
Expressivity and Complexity 
of Dependency Grammars

Marco Kuhlmann

Programming Systems Lab
Saarland University, Saarbrücken, Germany

IGK Colloquium · Saarbrücken · 2005–11–10



John

loves

Mary

Dependencies

dependent

head



Current interest in DG

statistical parsing
Eisner 1996; Collins 1997

languages with free word order
Plátek et al. 2001

syntax-semantics interface
Debusmann et al. 2001



The DG diversity

grammatical paradigm

rule-based (Gaifman, Dikovsky)

constraint-based (CDG, XDG)

structural assumptions

projective (Gaifman, Eisner)

non-projective (CDG, Nasr, XDG)



Milestones

Gaifman 1965: 
Projective dependency grammars and 
lexicalised context-free grammars 
are strongly equivalent.

Neuhaus & Bröker 1997: 
The general word problem for 
unrestricted dependency grammars 
is NP-complete.



What this talk is about

formal and computational aspects of 
dependency grammar

language-theoretic expressivity

complexity of recognition & parsing

intermediate report on 
ongoing work for my PhD thesis



Questions asked

How does DG relate to grammar 
formalisms other than CFG?

How could a general framework look 
like, in which existing DG formalisms 
can be studied and compared?

How can parsing techniques for other 
frameworks be transferred to DG?



Focus of this talk

dependency structures

structural constraints

non-projectivity

dependency languages

mild context-sensitivity

extensional perspective



Structure

Introduction

Dependency structures

Dependency languages

Complexity

Conclusion & Future Work



Dependency 
structures



John

loves

Mary

Dependencies

objsu
bj

John

loves

Mary

dependent

head



Common constraints (1)

acyclicity:
no word depends on itself

indegree at most 1:
each word has at most one head

single root: 
exactly one word without a head



Common constraints (2)

projectivity: 
the reflexive-transitive dependents 
of a word form a contiguous substring 
of the full sentence

controversial; must be abandoned 
for languages with freer word order



objsubj

John loves Mary

Projectivity

objsubj

John loves Mary

objsubj

John loves Mary



vc
subj

voerende nijlpaardenCecilia zag

obj

Henk

subj

Crossing edges

vc
subj

voerende nijlpaardenCecilia zag

obj

Henk

subj



Drawings

simple models of syntactic structure

relational structure

forest + linear order on the nodes

dimensions of non-projectivity

quantitative aspect

qualitative aspect

not an 
ordered tree



Drawings



Gap degree

gap degree of a node: 
number of interruptions 
in the projection of that node

gap degree of a drawing: 
maximum over the gap degrees 
of the nodes in the drawing



a b c d fe

0

0

0 0

0

0

Gap degree 0
projective

a b c d fe

0

0

0 0

0

0



a b c e f d

0

0

0

1

1

0

Gap degree 1

a b c e f d

0

0

0

1

1

0

a b c e f d

0

0

0

1

1

0



a b e c f d

0

2

1

1

0

0

Gap degree 2

a b e c f d

0

2

1

1

0

0

a b e c f d

0

2

1

1

0

0



a b c ed

0

1 0

0

0

Well-nested 
drawings (1)

a b c ed

0

1 0

0

0

a b c ed

0

1 0

0

0



a b c d e

0

1

1

0

0

Well-nested 
drawings (2)

a b c d e

0

1

1

0

0

a b c d e

0

1

1

0

0



Results

The derivations of Lexicalised 
Tree Adjoining Grammar (LTAG) 
can be interpreted as drawings 
in a natural way.

The drawings induced by LTAG 
are well-nested and have 
a gap degree of at most 1.

Bodirsky, Kuhlmann & Möhl – FG/MoL 2005



Summary

I propose drawings as a simple class 
of models for dependency structure.

Drawings allow us to formalise and 
reason about various forms of 
non-projectivity.



Structure

Introduction

Dependency structures

Dependency languages

Complexity

Conclusion & Future Work



Dependency 
languages



Definitions

dependency language: 
set of dependency structures

string language: 
image of a dependency language 
under projections

dependency grammar: 
specifies a dependency language



CF languages

Gaifman proved that lexicalised 
context-free grammars and projective 
dependency grammars are equivalent.

Context-free dependency language: 
image of a context-free set of trees 
under projective closure



S ! a S B

S ! a B

B ! b

CF grammar



b

a

CF tree set

a

b

b

a

a

a b

b

a

b



Projective closure

v !u w

v ! w

Suv v !u w Suw

S
C

v ! S
C

w

global order

local order



a b

B

CF dependency 
language

B
S

a a b b

B

S
B

B

S

a a a b bb

B



Dissecting CF languages

an underlying set of unordered trees: 
forest structure

global linearisation constraints: 
projectivity, non-projectivity

local linearisation constraints: 
grammar-specific



MCS languages

mildly context-sensitive languages

extend context-free languages

limited form of non-projectivity

mildly context-sensitive formalisms

TAG, CCG, Minimalist Grammar

corpora and practical parsers exist



Properties of MCSL

limited crossing dependencies: 
crossed-serial dependencies in Dutch

constant growth property: 
the size progression of the language 
is bounded by a constant

recogniseable in polynomial time



The plan

Take the sets of (unordered) trees 
specified by context-free grammars.

Define a class of deterministic 
automata that transform those trees 
into dependency structures.

Prove that the resulting output 
languages are mildly context-sensitive.



Semilinearity

Semilinearity is a property that implies 
the constant growth property.

It may be too strong a constraint 
to be put on natural language.

A language is semilinear, 
if its Parikh image can be decomposed 
into a finite union of linear sets.



Parikh images

Parikh vector for a string: 
function that maps terminal symbols 
to their numbers of occurrences

Parikh image of a language: 
set of Parikh vectors 
for the strings in that language



a

n = 1

aaa

n = 2

aaaaaaa

n = 3

Semilinearity

f a
2n

!1 j n ! 1 g



Tree linearisers

ingredients: context free grammar + 
specification of linearisation

output: a set of dependency 
structures (labelled drawings)

specialisation of deterministic 
tree-walking transducers (Weir 1992)



Tree linearisers

finite set of context-free rules

finite set of states

finite set of actions: up, down n, mark

transition function: 
given a current rule and state, 
what is the action to take, 
and what is the new state?

deterministic



S ! a S B

S ! a B

B ! b

CF grammar



entered ! .MARK; marked/

marked ! .ENTER S; entered/

left S ! .ENTER B; entered/

left B ! .LEAVE; left S/

Lineariser 1

S ! a S B



a

a b

b

a

b

MARK

Lineariser 1

a

a

a b

b

a

b

ENTER S
a

a

a b

b

a

b

MARK
a a

a

a b

b

a

b

ENTER S
a a

a

a b

b

a

b

MARK
a a a

a

a b

b

a

b

ENTER B
a a a

a

a b

b

a

b

MARK
a a a b

a

a b

b

a

b

LEAVE
a a a b

a

a b

b

a

b

LEAVE
a a a b

a

a b

b

a

b

ENTER B
a a a b

a

a b

b

a

b

MARK
a a a b b

a

a b

b

a

b

LEAVE
a a a b b

a

a b

b

a

b

LEAVE
a a a b b

a

a b

b

a

b

ENTER B
a a a b b

a

a b

b

a

b

MARK
a a a b bb

a

a b

b

a

b

LEAVE
a a a b bb

a

a b

b

a

b

LEAVE



Beyond context-freeness

reentrancies: allow a subtree to be 
entered and left more than once

number of times that this happens is 
called the crossing number

extension introduces a finite number 
of additional states



entered 1 ! .MARK; marked/

marked ! .ENTER S; entered 1/

left S 1 ! .LEAVE; left S 1/

entered 2 ! .ENTER B; entered/

left B ! .LEAVE; left S 2/

Lineariser 2

S ! a S B



a

a b

b

a

b

MARK

Lineariser 2

a

a b

b

a

b

ENTER S
a

a

a b

b

a

b

MARK
a

a

a b

b

a

b

ENTER S
a a

a

a b

b

a

b

MARK
a a

a

a b

b

a

b

LEAVE
a a a

a

a b

b

a

b

LEAVE
a a a

a

a b

b

a

b

ENTER B
a a a

a

a b

b

a

b

MARK
a a a

a

a b

b

a

b

LEAVE
a a a b

a

a b

b

a

b

ENTER S
a a a b

a

a b

b

a

b

ENTER B
a a a b

a

a b

b

a

b

MARK
a a a b

a

a b

b

a

b

LEAVE
a a a b b

a

a b

b

a

b

ENTER S
a a a b b

a

a b

b

a

b

ENTER B
a a a b b

a

a b

b

a

b

MARK
a a a b b

a

a b

b

a

b

LEAVE
a a a b bb

a

a b

b

a

b

LEAVE
a a a b bb

a

a b

b

a

b

LEAVE
a a a b bb

a

a b

b

a

b

LEAVE
a a a b bb



DTL – Finite gap degree

Each subtree can be visited 
at most a finite number of times.

Therefore, the yield of each node 
can be split into at most 
a finite number of convex blocks, 
with a finite number of gaps.



DTL – Semi-linearity

Parikh’s Theorem: 
A language is semi-linear if and only if 
its Parikh image is the Parikh image 
of a context-free language.

Deterministic tree linearisers 
merely order the nodes 
of a context-free set of trees.



Summary

basic idea: 
characterise mildly context-sensitive 
dependency languages 
by different tree linearisation regimes

still to be done: 
show that the output languages 
of tree linearisers 
can be parsed in polynomial time



A note on grammars

I have taken a completely extensional 
approach to dependency languages.

Ultimately, I also want to be able to 
explain what a mildly context-
sensitive dependency grammar is.

I have taken first steps into this 
direction (Grabowski et al., 2005).



Structure

Introduction

Dependency structures

Dependency languages

Complexity

Conclusion & Future Work



Complexity



Fundamental results

Eisner 1996: 
Projective dependency grammars can 
be parsed in time O(n³).

Neuhaus & Bröker 1997: 
The general word problem for 
unrestricted dependency grammars 
is NP-complete.



Contribution

general parsing schema 
for gap-restricted 
dependency languages

parsing schema: 
abstract specification of a parsing 
algorithm as an inference system 
(Sikkel 1997)



s W hI; !i

Parse items

span type



hI; !i 2 Lex.wi/

fig W hI; !i

The lookup rule



s1 W hI1; ! C I2i s2 W hI2; ;i

s1 ˚ s2 W hI1; !i

The plug rule



s1 W hI1; ;i ! ! ! sm W hIm; ;i

s1 ˚ ! ! ! ˚ sm W hI1 C ! ! ! C Im; ;i

The group rule



a c d feba c d feb

Example

a c d feba c d feba c d feba c d feb



Results

The parsing schema proves that 
arbitrary gap-restricted drawings 
can be parsed in polynomial time.

In the special case of 
well-nested gap-restricted drawings 
a binary group rule suffices, 
independently of the gap degree.

Grabowski, Kuhlmann & Möhl – CSLP 2005

gm+2

3(g+1)



Conclusion 
& Future Work



Summary

I have proposed a general framework 
in which existing DG formalisms can 
be studied and compared.

I have presented evidence 
that this framework will provide 
the notion of mildly context-sensitive 
dependency grammars.



Future work (1)

formal aspects

dependency grammars

embedding more formalisms

processing issues

general gap-restricted drawings

issues related to lexicalisation



Future work (2)

linguistic relevance

study more phenomena

corpus study on non-projectivity

implementation

using constraint programming

using dynamic programming



Polynomial DGs

There are linguistic phenomena 
that are beyond the expressive power 
of mildly context-sensitive languages.

It might be interesting to study 
dependency correspondents of 
more powerful grammar formalisms, 
such as Literal Movement Grammar.



Thank you 
for listening!



Backup Slides



Affiliations

Programming Systems Lab
Department of Computer Science

Sonderforschungsbereich 378
Deutsche Forschungsgemeinschaft

International Post-Graduate College 
Language Technology 
and Cognitive Systems



Collaborators

Manuel Bodirsky
does research in constraint solving at 
the Humboldt-Universität zu Berlin

Robert Grabowski and 
Mathias Möhl 
are diploma students at 
Saarland University, Saarbrücken



Labelled drawings

Labelled drawings 
are drawings equipped with 
two labelling functions.

Node labels correspond 
to terminal symbols in LCFG.

Edge labels correspond 
to non-terminal symbols.



sentence ! subj loves obj

subj ! John

obj ! Mary

Labelled drawings



Labelled drawings

objsubj

John loves Mary



Properties

Each context-free dependency 
language is a subset of the set of 
projective dependency structures.

Context-free dependency languages 
are closed under (consistent) 
permutation of subtrees.


