
Probability Estimation
in

Statistical Natural Language Processing

Sanjeev Khudanpur
(co-workers: B. Jedynak, D. Karakos, A. Yazgan)

Department of Electrical & Computer Engineering
Center for Language & Speech Processing

Johns Hopkins University, Baltimore, MD, U.S.A.

July 13, 2005



The Density Estimation Problem

Consider a random variable taking values in X = {1,2,...,k}

Let p(.) denote a probability mass function on X

0 ≤ p(x) ≤ 1 for all x in X, and  ∑x∈X p(x) = 1

p(.) is usually unknown, and needs to be estimated from 
some sample data

Let the samples x1,x2,...,xn be drawn independently, each 
according to p(.)

An estimator of p(.) is a function p̂ : X
n
→ P

k



The k-Dimensional Unit Simplex

In general, it is

a (k-1)−dim hyperplane
restricted to the +ve orthant
closed, bounded and convex
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Likelihood of the Observed Data
The likelihood of observing x1,...,xn under a probability mass 
function or pmf p is given by

where n(x) is the number of times the value x is seen in 
the sample x1,...,xn

Note: permuting x1,...,xn does not change its likelihood

p(x1, . . . , xn) =
n∏

t=1

p(xt) =
∏

x∈X

[p(x)]n(x)

n(x) =
n∑

t=1

1(xt = x)



Types and Typical Sequences

p(x1, . . . , xn) =
∏

x∈X
[p(x)]n(x) = exp

{

log
∏

x∈X
[p(x)]n(x)

}

= exp
{
∑

x∈X
n(x) log p(x)

}

= exp
{

n
∑

x∈X

n(x)
n

log p(x)
}

= exp
{

n
∑

x∈X
p̂(x) log p(x)

}

The type of a sequence is p̂ ≡

(

n(1)

n
, . . . ,

n(k)

n

)

The number of distinct possible types is
∣

∣P
k
n

∣

∣ =

(

n + k − 1

k − 1

)

≈ (n + 1)k

A sufficient statistic

Number of sequences whose type is p̂ =
n!

n(1)!n(2)! · · · n(k)!



Possible Types on the Simplex
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In general, the possible types are
reminiscent of the integer lattice 
in (k-1)−dimensional space
“evenly spaced” on the simplex
grow close together as n→∞



Likelihood, Entropy and Divergence

Note that the sample (not the choice of p) fixes the 
entropy

Therefore, if we wish to choose a p that assigns high 
likelihood to the observed sample, we much choose a p that 
is “close” in K-L divergence to

p(x1, . . . , xn) = exp
{

−n
[

∑

x∈X
p̂(x) log 1

p(x)

]}

= exp
{

−n
[

−
∑

x∈X
p̂(x) log p̂(x) +

∑

x∈X
p̂(x) log p̂(x)

p(x)

]}

= exp {−n [H(p̂) + D(p̂‖p)]}

Kullback-Leibler DivergenceEntropy

p̂



Properties of (Shannon) Entropy

0 ≤ H(p) ≤ log(k)

H(p) = 0 iff p is a degenrate pmf

H(p) = log(k) iff p is the uniform pmf

H(p) is a continouous function of p

H(p) is a concave function of p

H(p) is the nonparametric analog of 
smoothness for continuous densities



Properties of K-L Divergence

D(p||q) ≥ 0 with equality iff p==q

D(p||q) is continuous in (p,q)

D(p||q) is convex in (p,q)

If p is fixed, it is convex in q

For the uniform pmf

D(p||u) = log(k) - H(p)

Maximize H(p) ⇔ Minimize D(p||u)



Popular Density Estimates
Maximum likelihood estimation:

choose the type itself as the estimate of p

Bayesian estimation:
assume a (prior) probability density π on the on the simplex of pmfs, e.g. 
the Dirichlet density

assume a cost function L(p,q) for estimating p as q, e.g. ||p-q||2

find the estimate q that minimizes expected cost Eπ[L(p,q)|x1,...xn]

Often leads to an “add-β” estimate q*(x) = {n(x)+β}/{n+kβ}

Maximum entropy estimation:
Find a few marginals that may be reliably estimated from the type

Consider all pmfs that agree with these marginals as admissible

Choose the admissible pmf with the highest entropy

The type is always admissible, but a “smoother” pmf near it is chosen



Variations on Maximum Entropy

Enlarge the class of admissible pmfs

p* is also the ML estimate from an exponential family Q

Seek something other than the maximum entropy pmf in M

M =
{

p ∈ P
k : p(Aj) = p̂(Aj), j = 1, . . . , J

}

p∗(x) =
1

Z(Λ)
exp







J
∑

j=1

λj1(x ∈ Aj)







M =
{

p ∈ Pk : p̂(Aj) − ε ≤ p(Aj) ≤ p̂(Aj) + ε, j = 1, . . . , J
}

q
∗ = arg max

q∈Q

[

q(x1, . . . , xn) − ρ‖Λ‖2
]



The Maximum Likelihood Set (new!)
Recall that the observed type is a sufficient statistic for 
estimating p from the sample data

Recall that the type can take only a finite number of 
values for a finite sample size

Define a pmf p to be admissible if it assigns a higher 
likelihood to the observed type than to any other type!

Key idea: the type we observed should be at least as likely 
as one we didn’t

p(p̂) =
n!

n(1)! · · ·n(k)!

∏

x∈X

[p(x)]n(x)

M =
{

p ∈ Pk : p(p̂) ≥ p(q̂), ∀ q̂ ∈ Pk
n

}



Visualizing the Max Likelihood Set
P1: FRP
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Figure 1: Illustration of the maximum likelihood sets for all the possible types
for alphabet size k = 3. (A) n = 3 samples. (B) n = 10 samples. Each “cell” is an
MLS containing exactly one type marked with a cross.
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Figure 1: Illustration of the maximum likelihood sets for all the possible types
for alphabet size k = 3. (A) n = 3 samples. (B) n = 10 samples. Each “cell” is an
MLS containing exactly one type marked with a cross.
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The maximum likelihood set is equivalently given by

Every MLS is a closed, bounded and convex set

bounded by linear hyper-planes

very useful when searching numerically for p*

Every MLS contains the observed type, but no other type

the collection of MLS’s tessellates the unit simplex

The diameter of every MLS is O(1/n)

M =

{

p ∈ Pk :
p̂(x)

p̂(x′) + 1

n

≤
p(x)

p(x′)
≤

p̂(x) + 1

n

p̂(x′)
∀x, x

′ ∈ X

}

Characterizing the MLS

For every pmf in the MLS ‖p − p̂‖1 ≤
2(k − 1)

n



More Properties of the MLS

Every pmf in the MLS is a strongly consistent estimate of p

If n(x)>0, then p(x)>0 for every p in the MLS

In every MLS, there is a pmf with p(x)>0 for all x in X.

i.e. each MLS is guaranteed to contain “smooth” candidates

Faithfulness to the observed evidence:

if n(x)>n(x’) then, for every pmf p in the MLS, p(x)≥p(x’)

this property isn’t guaranteed for the Bayesian estimates, Good-Turing, etc.

lim
n→∞

sup
p∈M

‖p − p̃‖ = 0 p̃ − almost surely



Choosing an Estimate from the MLS
If some reference pmf q is available (e.g. an estimate you 
would use for n=0), then it may be used to choose one of 
the admissible members of the MLS

If no q is available, q could be assumed to be uniform

Using this criterion to choose from the MLS has another 
desirable property, faithfulness to prior beliefs when the 
evidence is equivocal:

This leads to considerable computational savings

p∗ = arg max
p∈M

D(p‖q)

n(x) = n(x′) and q(x) ≥ q(x′) =⇒ p
∗(x) ≥ p

∗(x′)



Examples for Discussion

The special case when n=1

Estimating a unigram distribution for words using Zipf’s law 
as a reference distribution

Estimating a bigram (conditional) distribution using the 
unigram distribution as a reference distribution

Implications for growing decision trees and random forests

Implications for estimation of entropy & mutual information

The case when k→∞ (i.e. unbounded alphabet sizes)



Concluding Remarks

Density estimation is at the core of a lot of statistical 
methods in language and speech processing

Spare data is always an issue (Google notwithstanding)

Learning from small samples is vital; methods for 
incorporating structural constraints in these estimates need 
to be investigated further

The MLS based estimate is a parameter-free technique 
that characterizes the uncertainty of the estimate, and 
provides a means for incorporating prior domain knowledge


