory

12

The Proof of the Pudding is in the
Eating

12.1 End term projects

The following exercise together are a suggestion for an end-term project.

Exercise 12.1 Model Inspection

Design a natural language-interface (using λ-calculus) to our revised model checker.
The idea is that you can inspect some predefined model like

example(4,[bird(tweety),siamesecat(mutzi),woman(mary),man(john),man(miles),

love(miles,mary),owner(mary),of(mary,mutzi),

love(miles,tweety),love(john,mary),walk(mary),

therapist(mary),eat(mutzi,tweety)]).

by asking questions like

� ‘Does John love Mary?’

� ‘Which owner of a siamese cat walks?’

Hint: For the time being, a cursory treatment of questions is enough for our purposes
here. It should lead to the following representations of the questions given above:

LOVE(JOHN,MARY)

and
λx " y � SIAMESECAT � y �&! OWNER � x �&! o f � x � y ��! WALK � x �

The expected answer to the first question is ‘yes’ in the example. The answer to the
second question should consist of all values of x that make the scope of the abstraction
true (in our case ‘Mary’).

198 Chapter 12. The Proof of the Pudding is in the Eating

Exercise 12.2 Model Extension

Use our tableaux-based model generation procedure to extend models like the one
presented in !!!UNEXPECTED PTR TO EX_EX.PUTTING1!!!. An example run could
look like this:

1 ?- extendModel(5,10).

before: [bird(tweety), siamesecat(mutzi), woman(mary), man(john), man(miles) ,love(miles, mary), owner(mary), of(mary, mutzi), love(miles, tweety), love(john, mary), walk(mary), therapist(mary), eat(mutzi, tweety)]

> john loves every siamese cat.

after: [eat(mutzi, tweety), therapist(mary), walk(mary), love(john, mary), love(miles, tweety), of(mary, mutzi), owner(mary), love(miles, mary), man(miles), ~siamesecat(miles), man(john), woman(mary), ~siamesecat(mary), siamesecat(mutzi), love(john, mutzi), ~siamesecat(john), bird(tweety), ~siamesecat(tweety), ~siamesecat(*)]

This example also gives you an impression of what direct, uncontrolled model gen-
eration does. First of all, if a speaker utters ‘John loves every siamese cat.’ in the
situation described by our input model, one thing she probably wants to communicate
is that ‘John loves Mutzi’. But our system also has generated lots of other facts, such as
~siamesecat(john), that are not contradictory (up to now) although they probably
weren’t intended by the speaker. Moreover, the system has blindly chosen one of many
possible extensions of the input model. Another possible extension would e.g. con-
tain siamesecat(john), love(john,john) instead of ~siamesecat(john). Now
what exactly makes the extension of mental models in human language understanding
so much more focussed than what our implementation does? Do you have any ideas
(speculate, you don’t have to implement...)?

Exercise 12.3 Informativity Checking

Remember how we can use tableaux to check the informativity of a given formula with
respect to some other formula(e) (see Section 7.2.5). Implement a little program that
checks the informativity of a natural language sentence with respect to some world
knowledge. For example suppose you have some world knowledge that tells you that
‘Every human works’, that ‘John is a man’ and that ‘All men are human’:

wk(man(john)

& forall(x,human(x)>work(x))

& forall(y,man(y)>human(y))

& forall(z,woman(z)>human(z))).

Now, your system should check the informativity of input sentences like this:

1 ?- checkInf.

> john works.

*** Doesn´t interest me... ***

Yes

2 ?- checkInf.

12.1. End term projects 199

> john does not work.

*** This is impossible! ***

Yes

3 ?- checkInf.

> tweety works.

*** Maybe... ***

Yes

200 Chapter 12. The Proof of the Pudding is in the Eating

Common Predicates

compose/3

See file comsemLib.pl.

The predicate compose/3 (de-)composes complex terms out of (into) the functor and
a list of its arguments. Possible usage:

compose(+Term,?Functor,?ArgsList) compose(walk(mary),F,A)

compose(1+2,F,A)

compose(-Term,+Functor,+ArgsList) compose(Term,walk,[mary])

compose(Term,’+’,[1,2])

newvar/1

See file signature.pl.

This predicate returns in its argument a new variable according to our convention
(page 20): v1,v2,...,vn.

newvar(V),write(V).

Each call of resetVars/0 sets the variable counter back to 0.

printRepresentations/1

See file comsemLib.pl.

Prints all complex terms from its input list in a human readable fashion. Each term
is put in a new (numbered) line. Second, the Prolog variables are displayed as capital
letters (or the like, this is done by the Prolog built-in predicate numbervars/3).

Note that the variables are replaced for each term (from Terms) beginning from scratch.
So, variable coindexing between terms (from line to line) is not possible (see the ex-
ample below). Coindexing within one term is handled, of course.

printRepresentations([p(MyVar1),q(MyVar2),r(MyVar1,MyVar2),r(MyVar1,MyVar1),z(_,_)]).

readLine/1

See file readLine.pl.

The auxiliary predicate readLine/1 prompts the user to type in a sentence and returns
our well-known list representation of the sentence. If the user types in “John walks”,
readLine/1 instantiates its argument with [john,walks].

202 Chapter 12. The Proof of the Pudding is in the Eating

substitute/4

See file comsemLib.pl.

This predicate implements a version of the Sterling and Shapiro substitute/4 predi-
cate. It takes a term, a variable, and a formula as its first three arguments, and returns
in its fourth argument the result of substituting the term for each free occurrence of the
variable in the formula. Because this is an important predicate (we shall use it again
when we implement a first-order theorem prover), we recommend that you look at its
definition.

substitute(woman,P,lambda(Q, exists(X,P@X& Q@X)),Result), printRepresentations([Result]).

vars2atoms/1

See file signature.pl.

The predicate vars2atoms/1 extracts all free (Prolog-) variables from the input term
with the help of the Prlog in-built predicate free_variables/2. These variables then
are instantiated with fresh and distinct variables using newvar/1 (see Section 12.1).

vars2atoms(lambda(A, A@tweety)@lambda(B, smoke(B))),write(lambda(A, A@tweety)@lambda(B, smoke(B)))

Calling resetVars (see Section 12.1) resets the variable counter.

Code Index

betaConversion.pl See file betaConversion.pl. β-conversion.
clls.pl See file clls.pl. Driver, combine-rules, semantic Macros.
cllsLib.pl See file cllsLib.pl. Working with USRs, tree predicates, translation of solved forms into λ-terms.
comsemLib.pl See file comsemLib.pl. Auxiliaries.
comsemOperators.pl See file comsemOperators.pl. Operator definitions.
discourseGrammar.pl See file discourseGrammar.pl. Grammar rules for discourse.
drs2fol.pl See file drs2fol.pl. The translation from DRT to predicate logic.
drt.pl See file drt.pl. The drivers for DRS construction and the semantic macros.
englishGrammar.pl See file englishGrammar.pl. The DCG-rules and the lexicon (using module See file englishLexicon.pl.). From here, the combine-rules and lexical macros are called.
englishLexicon.pl See file englishLexicon.pl. The lexical entries for a small fragment of English.
exampleModels.pl See file exampleModels.pl. Some example models to play with.
firstAttempt.pl See file firstAttempt.pl. The code for our first attempt at semantic construction, using the +-operator and insertArgs/2.
firstLambda.pl See file firstLambda.pl. DCG for semantic construction using λ-calculus.
fo.pl See file fo.pl. The drivers for model generation and theorem proving.
foTabl.pl See file foTabl.pl. The tableaux itself: tabl/6
lambda.pl See file lambda.pl. The driver predicate; definition of the combine-rules and the lexical macros for λ-calculus.
modelChecker.pl See file modelChecker.pl. The driver predicate evaluate/2 and the core clauses of the model checker (eval/2).
prop.pl See file prop.pl. The wrapper for model generation and theorem proving: modGen/3 and theorem/1.
propTabl.pl See file propTabl.pl. The core of the implementation: tabl/3 and clash/3

readLine.pl See file readLine.pl. Reading the input from stdin.
revisedModelChecker.pl See file revisedModelChecker.pl. The revised version of the model checker (excluding wff/1, which you have to provide yourself).
runningFirstLambda.pl See file runningFirstLambda.pl. Driver predicate for our first lambda approach.
signature.pl See file signature.pl. newconst/1

solveConstraint.pl See file solveConstraint.pl. Solving: normalization and distribution.
substitute.pl See file substitute.pl. subst/3

usingDCG.pl See file usingDCG.pl. Our very first experimental DCG.

Index

(λ-)bound, 42
α-conversion, 53
α-equivalent, 53
β-reduction, 44
η-equivalent, 94� " -constellation, 161
λ-abstraction, 42
λ-structure, 88

abstracted over, 42
admissible, 174
anaphoric pronoun, 175
antecedent, 117
argument type, 46
assumption, 116
atomic formula, 9
axiom, 117
axiomatic method, 118

binding edge, 87, 89
bound variable, 10

Calculemus!, 119
calculus, 116
calculus ratiocinator, 119
chaining rule, 131
characteristic function, 48
Choice Rule, 99
closed, 121, 125
combinatorial explosion, 82
complete, 119
computationtree, 138
conclusion, 116, 117
confluence, 45
conjunctiveexpansion, 122
constant symbol, 5
constraint graph, 89
constraint solving, 86
contradiction-free, 148
conversational implicature, 128
conversational maxim, 127
Cooper storage, 81
cooperative principle, 128
correct, 118

d-compositionality, 36
decisionprocedure, 150
deduction theorem, 16
derivability, 117
derived rule, 131
describe, 90
discourse referent, 177
disjunctive, 123
Distribution Rule, 99
domain, 6
dominanceedge, 89
donkey sentence, 176

Enumeration, 95
exact model, 7
existential, 172

fairness, 167
finite model property, 150
first order tableaux, 15
first-order formula, 8
first-order language, 8
first-order model, 6
free variable, 10
functional application, 43

Herbrand base, 159
Herbrand model, 148

inferencesystem, 116
initialtableaux, 124
instance, 117
interpretation, 13
interpretation function, 6
iterative-deepening, 165

Keller storage, 81

lexical semantic, 146
lingua universalis, 119
literal, 10
logical constant, 172

Manner, 128
matrix, 9

204

INDEX 205

mental model, 146
model generation procedure, 146
modusponens, 117

name, 5
negative, 126
Nested Cooper storage, 81
normal dominance constraint, 86, 92
normal model, 17
normalization, 99

open, 121, 125

parent normalization, 100
PLNQ, 126
predicate symbol, 6
premise, 117
proof, 116, 117
proof theory, 15
prooffrom the assumptions in H , 117
provability, 117, 118
provable, 117–119
provable from the assumptions in H ,

117

Quality, 128
quantifier store, 81
quantifying in, 79
Quantity, 128

redundancy elimination, 100
refutation proof, 126
Relation, 128
relation symbol, 6
result type, 46

s-compositionality, 36
Satisfiability, 95
saturated, 125
scope, 9
scope ambiguity, 75
semi-decidable, 163
sentence, 11
signature, 5
signed, 122, 124
simply typed λ-calculus, 46
skolem constant, 160
solution, 90
solved form, 98
sound, 118
specification, 22

subformula, 10
subordination, 178
succedent, 117
syncategorematically, 70
syntactic structure, 33

tableaux refutation, 125
tableauxproof, 125
term, 9
testcalculus, 126
theorem, 118
true in a model, 13

universal, 172

valid, 118, 119
valid argument, 15
valid formula, 14
valid sentence, 15
validity, 118
variant, 13
vocabulary, 5

well-formed formula, 9
well-typed, 47
witness, 160
world knowledge, 153

x-variant, 13

