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The Density Estimation Problem

@ Consider a random variable taking values in X = {1,2,... k}

@ Let p(.) denote a probability mass function on X
@ 0<p(x) <1 forall xinX, and 2 _, p(x) =1

@ p(.) is usually unknown, and needs to be estimated from
some sample data

@ Let the samples x,x,,...,x be drawn independently, each

9
according to p(.)

@ An estimator of p(.) is a function P : R DE
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The k-Dimensional Unit Simplex
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In general, it is

@ a (k-1)—dim hyperplane
@ restricted to the +ve orthant
@ closed, bounded and convex



Likelihood of the Observed Data

The likelihood of observing x,,...,.X_under a probability mass

function or pmf p is given by

P(CE1, oS ,xn) = Hp(:z;t) = H [p(x)]n(w)

reX

where n(x) is the number of times the value x is seen in

the sample Xx,,...,x_

n(x) = Z = a4

 Note: permuting x,,...,x_does not change its likelihood



Types and Typical Sequences
p(@1,- . Ta)s TLer D) SENE NS T = S lp ()"

= exp{Y ,ex (1) logp(z)]
= exp {n D logp(:z:)}
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Number of sequences whose typeis 1 =

The type of a sequence is

n(1)!n(2)! - n(k)!

kE—1
The number of distinct possible types is ’P,{f‘ = (n—]: : ) S 1)"



Possible Types on the Simplex

o T ooy 1 k=3
’ o — n
B
(0,0) o) Big
(0,0,].) T k=4

in (k-1)—dimensional space
(0007 \_ o @ “evenly spaced” on the simplex
@ grow close together as n—oo

: n=2 In general, the possible types are
, \“(671 o) @ reminiscent of the integer lattice



Likelihood, Entropy and Divergence
p(xy, e L= exp{—n :erx log p(x)}}

— exp{—n __ZxEX log S, L log m}}

= exp{-n[H()+ D(|p)l}
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Entropy Kullback-Leibler Divergence

® Note that the sample (not the choice of p) fixes the
entropy

@ Therefore, if we wish to choose a p that assigns high
likelihood to the observed sample, we much choose a p that
is “close” in K-L divergence to
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Properties of (Shannon) Entropy

0 < H(p) < log(k)

H(p) = O iff p is a degenrate pmf

H(p) = log(k) iff p is the uniform pmf 7
H(p) is a continouous function of p
H(p) is a concave function of p

H(p) is the nonparametric analog of

smoothness for continuous densities \




Properties of K-L Divergence

@ D(pllq) > O with equality iff p==q
@ D(pllq) is continuous in (p,q)
@ D(pllg) is convex in (p,q)

@ If pis fixed, it is convex in g
@ For the uniform pmf

@ D(pllu) = log(k) - H(p)

@ Maximize H(p) & Minimize D(p||u)




Popular Density Estimates

@ Maximum likelihood estimation:
@ choose the type itself as the estimate of p

® Bayesian estimation:

@ assume a (prior) probability density m on the on the simplex of pmfs, e.g.
the Dirichlet density

@ assume a cost function L(p,q) for estimating p as q, e.g. ||p-q||2
@ find the estimate q that minimizes expected cost En[L(p,q)le,...xn]

@ Often leads to an “add-B” estimate q*(x) = {n(x)+B}/{n+kp}

@ Maximum entropy estimation:
@ Find a few marginals that may be reliably estimated from the type
@ Consider all pmfs that agree with these marginals as admissible
@ Choose the admissible pmf with the highest entropy

@ The type is always admissible, but a “smoother” pmf near it is chosen



Variations on Maximum Entropy
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p*(z) = Z(0) exp < Z)\jl(a: 2

@ Enlarge the class of admissible pmfs
OM={peP®: i(4;) —e<p(4;) < (4)) +e j=1,..., ]}
@ p”* is also the ML estimate from an exponential family 9

@ Seek something other than the maximum entropy pmf in M

4 o 2n) — pllA]?
q argr;leag[Q(wl, ,Tp) — p|| A7)
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The Maximum Likelihood Set (new!)

Recall that the observed type is a sufficient statistic for
estimating p from the sample data

Recall that the type can take only a finite number of
values for a finite sample size

Define a pmf p to be admissible if it assigns a higher
likelihood to the observed type than to any other typel!

p()) = — 2 T @)

" xeX

M={peP®:p(p) = p(), ¥ i< P:}

Key idea: the type we observed should be at least as likely

as one we didn't



the Max Likelihood Set
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Characterizing the MLS

@ The maximum likelihood set is equivalently given by

& (o hehdalr P
@M‘{pgp @)+ L p@) o€ x|

@® Every MLS is a closed, bounded and convex set

@ bounded by linear hyper-planes

@ very useful when searching numerically for p*

@ Every MLS contains the observed type, but no other type

® the collection of MLSs tessellates the unit simplex

® The diameter of every MLS is O(1/n)
ok — 1)

For every pmf in the MLS ||p — p]|1 <
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More Properties of the MLS

Every pmf in the MLS is a strongly consistent estimate of p

~

lim sup |[p—p|| =0 p— almost surely

If n(x)>0, then p(x)>0 for every p in the MLS

In every MLS, there is a pmf with p(x)>0 for all x in X.
@ i.e. each MLS is guaranteed to contain “smooth” candidates
Faithfulness to the observed evidence:

@ if n(x)>n(x’) then, for every pmf p in the MLS, p(x)2p(x’)

@ this property isnt guaranteed for the Bayesian estimates, Good-Turing, etc.



Choosing an Estimate from the MLS

If some reference pmf q is available (e.g. an estimate you
would use for n=0), then it may be used to choose one of
the admissible members of the MLS

p* = arg max D(pl|q)
PE
If no q is available, q could be assumed to be uniform

Using this criterion to choose from the MLS has another
desirable property, faithfulness to prior beliefs when the
evidence is equivocal:

= and ¢(z) > ¢(2') = p*(z)>p"(a')

. This leads to considerable computational savings



Examples for Discussion

The special case when n=l1

Estimating a unigram distribution for words using Zipf's law
as a reference distribution

Estimating a bigram (conditional) distribution using the
unigram distribution as a reference distribution

Implications for growing decision trees and random forests
Implications for estimation of entropy & mutual information

The case when k—oco (i.e. unbounded alphabet sizes)



Concluding Remarks

Density estimation is at the core of a lot of statistical
methods in language and speech processing

Spare data is always an issue (Google notwithstanding)

Learning from small samples is vital; methods for
incorporating structural constraints in these estimates need
to be investigated further

The MLS based estimate is a parameter-free technique
that characterizes the uncertainty of the estimate, and
provides a means for incorporating prior domain knowledge



