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Agenda

¢ Background: Standard ASR

¢ Robust ASR

¢ Background: Standard beamforming

¢ Maximum Likelihood Beamforming
l Michael Seltzer’s Ph.D. work

l Our version, open issues etc.



Introduction

¢ Reimplementation project at LSV

¢ Current participants: Andreas Beschorner,
Marcela Charfuelan & Barbara Rauch

¢ Algorithm developed by Michael Seltzer at
CMU, Ph.D. thesis in 2003

¢ Significant reduction in WER for
recognition of noisy/reverberant speech



Background:
Standard ASR



Standard ASR Process
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HMM Acoustic Models

¢ Standard Acoustic Models: HMMs

¢ Decoding means search:
l Alignment of frames with states = path through network of HMM

states
l Find most likely alignment / path
l HMM parameters tell us likelihood of observation for a particular

state sequence

¢ Transcription can be deduced from alignment

2nd figure taken from [1]



Robust ASR



What is Robustness?

¢ “A smooth degradation in the performance
of a system when faced with unexpected
input.”
(ROMAND workshop)

¢ “The degree to which a system or
component can function correctly in the
presence of invalid inputs or stressful
environmental conditions.”
(IEEE Standard Glossary of Software Engineering Terminology)



Robustness in ASR

¢ Invalid/unexpected
input: things we didn’t
train on

¢ Focus here: noise and
reverberation
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¢ Problem: mismatch
between test and
training conditions

¢ Assumption: can’t
anticipate all the
different noise conditions



Typical Degradation:
Additive Noise

l Aurora (2000): connected digits with additive
noise. Baseline WERs:

l Aurora-4 (2002) large vocabulary task (ALV):
baseline overall 50.3%
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Typical Degradation:
Additive Noise (2)

¢ System trained on clean speech recorded from close-talking microphone.
Data: CMU microphone array database, described later

Figures taken from [1]



Typical Degradation:
Reverberation

¢ System trained on clean speech recorded from close-talking microphone.
Data: CMU microphone array database, described later

Figures taken from [1]



Possible Approaches

1. Noise resistance
¢ Use noise-robust

features

¢ Cf. last talk, use
visual information

2. Feature compensation
/ Speech enhancement
¢ Change test data

(signal/parameters)

3. Model compensation
¢ Change test models
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Recent Research Projects
& Some Results

¢ Noise: e.g.
l AURORA: various types of additive noise. Results:

e.g. Large Vocab Task, WER 50%→30-35% (2000)

l SPINE (‘01/02), ROAR: military noise. Results: e.g.
on SPINE-2 data 42%→32% [4]

¢ ‘Hot’ application:
meeting transcription.
l NIST Evaluations 2002-06

l CHIL, AMI, …

l State-of-the-art, Jan ‘06: „[WERs] of 30-40% and
large differences to results with close-talking data“ [5]



Background:
Standard
Beamforming



N

Beamforming in Simple
Words

If we have a microphone array, a signal
(sound wave) emitted by an off-axis source
arrives at the various microphones at different
times:
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Beamforming in Simple
Pictures
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Beamforming Summary

¢ If we know the delay for each microphone (the look
direction), we can align the signals and sum them

¢ Result: signal from desired direction is reinforced,
signals from other directions are attenuated

¢ Simple:
Delay-and-sum

¢ Extension:
Filter-and-sum

¢ Choices: Number of microphones M, filter length P.
Parameters to set: delays d, filter taps hm[p]
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Traditional
Beamforming + ASR

¢ Pipeline: first enhance speech with beamformer,
then feed into recogniser

¢ Speech sounds much better, but WER for more
complex beamformers does not improve much
on delay-and-sum baseline
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Delay&Sum WER vs. other
techniques

¢ System trained on clean speech recorded from close-talking microphone.
Data: CMU microphone array database, described later

Figure based on [1].
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Maximum Likelihood
Beamforming

(MLB / LiMaBeam)



Seltzer’s Data

¢ Recogniser trained on Wall Street Journal speech
corpus (WJS0). 7000 training utterances, 84 speakers.

¢ Two test sets:
l CMU Microphone Array Database

Relatively noisy (6.5 dB avg. SNR).
140 utterances, 10 speakers, vocab. size 138. Flat LM.

l Reverberant WSJ0 data
Not noisy, but reverberant (artificial); several test
sets with different degree of reverberation.
330 utterances, 8 speakers, vocab. size 5000. Trigram LM.

¢ We now have the same data at LSV for replication



¢ Break the pipeline; use WER-related criterion to
optimise parameters of beamformer

¢ Iterative procedure, utterance-based:
l Do beamforming
l Decode (recognise) the utterance
l Given most likely HMM state sequence, optimise

the beamformer parameters for this sequence
l Stop when likelihood has converged

¢ Recogniser parameters don’t change, only filters

Basic Idea of LiMaBeam
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Calibrated Version
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Results:
Calibrated LiMaBeam

Figure taken from [1]

33 %CL, 50 taps, 8.3 sec calibr.

36 %Calibrated Limabeam,
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Approx. WERMethod

¢ Duration of calibration utterance matters



Unsupervised Version

CAPTURE SPEECH Time-Delay
Compensation

Initialise FiltersFilter and SumExtract Features

DECODE

Likelihood
Converged?

Optimise Filters

Estimate
State

Sequence
DONE

Yes

No

Hypothesised
Transcript

Process NEXT
utterance



Results:
Unsupervised LiMaBeam

Figure taken from [1]

¢ Average utterance duration influences accuracy:



Subband Version

¢ Calibrated and unsupervised versions worked well on
noisy data

¢ Not so well on reverberant data, same problem with
conventional adaptive filtering techniques

¢ Subband filtering improves convergence of
conventional adaptive filtering when filter is long and
input signals highly correlated

¢ Input signal is decomposed into independent
subbands, which are processed independently, then
combined

¢ Seltzer developed a subband version of LIMABEAM
which works also well on reverberant data



Results: S-Limabeam

¢ Both calibrated and unsupervised subband
versions show significant improvement:

Figures taken from [1]



Our Project

¢ Start by replicating results (initially
unsupervised version), exactly same data
but different recogniser (HTK)

¢ Continue with different data
l ‘Real data’, meeting room test
l Edinburgh Multi-channel WSJ Audiovisual

Corpus[3]?

¢ Consider related work (Karlsruhe [2], ITC-
IRST)



Open Issues and Potential
PhD Projects

Inter-related open issues:

¢ Continuous tracking of a moving
speaker

¢ Multiple speakers

¢ Incorporate e.g. visual information
about speaker



Summary

¢ Robustness problem in ASR

¢ Traditional approaches, specifically
beamforming

¢ Maximum Likelihood Beamforming:
promising but a number of open
issues
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