
Constraint-Based And Graph-Based Resolution

of Ambiguities in Natural Language

Dissertation zur Erlangung des Grades

des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Eingereicht von Alexander Koller

Saarbrücken, den 19.07.2004

Verfasser: Alexander Koller
Katholisch-Kirch-Straße 15
66111 Saarbrücken
koller@coli.uni-sb.de

Dekan: Prof. Dr. Jörg Eschmeier

Prüfungsausschuss: Prof. Dr. Wolfgang Wahlster
Prof. Dr. Manfred Pinkal
Prof. Dr. Gert Smolka
Prof. Dr. Michael Kohlhase
Dr. Ernst Althaus

Tag des Kolloquiums: 18.11.2004

Abstract

This thesis develops the theory of dominance constraints, a family of logical lan-
guages that describe trees, and applies them as a formalism for the underspecified
description of scope ambiguities in natural language. In underspecification ap-
proaches to ambiguity resolution, all readings of a sentence at once are represented
in an underspecified description, and are only enumerated by need.

On the one hand, dominance constraints allow us to model scope phenomena declar-
atively, within a logic formalism. On the other hand, we can view certain fragments
of dominance constraints as graphs, which makes it possible to employ efficient
graph algorithms to solve dominance constraints. All constraints that are used in
scope underspecification fall into these fragments.

In addition, we can use extra information such as anaphoric reference and world
knowledge in order to restrict the set of readings described by a dominance con-
straint. The constraint is strengthened to exclude unintended readings without
having to enumerate them.

Kurzzusammenfassung

Diese Dissertation entwickelt die Theorie von Dominanzconstraints, einer Familie
von Logiksprachen zur Beschreibung von Bäumen, und wendet sie als Formalis-
mus zur unterspezifizierten Beschreibung von Skopusambiguitäten in natürlicher
Sprache an. In der Unterspezifikation werden alle Lesarten eines Satzes auf einmal
in einer unterspezifizierten Beschreibung dargestellt und nur bei Bedarf aufgezählt.

Dominanzconstraints ermöglichen einerseits die deklarative, logikbasierte Model-
lierung von Skopusphänomenen. Andererseits kann man bestimmte Fragmente von
Dominanzconstraints als Graphen sehen, so dass effiziente Graphalgorithmen zum
Lösen von Dominanzconstraints eingesetzt werden können. Alle Dominanzcon-
straints, die in der Skopusunterspezifikation auftreten, fallen in diese Fragmente.

Aufbauend auf diesen Ergebnissen kann man außerdem zusätzliche Informationen
wie anaphorische Referenz und Weltwissen einsetzen, um die von einem Dominanz-
constraint beschriebenen Lesarten einzuschränken. Dabei wird der Dominanzcon-
straint verstärkt, um unerwünschte Lesarten auszuschließen, ohne sie aufzählen zu
müssen.

Ausführliche Zusammenfassung

Diese Arbeit entwickelt die Theorie der Dominanzconstraints, definiert einen ef-
fizienten, graphbasierten Algorithmus, um sie zu lösen, und wendet sie auf das
Problem der Auflösung von Skopus-Mehrdeutigkeiten in natürlichen Sprachen an.
Sie zeigt, dass Unterspezifikationsformalismen effizient verarbeitet werden können
und eine geeignete Plattform darstellen, um unerwünschte Lesarten auszufiltern,
ohne sie aufzählen zu müssen. Unterspezifikation ist ein Ansatz zur Behandlung
von semantischen Mehrdeutigkeiten, bei dem alle Lesarten eines Satzes in einer un-
terspezifizierten Beschreibung kompakt dargestellt und nur bei Bedarf aufgezählt
werden.

Dominanzconstraint-Sprachen sind Logiksprachen, die über endlichen Bäumen in-
terpretiert werden. Die Formeln dieser Sprache sprechen über Relationen zwischen
den Knoten eines Baumes, insbesondere über die Dominanzrelation (also die transi-
tive Vorfahr-Relation). Wir definieren in einem ersten Teil der Arbeit verschiedene
Dominanzconstraint-Sprachen und erweitern sie um Bindungsconstraints, mit de-
nen wir Variablenbindung auf der Ebene der beschriebenen semantischen Lesarten
modellieren können. Wir geben eine einfache Grammatik an, die Dominanz-
und Bindungsconstraints als unterspezifizierte Beschreibungen für die semantis-
chen Repräsentationen englischer Sätze ableitet. Dann geben wir einen Überblick
über zwei verschiedene Algorithmen zum Lösen von Dominanz- und Bindungscon-
straints, die auf Saturierung des Constraints sowie auf einer Übersetzung in Men-
genconstraints beruhen.

Im zweiten Teil der Arbeit zeigen wir, wie bestimmte Fragmente von Dominanz-
constraints als Graphen aufgefasst werden können. Wir geben zunächst eine
Übersetzung von normalen Dominanzconstraints in Dominanzgraphen an, mit der
Eigenschaft, dass der Constraint genau dann erfüllbar ist, wenn der Graph lösbar
ist, d.h. in einen Baum konfiguriert werden kann. Wir charakterisieren Lösbarkeit
von Dominanzgraphen als die Abwesenheit von einfachen hypernormalen Zykeln
und geben einen Algorithmus an, der in quadratischer Zeit entscheidet, ob ein
Dominanzgraph einen hypernormalen Zykel enthält. Damit haben wir einen qua-
dratischen Erfüllbarkeitstest für normale Dominanzconstraints.

Allerdings sind wir in der Skopusunterspezifikation meistens nicht an beliebi-
gen Lösungen eines Dominanzconstraints interessiert, sondern nur an konstruk-
tiven Lösungen, in denen nur das vom Satz vorgegebene semantische Mate-
rial vorkommt. Wir zeigen, dass erfüllbare hypernormal verbundene Dominanz-
constraints grundsätzlich konstruktive Lösungen haben, und machen damit den

Graphlöser unmittelbar für die Skopusunterspezifikation anwendbar; er wird damit
zum ersten beweisbar polynomiellen Löser für irgendeinen Unterspezifikationfor-
malismus überhaupt. Alle Constraints, die die vorher definierte Grammatik
erzeugt, sind hypernormal verbunden, und wir glauben, dass dies allgemein für
alle Constraints, die in der Unterspezifikation verwendet werden, gilt.

Weiterhin zeigen wir, dass die hypernormal verbundenen Fragmente von Domi-
nanzconstraints und von Hole Semantics, einem anderen Unterspezifikationsfor-
malismus, äquivalent sind. Damit setzen wir erstmals zwei praktisch relevante
Unterspezifikationsformalismen in Beziehung, was zum Verständnis der theoreti-
schen Landschaft der Unterspezifikation beiträgt und uns erlaubt, Ressourcen wie
Löser und Grammatiken zwischen den verschiedenen Formalismen zu übertragen.

Im dritten und letzten Teil der Dissertation wenden wir die Ergebnisse aus den
ersten beiden Teilen auf das Problem an, auf der Grundlage von zusätzlichen In-
formationen unerwünschte Lesarten eines Satzes zu eliminieren. Wir modellieren
zunächst den Zusammenhang von anaphorischen Referenzen und Skopusambi-
guitäten, indem wir die Zugänglichkeitsbeziehung der dynamischen Prädikatenlogik
als Relationen zwischen den Knoten eines Baumes darstellen. Dann geben wir In-
ferenzregeln an, mit denen ein Dominanzconstraint so verstärkt werden kann, dass
Lesarten herausgefiltert werden, die die Zugänglichkeitsanforderungen verletzen.
In manchen Fällen können wir so alle unerwünschten Lesarten eliminieren, ohne
sie aufzählen zu müssen.

Schließlich modellieren wir den Effekt von Weltwissen auf Skopusambiguitäten.
Dazu geben wir ein Verfahren an, das erkennt, wenn alle Lesarten eines Constraints
unerfüllbar sind, indem es nur eine Teilmenge der Lesarten mit einem Theorem-
beweiser überprüft. Dieses Verfahren setzt ein Rewrite-System auf den Lesarten
eines Constraints ein, das wir vorher im Zusammenhang mit speziellen hypernor-
mal verbundenen Constraints entwickelt hatten. Weil die logische Unerfüllbarkeit
von Lesarten in manchen Fällen nicht die intuitiv richtigen Vorhersagen darüber
macht, welche Lesarten auf Unerfüllbarkeit geprüft werden müssen, untersuchen
wir, inwiefern wir Präsuppositionen der natürlichsprachlichen Sätze hinzuziehen
können, um ein intuitiv korrekteres Modell zu bekommen.

Acknowledgments

If I have seen further, it is by

standing on the shoulders of giants.

– Isaac Newton

The front page of this thesis proudly displays my name, and it is true that the work
I report in it has occupied the best part of my waking hours for over five years.
However, virtually every result in this thesis was developed in a group effort, and
the research would have been literally impossible without the contributions of my
colleagues. Moreover, it took a great social support network of good friends to get
through the thesis writing intact. I would like to take this opportunity to repay
the help I have received over that time in a small way.

My first thanks go to my advisor, Manfred Pinkal. I find it hard to imagine
a more supportive mentor, a fairer boss, and an advisor who dishes out more
relevant criticism in a more constructive way. His insistence on clarity and precision
in everything I wrote has made a significant direct impact on the shape of the
thesis. Manfred has taught me a lot about making a coherent, clear story out of
an unconnected mess of scientific ideas, and about political thinking. The large
research group he manages to maintain as a result of these abilities has made for an
extremely stimulating research environment that I have profited from enormously.

My other advisor, Gert Smolka, deserves no less gratitude. Gert provided a rather
different perspective on my work, by taking the fundamental facts about linguistic
modelling much less for granted than any other of my collaborators. The ensuing
discussions have done much to help clarify my own views on these subjects. At the
same time, he helped me grow up as a computer scientist by pointing out where
“the rest is standard” and the gory details didn’t need to be spelled out. I’m glad
that he insisted that I write Chapter 3; and it is only because he brought it up
again that I’m now a Doctor of Natural Sciences, rather than of Engineering.

My main collaborator in the research reported here has been Joachim Niehren.
It is hard to overestimate how much I’ve learned from Joachim about how to do
research, about scientific taste, and about paper writing. Joachim has a unique
talent for identifying least publishable units that make for beautiful papers. His
enthusiasm for topics and ideas that he finds interesting is infectious, and this is
in fact how he first drew me into the CHORUS project seven years ago.

I owe a lot of linguistic insight to Markus Egg. Throughout these past years, it
has been an enormous relief to rely on his linguistic judgments and opinions, in
particular because he has a rare talent to explain them with utter clarity. He has
also been a wonderful office neighbour with whom I have had many interesting
and controversial discussions. Michael Kohlhase came into the thesis work at a
crucial, rather late stage, and it was only due to him that I didn’t throw Chapter
8 into a corner and give up in frustration. His energy and indomitable optimism
are spectacular, and I hope a little of it has rubbed off on me. My three visits to
Pittsburgh were intense and instructive and fun, and Michael and his family always
made me feel very welcome.

The thesis research has taken place in the context of the CHORUS project within
the SFB 378. This has given me the privilege of working with one of the finest re-
search groups that I could ever hope to be part of. Beyond the people I have already
mentioned, Katrin Erk, Marco Kuhlmann, Stefan Thater, Ralph Debusmann, and
Denys Duchier have been both colleagues and friends, and while it seems to be
impossible to work in CHORUS without being or becoming exceedingly stubborn,
the general atmosphere has always been incredibly productive and supportive. In
addition, the research on normal dominance constraints would have been much
harder without the cooperation with the Max Planck Institute for Computer Sci-
ence, most notably Kurt Mehlhorn, Sven Thiel, and Ernst Althaus. These guys
really do know everything about graph algorithms, and it has been a joy to throw
them half-baked problems and then watch them solve them.

The department of computational linguistics at Saarbrücken is a wonderful research
environment, which I will be sad to leave when the time comes. The Saarbrücken-
Edinburgh International Graduate College “Language Technology and Cognitive
Systems”, to which I am proud to have been associated, is a great addition to this
environment and has attracted a gang of incredibly clever and cool people. I don’t
have enough space here to thank everybody as properly as they deserve, but I’d
like to pick out a (much too small) handful specifically: Malte Gabsdil, who is one
of the most “people smart” people I know, and together with Ute has become my
family away from home; Kristina Striegnitz, with whom I am able to communicate
at an amazing bandwidth, and who is always a pleasure to work (or do anything
else) with; Geert-Jan Kruijff, my partner in crime in building talking robots; Matt

Crocker, who has managed to dissolve my intense dislike for statistical methods;
and Helga Riedel, who is really the one person who holds the whole place together.

At some point in the past five years, I ended up getting a bit of a life. This
amazing development was made possible by all the great people in the university
rowing club and the university choir. It has been a great pleasure to sing with
Note Nors, and in particular with my quartet partners Joachim Fox, Alexander
Indermark, and Johannes Laubscher; I am glad that Judith Braun taught me how
to sing (and a lot of related things) so I could do my part. I seem to have acquired
an international network of friends, including Carlos Areces and Raffaella Bernardi
through ESSLLI, Inga Hell and Meredith Patterson over the Net, and many others,
and now that the thesis is finished, you can expect me to go travel and visit you
all.

Especially during the last few months of writing, when I didn’t allow myself the
relief of working much on things that weren’t thesis-related, P.H.D. comics and
Language Log have been instrumental in keeping me sane.

Carlos Areces, Peter Baumgartner, Markus Egg, Geert-Jan Kruijff, Manfred
Pinkal, Gert Smolka, and Stefan Thater have all proofread parts of the thesis.
I am very grateful for all the comments they gave me. All remaining errors are of
course my own fault.

Finally, I am privileged that Stefanie Schmetkamp-Schmidt has remained my best
friend, and that her son Quentin is such a great little godson. And I am deeply
grateful to my parents and family simply for being there. I’m very proud of them,
and if this thesis gives them some further reason to be proud of me, then it has
been worth it.

Contents

1 Introduction 1

1.1 Ambiguity . 2

1.2 Scope Underspecification . 4

1.3 Constraint Programming . 6

1.4 What this thesis is about . 8

1.5 Contributions . 10

2 Dominance Constraints 13

2.1 Elements of dominance constraints 13

2.2 Syntax and Semantics of Dominance Constraints 20

2.3 Binding Constraints . 24

2.4 Related formalisms . 25

2.5 Summary . 26

3 Computing Dominance Constraints for English 29

3.1 Classical Semantics Construction 30

3.2 Scope Ambiguity . 33

3.3 Semantics Construction for Dominance Constraints 36

3.4 A Larger Grammar . 38

3.5 An Example . 41

i

ii CONTENTS

3.6 Summary . 44

4 Processing Dominance Constraints 47

4.1 A Saturation Algorithm . 48

4.2 Processing binding constraints . 55

4.3 An Algorithm Based On Set Constraints 60

4.4 Summary . 67

5 Normal Dominance Constraints 69

5.1 Dominance Graphs . 70

5.2 Normal Dominance Constraints . 73

5.3 Solved Forms . 77

5.4 Compact Dominance Constraints 81

5.5 Constraints as Graphs . 84

5.6 Enumeration of Minimal Solved Forms 86

5.7 Hypernormal Cycles . 92

5.8 Testing for Hypernormal Cycles . 98

5.9 Normal Dominance and Binding Constraints 101

5.10 Summary . 102

6 Hypernormal Connections 105

6.1 Simple Solved Forms . 106

6.2 Grammars and Hypernormal Connections 111

6.3 Hole Semantics as Dominance Constraints 114

6.4 Pure Chains . 118

6.5 Summary . 126

7 Resolving Scope Ambiguities Using Anaphora 129

7.1 Dynamic Predicate Logic in A Nutshell 131

CONTENTS iii

7.2 DPL in Dominance Constraints . 134

7.3 The Inference Procedure . 135

7.4 Examples . 137

7.5 Summary . 139

8 Resolving Scope Ambiguities Using World Knowledge 141

8.1 Unsatisfiability Criteria . 142

8.2 Rewriting-Based Unsatisfiability Criteria 144

8.3 Existential Presuppositions . 154

8.4 Summary . 163

9 Conclusion 165

9.1 Summary . 165

9.2 Outlook . 167

Bibliography 171

Index 179

iv CONTENTS

Chapter 1

Introduction

This thesis develops the theory of dominance constraints, defines an efficient graph-
based algorithm for solving them, and applies them to the problem of ambiguity
resolution in natural language. It shows that underspecification formalisms can be
processed efficiently and that they can be used to eliminate unintended readings
without enumerating them.

Dominance constraint languages are logical languages that are interpreted over
trees. Formulas of these languages talk about relations between the nodes in a
tree, most notably dominance (i.e. the transitive ancestor relation). We define the
different languages of dominance constraints and present previous work on solving
dominance constraints. Then we give normal dominance constraint formulas an
interpretation as graphs, and translate notions such as satisfiability into graph
properties. This allows us to solve dominance constraints efficiently by using graph
algorithms.

In a second track of the thesis, we apply these theoretical results to the problem of
resolving scope ambiguities in natural language. Ambiguity – the fact that some
token of language has more than one possible analysis on some level of linguistic de-
scription – is one of the fundamental problems in computational linguistics. Scope
ambiguities are a certain type of semantic ambiguity, which can be elegantly repre-
sented using underspecification. We show that dominance constraints can be used
as underspecified descriptions of sentences with scope ambiguities, and that the
graph solver can be applied to enumerate all their readings efficiently. In addition,
we model the effect of contextual information (in particular, of anaphoric references
and world knowledge) on the resolution of scope ambiguities, and apply the formal
results to eliminate contextually impossible readings without enumerating them.

1

2 CHAPTER 1. INTRODUCTION

1.1 Ambiguity

Ambiguity – the phenomenon that a sentence or some of its parts have more than
one linguistic analysis – is very common in natural language. The following sen-
tences are examples which represent several different types of ambiguity on various
levels of linguistic description:

(1.1) Peter went to the bank.

(1.2) Peter saw the man with the telescope.

(1.3) Every linguist speaks two languages.

(1.4) Peter met a man in the park. He carried a telescope.

The sentence (1.1) contains a lexical ambiguity : “Bank” could either refer to a
financial institution, or to a bank of a river. (1.2) contains an attachment ambiguity :
It is ambiguous between a reading in which Peter uses the telescope to watch the
man and a reading in which the other man carries the telescope. The difference is in
the syntactic structure of the sentence, i.e. whether “with the telescope” modifies
(is attached to) “the man” or the verb. (1.3) contains a scope ambiguity : It is
syntactically unambiguous, but its semantics is ambiguous between the reading
where there is a single set of two languages (say, English and German) which every
linguist speaks, and a reading in which every linguist can pick her own pair of
languages. (1.4) contains a referential ambiguity : Is it Peter or the other man who
carries the telescope?

Most grammars for deep linguistic processing aim at deriving fully specified syn-
tactic or semantic representations for a sentence – e.g., a parse tree, or a formula
representing the truth conditions of the sentence. As a consequence, they will assign
2n different possible readings to a sentence that contains n ambiguities with two
readings each. Because the rules and the lexicon entries of the grammar generalise
over the particular properties of each single word, even harmless-looking sentences
are often assigned a surprisingly large number of readings, as the following two
examples illustrate:

(1.5) Covering old surfaces and other people’s floors with holes and spots with
dust will have great effects.

(1.6) But that would give us all day Tuesday to be there.

1.1. AMBIGUITY 3

The sentence (1.5) contains multiple attachment ambiguities, and is predicted by
the LFG ParGram grammar (Butt et al. 2002) to have 27062 syntactic readings
(Anette Frank, p.c.). On the other hand, even if one specific syntactic analysis of
the sentence (1.6) (which comes from the Redwoods Treebank, Oepen et al. 2002)
is fixed, the English Resource Grammar (ERG, Copestake and Flickinger 2000)
assigns it 64764 different semantic readings, purely due to scope ambiguity. If the
two types of ambiguities combine, it is easy to imagine sentences of quite moderate
length for which the grammar predicts millions of readings.

The problem of selecting the “correct” reading which was actually intended by
the speaker of the sentence is called ambiguity resolution. Because ambiguity is
such a pervasive phenomenon, it is perhaps the greatest computational challenge
that deep linguistic processing is faced with today. But at the same time, human
language users seem to have no problems at all in understanding sentences like
(1.5) and (1.6), and indeed don’t even perceive these sentences as ambiguous in
any given context. They seem to apply a mixture of methods including

1. the use of information such as anaphora and world knowledge (combined
with the actual meanings of the words), which allows them to reject some
readings as impossible: If we continue the sentence (1.3) with the sentence
“These two languages are English and German”, the anaphor “these two
languages” makes the reading in which each linguist can speak their own set
of languages infelicitous.

2. the use of preferential information, such as word order or the frequency with
which certain syntactic constructions are used, which allows us to favour a
reading over another (still possible) reading: We have a tendency to under-
stand a sentence like “Peter watched the man with a telescope” to mean
that Peter used the telescope for watching the man, as it is such a suitable
instrument for watching.

3. the ability not to resolve some ambiguities completely at all, but rather to
operate with an approximation of the concrete readings: For instance, the
scope distinctions that the ERG makes in (1.6) are mostly technical, the
different readings are mostly equivalent, and we don’t even perceive that
there is an ambiguity.

The position this thesis takes towards the problem of ambiguity resolution is that
we start with an unresolved representation of all the readings that a grammar
predicts. Then we offer algorithms for enumerating all predicted readings, and we
investigate how anaphora and world knowledge can be used to eliminate unintended
(in the sense of the first method above) readings without enumerating them. The

4 CHAPTER 1. INTRODUCTION

use of preferences is not the subject of this thesis, although we briefly speculate on
how to integrate preferences into our framework in the conclusion.

1.2 Scope Underspecification

The type of ambiguity we focus on here is scope ambiguity. Scope ambiguities are
semantic ambiguities – i.e., a sentence can be analysed as syntactically unambigu-
ous and still be semantically ambiguous because of scope. They are characterised
by the fact that their semantic representation contains scope-bearing elements, such
as logical quantifiers, that can take scope over each other in different ways. The
two readings of the example (1.3) can be written as follows (∃2 is an ad-hoc “quan-
tifier” expressing that its scope denotes a set of cardinality two; it can be expressed
easily in standard first-order logic):

(1.7) ∀x.linguist(x) → (∃2y.language(y) ∧ speak(x, y))

(1.8) ∃2y.language(y) ∧ (∀x.linguist(x) → speak(x, y))

Here the two quantifier fragments ∀x.linguist(x) → • and ∃2y.language(y) ∧ • can
take scope over each other in either order, and each way of arranging them corre-
sponds to a distinct semantic reading. These two fragments are exactly the seman-
tic contributions of the two noun phrases “every linguist” and “two languages”.
Most examples of scope ambiguity that we use below are scope ambiguities be-
tween two noun phrases. But in principle, all methods developed here apply to
scope phenomena in a much wider sense, such as the following:

(1.9) Max eats a cake sometimes.

(1.10) Helmut Kohl wants to visit a Chinese factory producing CFC-free fridges.

(1.11) I try to read a novel if I feel bored or I am unhappy.

Example (1.9) is ambiguous between a reading in which Max eats the same cake
each time, and one in which he eats different cakes. Here one scope-bearing ele-
ment is the noun phrase “a cake”, and the other one is the adverb “sometimes”.
The scope ambiguity in the example (1.10), which translates a sentence from the
NEGRA/TIGER corpus (Skut et al. 1998; Brants et al. 2002), belongs more specif-
ically to the class of de dicto/de re ambiguities. It has a reading in which Kohl
wants to visit a specific factory, and another one in which he would be happy with

1.2. SCOPE UNDERSPECIFICATION 5

(traditional)
parse tree formula

(underspecified)
parse tree constraint formula

syntax underspecified semantics
semantics

Figure 1.1: Underspecified semantics.

any factory whatsoever. One scope-bearing element here is the verb “wants”. The
scope-bearing elements in (1.11) are the discourse units and discourse connectives
like “if” and “or”. Adverbs as scope bearers in particular are rather frequent in
corpora: An informal study of the first few hundred sentences of the NEGRA cor-
pus showed that pure NP/NP scope ambiguities like (1.3) are quite rare, but about
one third of all sentences contains a scope ambiguity if we also count NP/adverb
or adverb/adverb scope ambiguities.

One particularly attractive approach to dealing with scope ambiguity is under-
specification (Alshawi and Crouch 1992; Reyle 1993; Muskens 1995; van Deemter
and Peters 1996; Bos 1996; Pinkal 1996; Copestake et al. 1999). The main idea
behind underspecification is to delay the computation of all semantic readings for
a syntactic analysis. Rather than computing them all right away, as a traditional
syntax-semantics interface would, we first compute an underspecified semantic de-
scription (Fig. 1.1). Each syntactic analysis gives rise to only one underspecified
description, and the description should be built in such a way that the seman-
tic readings can be extracted from it efficiently if they are needed. This makes
underspecification appealing from a computational point of view because the com-
binatorial explosion inherent in the enumeration of readings is localised into the
problem of computing readings from descriptions, and thus it can be delayed until
the readings are actually needed.

In addition, we can in principle use underspecified descriptions as a platform on
which external information, such as about anaphoric reference and world knowl-
edge, can be incorporated. The additional information could strengthen the under-
specified description so it describes only a subset of its former readings; readings
that contradict the extra information should be eliminated without ever enumerat-
ing them. This potential for modelling human strategies for ambiguity management
also makes underspecification appealing from a cognitive perspective.

6 CHAPTER 1. INTRODUCTION

∀ •

→ •

linguist •

var •

•

∃2 •

∧ •

language •

var •

•

speak •

var • var •

Figure 1.2: Underspecified description for (1.3) as a dominance constraint graph.

There is a range of formalisms for representing underspecified descriptions in the lit-
erature; perhaps the most well-known ones are Quasi-Logical Form (QLF, Alshawi
and Crouch 1992) and Underspecified Discourse Representation Theory (UDRT,
Reyle 1993) for their historical impact, Hole Semantics (Bos 1996) for its concep-
tual simplicity, and Minimal Recursion Semantics (MRS, Copestake et al. 1999)
because it is the formalism supported by the large-scale HPSG grammars. In this
thesis, we use the language family of dominance constraints as our underspecifi-
cation formalism. We describe the two readings of (1.3) by the graph shown in
Fig. 1.2. The dotted lines in the graph signify dominance, and indicate that both
quantifier fragments must outscope the subformula speak(x, y). The dashed arrows
indicate variable binding. Technically, we give the informal graph a formal meaning
as a constraint over trees, and later translate the constraints back into graphs in
order to process them efficiently with graph algorithms.

1.3 Constraint Programming

The computational framework in which we couch the algorithms developed in this
thesis is constraint programming (Apt 2003; Saraswat et al. 1991; Smolka 1995).
In its most general form, the idea behind this programming paradigm is to model
a problem using constraints over variables, e.g. formulas from a small fragment of
first-order logic. Then it aims at solving the constraint, either by general methods
mostly involving search, or by domain-specific methods. Put this generally, con-
straint programming encompasses not just many forms of combinatorial problems,
but also fields as large as linear programming and operations research.

To get an idea what a constraint-based model of a problem looks like, let’s look
at an example. Consider the following arithmetic problem, in which each letter
stands for a distinct digit, and leading digits are nonzero.

1.3. CONSTRAINT PROGRAMMING 7

SEND

+ MORE

= MONEY

In a first step, we model this problem as a constraint satisfaction problem by
reading the letters S, E, etc. as finite domain variables, whose range is the finite
domain {0, . . . , 9} of integers. We can then state the digits puzzle using arithmetic
formulas such as

1000 · S + 100 · E + 10 ·N + D
+ 1000 ·M + 100 ·O + 10 ·R + E

= 10000 ·M + 1000 ·O + 100 ·N + 10 · E + Y

In a second step, we can try to solve this constraint – i.e., find a variable assignment
that satisfies it – by applying a search algorithm. Such an algorithm tries various
combinations of values for the variables, and reports the satisfying assignments.
The most naive such algorithm could first iterate over the ten possible values for
D, then within each iteration over the ten possible values for E, and so on. This
generate-and-test algorithm clearly leads into a combinatorial explosion as it eval-
uates all 108 value combinations, and becomes impractical even for slightly larger
problem instances.

Constraint programming tackles this problem by applying a propagate-and-
distribute search algorithm instead. It classifies constraints into simple and complex
constraints. Simple constraints, such as M = 1 and S ≥ 8, are stored in a con-
straint store. Complex constraints are turned into propagators, which concurrently
compute consequences of the constraint store and add them back to the store. For
instance, suppose we had the complex constraint X = M + S. This constraint
would give rise to a propagator that watches M and S for changes. As soon as the
simple constraints M = 1 and S ≥ 8 are in the constraint store, this propagator
would contribute the simple constraint X ≥ 9. If we also had the information
X < 10 in the constraint store, it would add the simple constraint S < 9 to the
constraint store, and so forth.

Once no propagator can infer additional constraints, the system must perform a
distribution step, i.e. a case distinction. It could e.g. distinguish the cases E = 4
and E 6= 4, and create two new constraint stores that are like the old store, but
with E = 4 added to the first copy and E 6= 4 added to the other copy. Then the
propagators can infer new constraints on the new constraint stores. Just as in the
generate-and-test case, the algorithm explores a search tree, and the search tree
can still be exponential in size, but this tree is generally much smaller than that of
the generate-and-test algorithm.

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Search tree for the “send more money” puzzle using propagate and
distribute.

The search tree for the digits puzzle, as explored by the solver for finite domain
constraints implemented in the Mozart Programming System (Oz Development
Team 1999), is shown in Fig. 1.3. Each node can be seen as a constraint store
after propagation. Children are created by distribution from their parents, boxes
are failed (i.e. inconsistent) constraint stores, and diamonds are solved constraint
stores, in which every variable has a unique value that satisfies the constraint. Note
that the search tree has only seven nodes, compared to 108 nodes in the generate-
and-test algorithm. On the other hand, notice that there is a node that only has
failed children. This happens because the propagators in the Mozart system are
designed to be efficient, and this comes at the price that they can’t always detect
the unsatisfiability of an unsatisfiable constraint before further distribution.

Once a problem has been successfully modelled in a logic-based framework, an op-
tional third step in the constraint programming approach is to define more efficient
special-purpose algorithms for solving certain classes of constraints. In the “send
more money” example, this could perhaps be a solver that processes all linear equa-
tions simultaneously with algorithms from linear algebra. This third step occupies
the central chapters of this thesis, as we translate normal dominance constraints
into dominance graphs, and then define graph algorithms that solve the original
constraints.

1.4 What this thesis is about

Building upon the previous work in scope underspecification and constraint pro-
gramming mentioned so far, this thesis defines dominance constraints, explores
them theoretically, and applies them as a formalism for scope underspecification.
We derive a variety of interesting theoretical results, including an efficient algorithm
for solving normal dominance constraints. These results make it possible to tackle
problems in ambiguity resolution that haven’t been solved in this form before.

1.4. WHAT THIS THESIS IS ABOUT 9

The thesis consists of three parts. The first part is an overview of the logic-based
modelling of scope ambiguities based on dominance constraints. We first define
the different dominance constraint languages, synthesising definitions from earlier
papers (Chapter 2). This chapter also contains a novel, flexible definition of binding
constraints, which can be used to model different forms of variable binding. We
then show how we can systematically compute dominance constraints that describe
the possible readings of English sentences (Chapter 3), and review algorithms for
solving dominance and binding constraints based on saturation and on finite set
constraints (Chapter 4).

In the second part of the thesis, we develop the graph perspective on dominance
constraints. We first prove that normal dominance constraints can be seen as dom-
inance graphs, in such a way that satisfiability of the constraint corresponds to
the question whether the graph has a solved form (Chapter 5). We show that
solvability of dominance graphs can be checked in quadratic time, and thus obtain
a quadratic satisfiability algorithm for normal dominance constraints. The algo-
rithm extends straightforwardly to an efficient algorithm for enumerating solutions.
Because all dominance constraints used in scope underspecification are normal,
this enumeration algorithm constitutes the first provably polynomial solver for any
scope underspecification formalism in the literature.

However, the solved forms of the dominance graph correspond to solutions of the
normal dominance constraint that may contain arbitrary additional semantic ma-
terial that wasn’t mentioned in the sentence. The readings of a sentence correspond
to the constructive solutions of the constraint, and there are satisfiable constraints
that have no constructive solutions. In Chapter 6, we resolve this discrepancy by
proving that every solved form of a hypernormally connected dominance constraint
has a constructive solution. Hypernormally connected constraints are normal dom-
inance constraints whose graphs satisfy an additional connectedness property. We
prove that all dominance constraints generated by the grammar from Chapter 3 are
hypernormally connected, and argue that this may be more generally true for all
dominance constraints that are ever needed for underspecified semantics. In addi-
tion, we prove that hypernormally connected dominance constraints are equivalent
to the hypernormally connected fragment of Hole Semantics (Bos 1996), another
underspecification formalism. This is the first ever formal encoding between prac-
tically useful underspecification formalisms. It helps clarify the underspecification
landscape, and allows us to share resources (such as grammars and solvers) between
the different formalisms.

In the third part of the thesis, we apply the results from the first two parts to the
problem of resolving scope ambiguities based on extra knowledge. We first show
how our methods for processing binding constraints can be applied to modelling

10 CHAPTER 1. INTRODUCTION

the interaction of scope and anaphora (Chapter 7). Using these methods, we can
strengthen underspecified descriptions by propagation, and often eliminate all un-
desired readings without any enumeration. Then we model the interaction between
scope ambiguities and world knowledge (Chapter 8). We use rewriting techniques
developed in Chapter 6 in order to establish the unsatisfiability of all readings by
checking only a subset of the readings for unsatisfiability with a theorem prover.
Because it turns out that unsatisfiability doesn’t always make the intuitively correct
predictions about which readings must be checked for unsatisfiability, we explore
whether presuppositions of the natural-language sentence can be used to obtain a
more intuitive model.

The three parts are closely interlinked because many of the theoretical results have
immediate consequences for computational challenges in scope underspecification.
Taken together, they establish dominance constraints as a powerful underspecifica-
tion formalism, which has a clear definition, is convenient to work with and prove
things about, has efficient algorithms, and supports inferences that can eliminate
readings by using context information. We present a syntax-semantics interface
that computes dominance constraints for English directly, and we also show how
to encode descriptions from a different underspecification formalism, allowing us
to directly re-use resources for the other formalism.

From a more general perspective, the work reported here is relevant because solv-
ing normal dominance constraints is a graph configuration problem, i.e. it requires
us to configure a known set of nodes into a graph while respecting additional con-
straints. Other problems in computational linguistics, such as dependency parsing
(Duchier 2003; Debusmann 2003) and realisation with TAG (Koller and Striegnitz
2002) can be seen as graph configuration problems as well. In this context the the-
oretical results and efficient algorithms we develop here for dominance constraints
can take on a prototype role for the development of similar results for other graph
configuration problems.

1.5 Contributions

This thesis makes the following contributions:

1. A presentation of the syntax, semantics, and processing of dominance con-
straints, and of a syntax-semantics interface for English, together with a new
generalisation of the definition and processing of binding constraints (Chap-
ters 2, 3, and 4). Joint work with Joachim Niehren, Markus Egg, and Katrin
Erk (Egg et al. 2001; Erk et al. 2003).

1.5. CONTRIBUTIONS 11

2. A polynomial satisfiability algorithm for normal dominance constraints
(Chapter 3). Joint work with Kurt Mehlhorn, Sven Thiel, Joachim Niehren,
Ernst Althaus, and Denys Duchier (Koller et al. 2000; Althaus et al. 2001;
Althaus et al. 2003).

3. Definition of hypernormally connected dominance constraints, and proof that
all their solved forms have constructive solutions (Chapter 6). Joint work with
Stefan Thater, based on earlier work on chains with Joachim Niehren and
Kristina Striegnitz (Koller et al. 1999; Koller et al. 2000).

4. Equivalence of hypernormally connected dominance constraints and hyper-
normally connected Hole Semantics descriptions (Chapter 6). Joint work
with Stefan Thater (Koller et al. 2003).

5. Structural theory of the solution sets of pure chains: Every binary tree is
the constructive solution of exactly one pure chain, and their constructive
solutions can be rewritten into each other with a rewrite system (Chapter 6).

6. Resolution of scope ambiguities based on anaphoric references (Chapter 7).
Joint work with Joachim Niehren (Koller and Niehren 2000).

7. Resolution of scope ambiguities based on unsatisfiability of readings (Chap-
ter 8). Joint work with Michael Kohlhase.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Dominance Constraints

This chapter sets the stage for the rest of the thesis, by introducing the different
languages of dominance constraints we will use. We first present the basic intuitions
behind dominance constraints (Section 2.1), and then formally define their syntax
and semantics (Section 2.2). We extend dominance constraints with binding con-
straints in Section 2.3. Finally, we compare dominance constraints to some related
formalisms, and show how they are embedded into the more powerful Constraint
Language for Lambda Structures (CLLS) in Section 2.4.

Most of the work reported in this chapter has been published in (Egg et al. 1998;
Egg et al. 2001). However, we have streamlined some definitions for this thesis,
and the generalised treatment of binding in Section 2.3 is new and extends work
in (Erk et al. 2003).

2.1 Elements of dominance constraints

The term “dominance constraints” stands for a family of logical languages that are
interpreted over ordered labelled trees. A dominance constraint is also a formula
of one of these languages; in this sense, dominance constraints are conjunctions of
predicate logic atoms. The predicate symbols used in these atoms express relations
between nodes in a tree, and the variables in a dominance constraint denote nodes in
a tree. Different dominance constraint languages allow different sets of predicate
symbols. We will define this precisely in Section 2.2.2; this expository section
assumes a dominance constraint language that talks only about two node relations,
namely labelling and dominance.

The idea of using a dominance constraint as an underspecified representation builds

13

14 CHAPTER 2. DOMINANCE CONSTRAINTS

upon the fact that semantic representations for natural language sentences, such
as in (1.7) and (1.8), are typically written as logical formulas in some other logical
language (the object language – in the example, first-order logic). Logical formulas
have a natural tree structure, so we can describe a set of object language formulas
as the set of trees satisfying some dominance constraint. In order to represent
and describe variable binding in the object language, we can extend a dominance
constraint with a binding constraint.

We will now first show how object language formulas can be seen as trees, if we
disregard variable binding, and how a dominance constraint describes a set of such
trees. Then we will add mechanisms to represent variable binding. Finally, we will
illustrate that these mechanisms are indeed powerful enough to be useful for a range
of different object languages that are being used for semantic representations. We
will mostly choose not to write a dominance constraint as a logical formula; instead,
we will use a graphical notation in order to appeal to intuitions. The connection
between the graphs and the constraints will be made clear in Section 2.2.2.

2.1.1 Trees and dominance constraints

Consider, by way of example, the following representation of one reading of the
sentence “Every man loves a woman” as a formula of first-order predicate logic.

(2.1) ∀x.man(x) → ∃y.(woman(y) ∧ love(x, y))

The main connective of this formula is a universal quantifier. Its subformula is an
implication, which in turn has two subformulas, and so on recursively. That is, the
formula has a natural tree structure, which we can draw as follows:

(2.2)

∀ •

→ •

man •

var •

∃ •

∧ •

woman •

var •

love •

var • var •

The examples sentence has another reading (2.3); the structural tree of this formula
is (2.4).

(2.3) ∃y.woman(y) ∧ ∀x.(man(x) → love(x, y))

2.1. ELEMENTS OF DOMINANCE CONSTRAINTS 15

(2.4)

∃ •

∧ •

woman •

var •

∀ •

→ •

man •

var •

love •

var • var •

If we look closely at the two trees in (2.2) and (2.4), we notice that they are
composed of the same tree fragments, corresponding to the formula fragments
∀x.man(x) → ·, ∃y.woman(y)∧·, and love(x, y). But these fragments are composed
in different order. We can describe both trees at once by specifying the fragments
and their structural relationships. Such a description is given in (2.7):

(2.5)

∀ • X

→ • X1

man •

var •

• X ′

∃ •

∧ •

woman •

var •

•

love • Z

var • var •

Intuitively, the graph (2.5) describes all trees into which it can be embedded.
Dotted edges in the graph signify dominance: Of the two nodes they connect,
the upper one must be above the lower one in the tree structure. The graph leaves
the exact relative ordering between the two quantifier fragments unspecified. But
since both fragments dominate the atom love(x, y) and trees cannot branch in the
bottom-up direction, one of the two quantifier fragments must dominate the other.

The graph can be embedded both into (2.2) and into (2.4) while respecting the
dominance requirements. So we can take it as an underspecified description of
these two trees (and hence, of the formulas they represent). While the original
object level formulas (2.1) and (2.3) (and their structural trees) belong to the
category “semantics” in Fig. 1.1, the graph belongs to the category “underspecified
semantics”.

We will give pictures such as (2.5) a formal meaning as constraint graphs – short-
hand representations of dominance constraint formulas – in Section 2.2. The for-
mula represented by the graph in the example contains atoms such as X ′

�
∗Z

(dominance) and X:∀(X1) (labelling: the node label of X is the symbol ∀, and its
only child is X1); X, X ′, etc. are node variables.

16 CHAPTER 2. DOMINANCE CONSTRAINTS

This interpretation will be consistent with the intuition of embedding the graph
into the described tree. Note that there is an infinite number of trees into which
a graph can be embedded: The trees can contain arbitrarily many nodes with
arbitrary labels, as long as they also contain the tree fragments mentioned by the
graph, and respect the dominance requirements between these fragments. This is a
desired feature, because natural language semantics is subject to reinterpretation,
which means that the semantics of a sentence may contain material that doesn’t
come directly from the words in that sentence (Egg 2003; Koller et al. 2000).
However, we can restrict our attention to constructive solutions of the dominance
constraint, in which each node in the tree must be denoted by a variable in the
description. The trees in (2.2) and (2.4) are the only two constructive solutions of
(2.5). We will prove in Chapter 6 that the addition of extra material in solving a
constraint is possible, but never necessary for those constraints that actually arise
in the context of underspecified semantics.

2.1.2 Lambda structures and binding constraints

One aspect of logical object languages that the trees above don’t represent is that
terms and formulas can contain variables which are bound e.g. by quantifiers or
λ-binders. In order to represent binding, we equip the structure trees from above
with binding functions, which map variables to binders. The binding function in
the example below is drawn as curved, dashed arrows.

(2.6)

∀ • X

→ •

man •

var •

∃ • Y

∧ •

woman •

var •

love •

var • var •

We call the combination of a tree with a binding function a lambda structure.
Lambda structures speak about variable binding without using variable names.
Variable names are not necessary because of the explicit binding function; we will
explain in a moment why they are also not sufficient in an underspecification con-
text, and we really need the binding function. A lambda structure represents an
object-language formula uniquely, up to the choice of variable names.

In order to obtain underspecified descriptions of lambda structures, we extend dom-
inance constraints with binding constraints, as in the following constraint graph.

2.1. ELEMENTS OF DOMINANCE CONSTRAINTS 17

(2.7)

∀ • X

→ •

man •

var •

• X ′

∃ •

∧ •

woman •

var •

•

love • Z

var • Z1 var • Z2

This graph is a straightforward extension of (2.5): We take it to describe all lambda
structures into which it can be embedded. When we define binding constraints
formally in Section 2.3, each binding arrow in (2.7) will be rendered as an atomic
formula, such as λ(Z1) = X.

2.1.3 The capturing problem

The reason why we must use explicit binding function is that variable names rely
on the relative scope of the quantifiers to assign binders to variables, and this
information isn’t available in underspecified semantics. Consider the following
attempt to specify variable binding, in which the labels ∀x are intended to bind
the variable x.

(2.8)

∀x • X

•

∀x • Y

•

P •

x •

Let’s assume that we also have an inequality constraint X 6= Y , which enforces that
X and Y can’t be mapped to the same node of an embedding lambda structure.
Then we know that the lambda structure will contain two different quantifiers ∀x –
but which of these quantifiers actually binds the variable occurrence depends on the
relative scope of the quantifiers in the lambda structure. This means that variable
names are not sufficient to indicate the binding relations when the structure of the
term is not fully known. The problem is a bit similar to capturing in λ-calculus,
which occurs when a variable ends up bound by an unintended binder, but arises
for different reasons here.

It is possible to circumvent the capturing problem in lambda structures with some
additional overhead by naming all bound variables apart. But a non-constructive
solution can contain binders that were not mentioned in the constraint, and these
binders can capture variables that were intended to be bound by a known quantifier.

18 CHAPTER 2. DOMINANCE CONSTRAINTS

Furthermore, dominance constraints can be extended with parallelism constraints
(Egg et al. 2001), which can force us to copy material while solving the constraint,
and to unify variable names. We would need to add more and more bookkeeping
mechanisms to keep variables properly named.

On the other hand, explicit binding functions provide a simple, clean, and general
solution to the problem. They are flexible enough to represent a range of variable
binding properties of different logical formalisms, and can be processed very gen-
erally, as we will show in Sections 2.3 and 4.2. Indeed, they are so powerful that
one can even lift β-reduction to the level of underspecified descriptions of λ-terms
without ever worrying about freeness conditions or variable capturing, even in cases
where this would be necessary in the ordinary λ-calculus (Bodirsky et al. 2001a).

2.1.4 Object language independence

In conclusion of this exposition, we will demonstrate that lambda structures can
represent not just first-order formulas, but also formulas from other languages,
such as higher-order logic and dynamic predicate logic. We will also apply lambda
structures to anaphoric binding.

One standard formalism for semantic representations is higher-order logic, because
it allows us to systematically build up the meaning representations from the mean-
ing representations of the words (Montague 1974). A higher-order representation
of “Every man loves a woman” could look as follows:

(2.9) every(man)(λx.a(woman)(λy.love(x)(y)))

Here every and a are abbreviations for the standard semantics of these words – e.g.
every = λPλQ.∀x.P (x) → Q(x).

We can represent lambda terms as lambda structures by using the label lam to rep-
resent λ-abstraction, the label var for variables, the binary label @ for applications,
and nullary labels for the constants. We can extend this to higher-order logic by
adding labels for the logical connectives, as we did for predicate logic. The formula
(2.9) looks as follows under this representation:

2.1. ELEMENTS OF DOMINANCE CONSTRAINTS 19

(2.10)

@ •

@ •

every • man •

lam •

@ •

@ •

a • woman •

lam •

@ •

@ •

love • var •

var •

The Constraint Language for Lambda Structures (CLLS, Egg et al. 2001) uses
lambda structures that represent higher-order formulas as in (2.10), but are ad-
ditionally equipped with a second binding function for anaphoric binding. This
binding function uses the label ana for anaphoric “variables”, and connects them
to their antecedents. For instance, the following lambda structure is a semantic
representation for the sentence “Every scientist likes his mother”:

(2.11)

@ •

@ •

every • scientist •

lam •

like •

var • motherof •

ana •

x

In this graph, the binding function for λ-binding is indicated by the curved arrows,
and the binding function for anaphoric binding is indicated by the angular arrow.

A semantic representation formalism we will look at more closely in Chapter 7 is
Dynamic Predicate Logic (DPL, Groenendijk and Stokhof 1991). DPL uses the
same syntax as ordinary first-order logic, but gives it a different semantics that
changes the way variable binding works. For instance, if we continued the reading
(2.3) of our running example with “... Her name is Mary”, we could get a semantic
representation as follows:

(2.12) (∃y.woman(y) ∧ ∀x.(man(x) → love(x, y))) ∧ name(y,mary)

The variable y in the right-hand conjunct is considered bound by the binder ∃y
in the left-hand conjunct in DPL. Thus the anaphor “her” is resolved to the an-
tecedent “a woman”. We can represent this formula as a lambda structure in a
straightforward way:

20 CHAPTER 2. DOMINANCE CONSTRAINTS

(2.13)

∧ •

∃ • Y

∧ •

woman •

var •

∀ • X

→ •

man •

var •

love •

var • var •

name •

var • mary •

This lambda structure looks odd at first sight because its binding function links
a variable to a binder that doesn’t dominate it. But this reflects the fact that a
variable can be bound in DPL by a quantifier even if it isn’t in the quantifier’s
syntactic scope.

2.2 Syntax and Semantics of Dominance Con-

straints

Now we will define the syntax and semantics of dominance constraints properly.
We will first define tree structures, and then dominance constraints as a language
to speak about them.

2.2.1 Tree structures

Dominance constraints are interpreted over finite constructor trees. We assume a
ranked signature Σ = {f |2, a|0, . . .} of symbols f with arities ar(f). We assume
throughout that Σ contains at least one symbol with arity at least 2, and at least
one symbol with arity 0.

Definition 2.1. A finite constructor tree τ is a 4-tuple (V,E, LV , LE) where (V,E)
is an ordered finite tree, LV : V → Σ is a labelling function, and LE : E → N is an
edge ordering, such that for each node v ∈ V and each 1 ≤ i ≤ ar(LV (v)), there is
exactly one edge (v, w) ∈ E with LE(e) = i.

We can see finite constructor trees as ground terms over Σ. Alternatively, we will
sometimes identify the nodes of a tree with their addresses, which are words from
N

∗ (i.e., finite strings of natural numbers). The root has the address ε, and the
i-th child of the node with address π is πi. We will switch between these three
perspectives whenever it is convenient.

2.2. SYNTAX AND SEMANTICS OF DOMINANCE CONSTRAINTS 21

f • ε

g • 1
a • 11 b • 12

Consider, by way of example, the tree shown to the right. This is
a finite constructor tree over the signature {f |1, g|2, a|0, b|0}. It has
four nodes with the addresses ε, 1, 11, and 12, and it corresponds
to the ground term f(g(a, b)).

f • u

• v1
. . . • vn

We will be interested in talking about a variety of different node
relations in a tree. The most basic relation is the labelling rela-
tion u:f(v1, . . . , vn) (see the picture). An (n+1)-tuple of nodes is in this relation if
v1, . . . , vn are the children of u, in this order, and u has the label f . Note that we
must have n = ar(f) because the tree structure is built from a finite constructor
tree.

In addition, we define four binary node relations that we take to be primitive:
equality (u = v), strict dominance (u�+v), strict inverse dominance (u�+v), and
disjointness (u⊥ v). As Fig. 2.1 shows, every pair of nodes in the tree is in exactly
one of these four relations. Two nodes u, v are in the relation u�+v and in the
relation v�+u if there is a path of length one or more from u to v. Two nodes are
disjoint if neither is reachable from the other. In this case, there is a lowest node
w which dominates both u and v. This node is called the branching point of u and
v. We write “u⊥ v at w” in this case, i.e. we also consider the three-place relation
that relates disjoint nodes and their branching points. If r ∈ {=,�+,�+, ⊥}, we
write r−1 for the inverse relation of r. = and ⊥ are symmetrical relations and
hence their own inverse, whereas �

+ and �
+ are each other’s inverse relations.

Finally, we will use some defined relations between nodes:

dominance u�∗v iff u�+v or u = v.

inequality u 6= v iff not u = v

disjointness with sets u⊥ v at W iff there is a w ∈ W such that u⊥ v at w

non-intervention ¬(u�∗v�∗w) iff not both u�∗v and v�∗w.

Every finite constructor tree τ = (V,E, LV , LE) induces a unique first-order model
structure Mτ with universe V which interprets predicate symbols :f , �

+, etc. as
the relations :f , �

+, etc. We use the same symbols for the predicates and the
relations, but there will be no danger of confusion. These structures are called tree
structures. Conversely, we can reconstruct the tree from the tree structure because
the labelling relation fixes the tree completely. We will freely switch between trees
and tree structures below.

22 CHAPTER 2. DOMINANCE CONSTRAINTS

=

�
+

�
+

⊥

Figure 2.1: The four primitive binary relations. Each relation symbol points to the
nodes that are in this relation to the marked node.

2.2.2 Syntax and semantics

A dominance constraint language is a first-order language which is interpreted over
tree structures. Its formulas, which we call dominance constraints, are conjunctions
of atoms, i.e.

ϕ ::= Atom | ϕ ∧ ϕ′.

Atoms are applications of predicate symbols to variables. The variables are taken
from an infinite set Vars = {X,X1, Y, Z, . . .} and denote nodes in a tree structure.
The atoms which are allowed in various dominance constraint languages are dis-
played in Fig. 2.2. They can be combined freely; so for example, the language D
only allows atoms of the form X:f(X1, . . . , Xn) and X�

∗Y , and the language DI
allows these two types of atoms and also atoms of the form X 6= Y . The symbol
A in the table stands for a set of variables, and the symbol R designates a set of
primitive binary node relations, i.e. R ⊆ {=,�+,�+, ⊥}.

If ϕ is a dominance constraint (from any of the languages), we write Var(ϕ) for
the set of variables occurring in ϕ. A variable assignment for the constraint ϕ
into the tree structure M of the tree τ = (V,E, LV , LE) is a partial function
α : Var(ϕ) V .

D X:f(X1, . . . , Xn), X�
∗Y

S X:f(X1, . . . , Xn), X R Y

I X 6= Y

B X ⊥Y at A

N ¬(X�
∗Y�

∗Z)

Figure 2.2: Atoms allowed in different dominance constraint languages.

2.2. SYNTAX AND SEMANTICS OF DOMINANCE CONSTRAINTS 23

The constraint ϕ is satisfied by the tree structure M and the variable assignment α
iff M makes each atom of ϕ true. This is defined as usual for most atoms; X R Y
is made true by M if there is a r ∈ R such that X r Y is true. We write M, α |= ϕ
in this case, and call (M, α) a solution and M a model of ϕ. If every solution of
ϕ is also a solution of ψ, ϕ entails ψ; we write ϕ |= ψ. Note that this means that
every variable in ψ must occur in ϕ. A solution (M, α) of ϕ is called constructive
iff every node in M is denoted by a variable X with some X:f(X1, . . . , Xn) in ϕ.

We will also use the following abbreviations:

X ¬R Y ≡ X S Y , where S = {=,�+,�+, ⊥} − R
X R−1 Y ≡ X{r−1 | r ∈ R}Y

In addition, we can embed the languages D and I into the language S by expressing
X�

∗Y as X{=,�+}Y and X 6= Y as X{�+,�+, ⊥}Y .

DI is the language we will use in modelling underspecified semantics. The other
languages are sometimes useful in calculi and proofs, because their atoms allow us to
specify structural relations between two nodes that DI doesn’t capture. Similarly,
it is straightforward to allow more logical connectives than just conjunction, e.g.
to consider the propositional or first-order languages over the permitted atoms.
We will only do this in very specific circumstances; it is not necessary for the
application, but can be convenient for meta-reasoning. All the above languages
except B can be translated to the propositional language over D. For instance,
X = Y can be written as X�

∗Y ∧ Y�
∗X, and X ⊥Y as (¬X�

∗Y) ∧ (¬Y�
∗X).

∀ • X

→ •

man •

var •

• X ′

∃ •

∧ •

woman •

var •

•

love • Z

var • Z1 var • Z2

The constraint graphs from Section 2.1 can be
read as constraints in the “core language” DI.
Their nodes stand for variables of the domi-
nance constraint. Node labels and solid edges
in the graph represent labelling atoms, and dot-
ted edges represent dominance atoms. In ad-
dition, we take the graph to implicitly repre-
sent an inequality atom for each pair of labelled
nodes. For example, the graph (2.7), repeated here to the right, encodes among
others the labelling atom Z:love(Z1, Z2), the dominance atom X ′

�
∗Z, and the

inequality atom X 6= Z. The curved arrows indicate binding atoms, which are
defined in the next section.

24 CHAPTER 2. DOMINANCE CONSTRAINTS

2.3 Binding Constraints

We will now define the binding functions introduced in Section 2.1.2; a tree struc-
ture together with one or more binding functions will be called a lambda structure.
Next, we will extend the dominance constraint languages with binding constraints
to talk about them. We will capture the particular requirements that a specific
object language imposes on variable binding in a binding specification, which gives
us a very general framework to talk about variable binding.

Definition 2.2. A binding function for a finite constructor tree τ = (V,E, LV , LE)
is a partial function λ : V V . A tuple (τ, λ1, . . . , λn) of a tree and some binding
functions induces a lambda structure Lτ,λ1,...,λn

that extends the tree structure Mτ

with interpretations for the binding atom λi(X) = Y for each 1 ≤ i ≤ n. The
interpretation of the binding atom is the binary relation λi.

If A is a language of dominance constraints and λ1, . . . , λn are the names of binding
atoms, we can define the language AΛ1 . . .Λn of dominance and binding constraints.
The language consists of conjunctions of atoms from A and binding atoms λi(X) =
Y . Satisfaction, entailment, etc. are defined in analogy to dominance constraints,
with lambda structures instead of tree structures. Note that a language can contain
binding atoms for multiple binding functions at once; this is useful e.g. in the
context of CLLS, as we saw in Section 2.1.4.

So far, binding functions simply extend the tree with edges of new types. In order
to make them useful for applications, they should capture the binding behaviour
of a given object language. The two key features that characterise variable binding
in an object language are (a) the labels of the possible binders, and (b) where a
variable may occur in a term in relation to its binder. Predicate logic and lambda
calculus differ on the dimension (a): Predicate logic allows the binders ∀ and ∃,
whereas lambda calculus only has the binder λ. On the other hand, static and
dynamic predicate logic differ on the dimension (b): Static predicate logic requires
a variable to be in the syntactic scope of its binder, whereas we have seen in (2.12)
that this need not be the case in DPL.

The following definition captures these two dimensions formally in the concept of
a binding specification for an object language. We can then model well-formed for-
mulas of an object language as lambda structures that are admissible with respect
to this specification.

Definition 2.3. A binding specification for the signature Σ is a pair Λ = (B, S)
of a set B ⊆ Σ of binders and a scope specification S : τ → (N∗)2 that maps each
tree τ to the set of binder-variable pairs that can be related by a binding relation.
The variable of Λ is a special symbol varΛ|0 ∈ Σ.

2.4. RELATED FORMALISMS 25

binders scope

Λλ {lam} �
∗

Λfol {∃, ∀} �
∗

ΛDPL {∃, ∀} see Chapter 7

Λana Σ 6=

Figure 2.3: Some binding specifications.

If Λ is a binding specification, the binding function λ is called Λ-admissible for
a tree τ = (V,E, LV , LE) iff for all u, v such that λ(u) = v, we have LV (v) ∈ B
and (v, u) ∈ S(τ). A lambda structure Lτ,λ1,...,λn

is called Λ1, . . . ,Λn-admissible iff
each λi is a Λi-admissible binding function for τ . A constraint ϕ is called Λ1 . . .Λn-
satisfiable iff it has a Λ1 . . .Λn-admissible solution.

Some important binding specifications are shown in Fig. 2.3. Λλ encodes the
binding behaviour in lambda terms: The binder has label λ and must outscope
the variables it binds; we use the node label lam to mark binders, as in Sec-
tion 2.1.4. Λfol encodes first-order predicate logic, and ΛDPL encodes Dynamic
Predicate Logic. ΛDPL is defined precisely in Chapter 7. Λana is the binding speci-
fication for anaphoric binding from CLLS (Egg et al. 2001): CLLS is an extension
of DIΛλΛana in which the variables of Λana are called ana, and the binding atom
for this specification is called ante(X) = Y .

Going back to the examples from Section 2.1, we see that the binding function
in (2.6) is Λfol-admissible, as all binders dominate the bound variables and are
labelled with either ∃ or ∀. On the other hand, the graph in (2.13) is not Λfol-
admissible, as it contains a variable whose binder doesn’t dominate it. It is still
ΛDPL-admissible, as we shall see in Chapter 7.

2.4 Related formalisms

Various languages of dominance constraints (without binding) have been used for
a range of different applications in computational linguistics, such as incremental
parsing (Marcus et al. 1983), grammar formalisms (Vijay-Shanker 1992; Rambow
et al. 1995; Duchier and Thater 1999; Perrier 2000), and discourse (Gardent and
Webber 1998). The two big differences between the different languages are the

26 CHAPTER 2. DOMINANCE CONSTRAINTS

logical connectives (beyond conjunction) that may be allowed, and whether imme-
diate dominance and linear precedence of sisters are directly connected to labelling
(as in our definition), or whether they can be specified separately. It is not known
whether a language that allows such a separation is properly more expressive than
D, but the propositional languages are known to be equivalent (Koller 1999).

If we extend the language DIΛλΛana with parallelism constraints, we obtain the
Constraint Language for Lambda Structures (CLLS, Egg et al. 1998; Egg et al.
2001). This was the original context in which dominance constraints were devel-
oped. Parallelism constraints relate entire subtrees or subcontexts of a lambda
structure to each other, and state that they are structurally equal. Their primary
application is to model ellipsis phenomena and their interaction with scope and
anaphora (Egg et al. 2001; Erk and Koller 2001). Parallelism constraints and con-
text unification (Comon 1992; Lévy 1996; Niehren et al. 1997a; Schmidt-Schauß
and Schulz 1998) are equivalent (Niehren and Koller 2001; Erk et al. 2003; Niehren
and Villaret 2003), and decidability of context unification is an open problem. How-
ever, the fragment of well-nested parallelism constraints seems to be sufficient for
most cases of ellipsis, and has NP-complete satisfiability (Erk and Niehren 2003).
(Non-well-nested) parallelism constraints have also been used to model beta reduc-
tion of lambda terms on the underspecified descriptions of these terms (Bodirsky
et al. 2001b; Bodirsky et al. 2001a).

Dominance constraints are not the only formalism that has been used in scope
underspecification. Historically the first underspecification formalism was QLF
(Alshawi and Crouch 1992). Underspecified descriptions in QLF looked like aug-
mented object-language terms. Later formalisms switched to a perspective that
separated the object language from the description language more rigorously, and
mostly use diagrams similar to (2.7) as underspecified descriptions; of course, the in-
terpretation of what exactly the graph means differs. Such graphs first appeared in
Underspecified DRT (Reyle 1993). Hole Semantics (Bos 1996) and Minimal Recur-
sion Semantics (Copestake et al. 1999) are two other formalisms of this type, which
are used in large-scale grammars (Copestake and Flickinger 2000; Kallmeyer and
Joshi 2003). We prove relevant fragments of Hole Semantics and dominance con-
straints equivalent in Chapter 6, and similar results are available for MRS (Niehren
and Thater 2003; Fuchss et al. 2004).

2.5 Summary

In this chapter, we have introduced languages of dominance constraints as for-
malisms for scope underspecification. Dominance constraint languages talk about

2.5. SUMMARY 27

trees in terms of conjunctions of atoms. While the language DI is sufficient for the
purpose of representing underspecified semantic descriptions, we will sometimes
switch to more expressive languages in order to state calculi or proofs.

We extended trees with binding functions and dominance constraints with binding
constraints to talk about them. Binding constraints can be parameterised by a
binding specification, which represents the particular way in which variable binding
works in the object language. We represented variable binding by means of an
explicit binding function, rather than variable names, because variable names aren’t
sufficient to uniquely map variables to binders in an underspecification setting.

A key distinction that came up in this chapter was between the object language, in
which the semantic representations of a sentence were written, and the language
of dominance (and binding) constraints we used to talk about them. We consider
formulas of the object language as lambda structures. The nodes of such a lambda
structure may be decorated with labels that represent logical connectives from the
object language; but from the perspective of a dominance constraint, these are
node labels just like any other symbol, and don’t carry any particular meaning.
Because some object languages use the same logical symbols as the languages of
dominance constraints (e.g., ∧ for conjunction), we will sometimes mark the object
language connectives in order to avoid confusion.

We conclude this chapter with an index of important concepts and the symbols we
use to denote them.

• Dominance constraint languages are first-order languages. Some dominance
constraint languages are D, DI, and S. We sometimes use the term “domi-
nance constraints” to refer to all dominance constraint languages collectively.

• A dominance constraint is a formula of a dominance constraint language, i.e.
a conjunction of atoms. We use lowercase Greek letters ϕ, ψ, etc. to denote
dominance constraints.

• A dominance atom X�
∗Y is one of the atoms that can be used in a dominance

constraint. Some other atoms are labelling and inequality atoms.

• We use uppercase letters X,X1, Y to write variables in a dominance con-
straint. These are distinct from the variables used in the object language,
which are represented by explicit binding functions, rather than with variable
names, in a lambda structure.

• We write σ, τ for finite constructor trees, and switch freely between the per-
spectives of seeing a tree as a set of nodes and edges with a labelling function,

28 CHAPTER 2. DOMINANCE CONSTRAINTS

as a set of words over N with a labelling function, and as a ground term. We
write u, v for nodes, and M or Mτ for a tree structure, i.e. the first-order
structure that interprets the node relations over a tree.

• A binding function λ over a tree can be admissible with respect to a binding
specification Λ. We write L or Lτ,λ for the lambda structure that interprets
the relations over the tree and the binding function.

Chapter 3

Computing Dominance
Constraints for English

We will now show how dominance constraints can be used in underspecified seman-
tics. So far, we have defined their syntax and semantics, and we have seen a handful
of examples, but we haven’t said yet how we could construct such constraints for
actual sentences. In this chapter, we will demonstrate how underspecified semantic
representations for English sentences in the language DIΛλ can be systematically
computed: We will define a grammar for a small (but nontrivial) fragment of
English, along with a syntax-semantics interface that shows how underspecified
semantic representations are computed from a parse tree. That is, one purpose
of this chapter is to link the formalism to the actual application of underspecified
semantic processing for natural language.

A second purpose of this chapter will be to demonstrate that underspecification
can also contribute to keeping the syntax-semantics interface simple – in addi-
tion to its computational and cognitive advantages mentioned in the introduc-
tion. Non-underspecified approaches to semantics construction often either make
questionable linguistic assumptions, or they require a rather complex semantics
construction process, in order to accommodate semantic ambiguity. By contrast,
underspecification-based approaches to semantics construction can get by with sim-
ple interfaces because they can map each syntactic reading into a single underspec-
ified semantic representation and delegate the enumeration of semantic readings
into a later processing step.

Finally, as we will claim later on (in Chapters 5 and 6), all dominance constraints
that are actually used in underspecification belong to certain fragments of DI. We
will substantiate these claims by proving them correct for the grammar defined here.

29

30CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

The structure of this chapter is as follows. We will first show how semantic repre-
sentations can be computed compositionally from syntactic representations (Sec-
tion 3.1). This syntax-semantics interface will be restricted to a tiny grammar
of English that, among many other things, doesn’t analyse sentences with scope
ambiguities. We will then review some attempts at extending this interface with
mechanisms for dealing with scope (Section 3.2). This discussion will motivate
the syntax-semantics interface for the construction of dominance constraints for
the same tiny grammar we used above (Section 3.3). Finally, we will extend this
interface to a larger grammar (Section 3.4) and go through an example to illustrate
how it works (Section 3.5). The grammar presented in Section 3.4 is a variant of
the grammars in (Egg et al. 2001; Koller et al. 2003).

3.1 Classical Semantics Construction

A classical assumption of research in natural language semantics is that the core
meaning of a sentence is captured by its truth conditions. The idea is that a
sentence makes a statement about the world, and is either true or false in any
given situation. Such truth conditions can be expressed by a formula of some
logical language, such as predicate logic. This is why logical formulas are often
chosen as semantic representations of sentences.

Most semanticists aim at computing meaning representations compositionally. This
means that every syntactic constituent of the sentence is assigned a semantic rep-
resentation, and the semantic representations of larger constituents are computed
by systematically combining the semantic representations of their parts. Compo-
sitional syntax-semantics interfaces are formally clean because they compute se-
mantic representations simply by structural induction over the syntactic analysis,
and they reflect the linguistic intuition that a syntactic constituent has an intrinsic
meaning that is independent from the context in which it is used.

However, even for quite simple sentences, it is not obvious at first sight how se-
mantic representations could be computed compositionally. Consider the following
two sentences with their (first-order) meaning representations:

(3.1) Peter sleeps.

(3.2) sleep(peter)

(3.3) Every man sleeps.

(3.4) ∀x.(man(x) → sleep(x))

3.1. CLASSICAL SEMANTICS CONSTRUCTION 31

The two sentences are completely parallel, in that “Peter” and “every man” are
the same type of syntactic constituent (a noun phrase) and appear in the same
grammatical role (subject). It seems easy to compute the semantic representation
(3.2) for (3.1): simply apply the meaning of the verb to the meaning of the noun.
But such a simple composition algorithm doesn’t work for (3.3), and indeed it is not
even obvious what the semantic representation for the noun phrase “every man”
should be. It is certainly not just a constant like the semantic representation of
the (syntactically analogous) noun phrase “Peter”.

Montague (1974) essentially started modern semantics when he showed how se-
mantic representations in intensional logic (an extension of higher-order predicate
logic; we will simply use higher-order logic here, but the interface could be straight-
forwardly extended to intensional logic) could be computed compositionally for
sentences like (3.1) and (3.3). He analysed all noun phrases as lambda terms of
type 〈〈e, t〉, t〉 (i.e., sets of properties). The semantic representation of “Peter” thus
became λP.P (peter) (“the set of all properties that Peter has”), and the seman-
tic representation of “every man” became λP.∀x.man(x) → P (x) (“the set of all
properties that every man has”); that is, he identified an individual with the set of
its properties. Then he applied the noun phrase semantics to the verb semantics,
arriving at the following representations for the two examples:

(3.5) (λP.P (peter))(sleep)

(3.6) (λP.∀x.man(x) → P (x))(sleep)

The simpler first-order representations above can be obtained by β-reducing these
higher-order formulas; the difference is irrelevant to semanticists because the re-
duced and unreduced formulas have the same truth conditions. Note, however, that
there are sentences whose semantics can’t be expressed in first-order logic, e.g. sen-
tences like “Most men sleep”, which use quantifiers that are inherently higher-order
(Barwise and Cooper 1981).

We will now define a system that derives such semantic representations for sentences
from a tiny fragment of English. The fragment is defined by the following context-
free grammar, whose start symbol is S, for “sentence”.

S → NP VP NP → Det N
VP → IV NP → PN
α → W if (W,α,M) ∈ Lex

The grammar says that sentences can be built by combining a noun phrase and a
verb phrase. In this highly simplified grammar, verb phrases can only be intransi-

32CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

(W,α,M) ∈ Lex
α(W) ↪→M

np ↪→M vp ↪→ N
s(np, vp) ↪→MN

iv ↪→M
vp(iv) ↪→M

det ↪→M n ↪→ N
np(det, n) ↪→MN

pn ↪→M
np(pn) ↪→M

Figure 3.1: Montague-style semantics construction rules.

VP

IV

sleeps

NP

NDet

every man

S

sleep

sleep
λPλQ.∀x.P(x) → Q(x)

λQ.∀x.man(x) → Q(x)

∀x.man(x) → sleep(x)

man

Figure 3.2: Semantics construction for the sentence “Every man sleeps.”

tive verbs (such as “sleeps”). Noun phrases can either be proper names (such as
“Peter”), or they can be composed from a determiner and a noun (such as “every
man”). We assume a lexicon Lex , which is a set containing triples of a word W , a
syntactic nonterminal symbol α, and a semantic representation M for the word. For
instance, the lexical entry for the word “Peter” would be (Peter ,N, λP.P (peter)).

The grammar assigns a unique parse tree to each sentence that it considers gram-
matical. Now we can compute a semantic representation for such a sentence by
applying inference rules as in Fig. 3.1 to the parse tree in a process of structural
induction. The inference rules derive statements of the form t ↪→ M , where t is a
subtree of the parse tree, and M is a lambda term representing the semantics of
this subtree. The preterminal nodes of the parse tree, i.e. those nodes whose only
child is a node labelled with a word, derive their semantics directly from the lexicon
by the top left rule. For the inner nodes of the tree, there is one semantic com-
position rule for each production rule of the grammar; for example, the expression
s(np, vp) stands for a subtree whose root is labelled with S, and whose subtrees
have root labels NP and VP. These rules combine the semantic representations of
the subtrees by functional application. See Fig. 3.2 for an example; some semantic
representations are shown β-reduced in order to improve readability.

3.2. SCOPE AMBIGUITY 33

S
NP

Det
every

N
man

VP
TV

loves
NP

Det
a

N
woman

Figure 3.3: A parse tree for the sentence “Every man loves a woman” using a
straightforward extension of the grammar in Section 3.1.

3.2 Scope Ambiguity

The syntax-semantics interface in Fig. 3.1 assumes that every syntactic analysis
can be uniquely translated into a single semantic analysis. This assumption is vi-
olated by semantic ambiguities, such as scope ambiguities: There is no one-to-one
correspondence between syntactic and semantic analyses, but a one-to-many corre-
spondence. (Actually, it is a many-to-many correspondence, as the same semantic
representation can be verbalised with different sentences; but this is not relevant
here.)

We can of course extend the grammar with a rule for transitive verbs, and thus
make it possible to analyse sentences such as Every man loves a woman, which
contain scope ambiguities (Fig. 3.3). But the interface would still be systematically
incapable of deriving both readings of a semantically ambiguous sentence. The
problem is that our algorithm for compositional semantics construction traverses
the syntax tree bottom-up and applies terms to other terms. This means that
because the verb is first combined with the direct object (“a woman”) syntactically,
we must apply the direct object to the verb first semantically – i.e., we can only get
the semantic reading in which “a woman” gets narrow scope. The other reading (in
which “a woman” takes scope over “every man”) seems to require us to reverse the
order in which functors are applied to the arguments, compared to the syntactic
analysis.

3.2.1 Quantifying In

Montague (1974) himself handled this problem by recasting the semantic ambiguity
as a syntactic ambiguity through the operation of quantifying-in. We can recon-
struct his analysis in our framework by adding lexical entries of the form (ti,NP, xi),
which represent traces (empty strings) of syntactic category NP. (Montague’s orig-
inal analysis involves the ad hoc deletion of parts of the sentence; traces achieve the
same effect more cleanly.) The semantics of the trace ti is the variable xi. Using
these traces, the grammar can first analyse the sentence “t1 loves t2” as having the

34CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

S
NP1

Det
every

N
man

S
S

NP
t1

VP
TV

loves
NP
t2

NP2

Det
a

N
woman

S
S

NP1

Det
every

N
man

S
NP
t1

VP
TV

loves
NP
t2

NP2

Det
a

N
woman

(a) (b)

Figure 3.4: The two parse trees for “Every man loves a woman” that can be derived
using the quantifying-in rule.

semantics love(x2)(x1) with the standard composition rules from above. Then this
sentence is combined with the two noun phrases “every man” and “a woman” using
rules S → NPi S and S → S NPi; the two parse trees that can be derived using
this rule are shown in Fig. 3.4. The semantic composition rules corresponding to
these grammar rules are as follows:

s ↪→M npi ↪→ N
s(npi, s) ↪→ N(λxi.M)

s ↪→M npi ↪→ N
s(s, npi) ↪→ N(λxi.M)

That is, we can combine the nuclear sentence (containing traces) with the two
quantifiers in any order, which gives us the desired two readings:

(a) every(man)(λx1.a(woman)(λx2.love(x2)(x1)))

(b) a(woman)(λx2.every(man)(λx1.love(x2)(x1)))

Note that we must assume additional mechanisms for making sure that an NPi can
only be combined with a sentence that still contains an unresolved trace ti. This
already points to a fundamental problem that comes with the relaxed semantic
composition operation: It is no longer trivial to keep track of variable binding.
Variable binding was no problem in Section 3.1, because binders and bound vari-
ables were always introduced together, in the lexicon. Now the lifecycle of many
variables consists of two steps. A variable can be introduced as a free variable xi

by the lexicon entry of the trace ti, and at some later point in the semantics con-
struction process, its binder λxi is added by a semantic composition rule. Strictly
speaking, Montague’s approach employs a controlled form of variable capturing by
making a free variable bound.

While Montague’s solution works (and was a huge step forward at the time),
it solves the problem of the 1:n-correspondence between syntax and semantics
by artificially making the syntax more ambiguous, in order to obtain an n:n-
correspondence that can again be computed by a compositionally defined function.

3.2. SCOPE AMBIGUITY 35

This is computationally problematic: Such an analysis increases the number of
syntactic readings by an exponential factor, which slows parsers down to an un-
acceptable degree. And while scope ambiguities could be consistently analysed as
syntactic ambiguities (May 1985), there certainly doesn’t seem to be a compelling
reason not to analyse them as purely semantic ambiguities if we can come up with
a clean formal framework for it.

3.2.2 Cooper storage

One attempt to do this is Cooper storage (Cooper 1983), which solves the 1:n
problem by defining a nondeterministic algorithm that computes all n different
semantic readings from a single syntactic analyses (as in Fig. 3.3). Cooper storage
builds upon Montague’s idea of separating an intermediate semantic representation
from the quantifiers that still need to be applied to it. In Montague’s approach,
this separation takes place implicitly via the quantifying-in rule.

In Cooper storage, each node in the syntax tree is associated explicitly with a pair
consisting of the semantic representation computed so far and a quantifier store
∆ containing the unapplied quantifiers. Whenever we encounter a noun phrase in
our bottom-up traversal of the syntax tree, we choose nondeterministically whether
the quantifier semantics is applied immediately, or whether it is added to the store.
Then whenever we reach a sentence node, we can nondeterministically pick any
number of quantifiers from the store and apply them to the sentence semantics, in
any order. If we change the above syntax-semantics interface from above to derive
triples t ↪→M | ∆, we can write these two operations as follows:

np ↪→M | ∆
np ↪→ λP.P (xi) | {〈Q〉i} ∪ ∆

i fresh
s ↪→M | {〈Q〉i}] ∆
s ↪→ Q(λxi.M) | ∆

Note that unlike any of the rules above, these two rules allow us to derive multiple
triples for the same node (with label S or NP). This means that the rule application
now becomes nondeterministic, as we have a choice at each NP and S node whether
and how often we want to apply the rules. The result is that we get many different
triples for the root of a sentence, one for each semantic reading.

In our running example “Every man loves a woman”, if we choose to always add
the quantifiers to the store, we will compute the following triple for the root of the
tree in Fig. 3.3:

ε ↪→ love(x2)(x1) | {〈every(man)〉1, 〈a(woman)〉2}

36CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

That is, the core semantics of the sentence is love(x2)(x1), the same as for “t1
loves t2” in Montague’s analysis; and the quantifier store contains two quantifiers.
These can now be retrieved from the store and applied to the core semantics in
two different orders, obtaining the two correct readings of the sentence.

The original Cooper storage has problems with embedded noun phrases that cause
it to predict too many semantic readings in some cases. The extra readings contain
unbound variables, and come from a lack of structural constraints that are put on
the quantifier retrieval process. This problem is fixed by Keller (1988), who intro-
duces more structure into the quantifier store. But another fundamental problem
that remains is that the syntax-semantics interface is made more complex, in order
to remain compositional. In addition, the nondeterminism can’t be eliminated: Be-
cause we must choose for each quantifier whether to apply it in place or to add it to
the store, we can’t compute a single “underspecified” representation for the entire
sentence that collects all quantifiers and then allows us to apply them by need. So
although approaches like Keller Storage correctly compute the semantic readings
of a scope ambiguity in which the scope-bearing elements are noun phrases, it is
still subject to a combinatorial explosion that leads to inacceptable runtimes in
practice.

3.3 Semantics Construction for Dominance Con-

straints

The requirement that we should be able to extract a single compact description
of the semantic readings of a sentence – the key requirement of underspecification
– was first met by Hobbs and Shieber (1987), Alshawi (1992), and Alshawi and
Crouch (1992). We could say that these are proto-underspecification approaches, in
that they do allow us to complete semantics construction before we actually have to
enumerate semantic readings, but they don’t yet make a clear, explicit distinction
between the level of underspecified descriptions and the level of proper semantic
representations. This distinction was first clarified in UDRT (Reyle 1993).

Since then, underspecification has become the standard approach to dealing with
scope ambiguity in large grammars (Copestake and Flickinger 2000; Butt et al.
2002; Kallmeyer and Joshi 2003), primarily because it allows us to keep the syntax-
semantics interface completely functional, compositional, deterministic, and free of
the burden of ambiguity management. The task enumerating readings from the
underspecified description is delegated to a later processing step, and is performed
only by need.

3.3. SEMANTICS CONSTRUCTION FOR DOMINANCE CONSTRAINTS 37

(W,α, ϕ,X) ∈ Lex
α ↪→ ϕ′ | X ′ X ′, ϕ′ fresh

np ↪→ ϕ | X vp ↪→ ϕ′ | X ′

s(np, vp) ↪→ ϕ ∧ ϕ′ ∧ Y :@(X,X ′) | Y

iv ↪→ ϕ | X
vp(iv) ↪→ ϕ | X

det ↪→ ϕ | X n ↪→ ϕ′ | X ′

np(det, n) ↪→ ϕ ∧ ϕ′ ∧ Y :@(X,X ′) | Y

pn ↪→ ϕ | X
np(pn) ↪→ ϕ | X

where Y /∈ Var(ϕ) ∪ Var(ϕ′) and Var(ϕ) ∩ Var(ϕ′) = ∅.

Figure 3.5: Semantics construction rules for dominance constraints.

We will now first present in detail a syntax-semantics interface that computes dom-
inance constraints for the tiny grammar fragment introduced above. As there are
no scope ambiguities in this grammar fragment, this mainly serves as an example
to introduce the exact mechanism for semantics construction. Then we will present
a larger grammar based on the same mechanism in the next section.

As before, we compute the (underspecified) semantic representations by applying
a set of inference rules that go through the syntax tree bottom-up. These rules
are shown in Fig. 3.5. They derive statements of the form t ↪→ ϕ | X, which
express that the semantic representations of the syntactic subtree t are described
by the dominance constraint ϕ, and that the interface variable of ϕ is X. The
inference rules use the interface variables to combine dominance constraints of
siblings with each other. Thus interface variables connect different components
of the underspecified description, in much the same way as the HANDLE feature in
HPSG grammars (Copestake and Flickinger 2000).

We change the lexicon a little so it now contains 4-tuples (W,α, ϕ,X) of a word W ,
its syntactic category α, a dominance constraint ϕ, and its interface variable X.
For instance, the lexicon entry for “Peter” could contain the constraint X:lam(Y)∧
Y :@(Y1, Y2) ∧ Y1:var ∧ Y2:peter ∧ λ(Y1) = X, with the interface variable X. This is
simply the dominance constraints whose (single) constructive solution corresponds
to the previous semantic representation λP.P (peter). When we access the lexicon
in the first rule of Fig. 3.5, we make sure to replace all variables in ϕ by fresh
variables; X ′ in the rule stands for the fresh variable which was substituted for ϕ’s
interface variable X.

For instance, the Det node in Fig. 3.3 is assigned the dominance constraint shown
in Fig. 3.6(a), which happens to consist only of labelling and binding atoms. This is
an instance of the constraint specified in the lexicon with fresh variables X1,. . . ,X10.

38CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

lam • X1

lam • X2

∀ • X3

→ • X4

@ • X5

var • X6 var • X7

@ • X8

var • X9 var • X10 man • Y1

@ • Z1

lam • X1

lam • X2

∀ • X3

→ • X4

@ • X5

var • X6 var • X7

@ • X8

var • X9 var • X10

man • Y1

(a) (b) (c)

Figure 3.6: The dominance constraints associated by the construction rules in
Fig. 3.5 for the Det (a), N (b), and NP (c) nodes in Fig. 3.2. The interface
variables are indicated by dotted circles.

The interface variableX1 is indicated by a dotted circle in the picture. Similarly, the
constraint for the N node is shown in Fig. 3.6(b). The two constraints are plugged
together by an application of the lower right construction rule in Fig. 3.5. This
introduces a fresh variable Z1 into the constraint, along with a labelling constraint
Z1:@(X1, Y1) connecting Z1 to the two previous interface variables.

The intended relation between the two systems of construction rules in Fig. 3.1
and Fig. 3.5 is that the former should derive a statement t ↪→M iff the latter can
derive t ↪→ ϕ | X, for some variable X, and M is αβη-equivalent to a constructive
solution of ϕ. This relation holds for the interfaces in Fig. 3.1 and Fig. 3.5. For
sentences with scope ambiguities, we still want to maintain this relation between our
extended syntax-semantics interfaces for dominance constraints and the readings
predicted by Montague or Keller; and indeed, this relation does hold, although we
don’t prove this here.

3.4 A Larger Grammar

We are now prepared to define a more serious grammar that computes dominance
constraints. This grammar, a variant of the grammars in (Egg et al. 2001; Koller
et al. 2003), still covers only a toy fragment of English, but it handles some
nontrivial syntactic constructions and is thus a bit more realistic than the earlier
one. The grammar is defined as follows:

3.4. A LARGER GRAMMAR 39

(a1) S → NP VP

(a2) VP → IV

(a3) VP → TV NP

(a4) VP → CV NP to VP

(a5) VP → SV S

(a6) NP → PN

(a13) α →W if (W,α, ϕ,X) ∈ Lex

(a7) NP → Det N̄

(a8) N̄ → N

(a9) N̄ → N RC

(a10) RC → RP S

(a11) N̄ → N PP

(a12) PP → P NP

The rules (a3) to (a5) analyse sentences with verbs that are not intransitive. This
includes transitive verbs (a3, see example 3.7), “object control verbs” (a4, see 3.8),
and sentence-embedding verbs (a5, see 3.9).

(3.7) Every man loves a woman.

(3.8) Peter wants John to kiss a woman.

(3.9) Every man knows some women sleep.

Rules (a7) to (a12) analyse noun phrases that can have complex structures. A
noun (N) can be combined with a determiner (Det) either on its own (a8), after
modification with a relative clause (a9/a10, see 3.10), or after modification with a
prepositional phrase (a11/a12, see 3.11).

(3.10) Every man who has a mother knows a woman.

(3.11) Every researcher of a company saw most samples.

A syntax-semantics interface that maps parse trees of this grammar to dominance
constraints in DIΛλ is shown in Fig. 3.7. The graphs in the figure encode inference
rules like in Fig. 3.5; the rules themselves would have become too unwieldy to show
here. As before, each inference rule is associated with one production rule of the
context-free grammar. The non-terminal symbols on both sides of the production
rule are repeated in the graph, where they stand for the interface variables of the
respective syntactic subtrees. For instance, the rule (b1) is the new version of the
top right inference rule in Fig. 3.5. The symbols NP and VP represent the interface
variables X and X ′ of the np and vp subtrees, and the symbol S stands for the
interface variable Y of the entire s subtree. (The two rules are not identical. We
will discuss this in a moment.) In rule (b4), VP′ represents the interface variable
of the VP subtree that is the third child of the larger VP constituent. Whenever

40CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

(b1)
@ • S

• VP • NP

(b2) • VP, IV

(b3)
@ • VP

• TV • NP

(b4)

@ • VP

• CV •

@ •

• VP′
• NP

(b5)

@ • VP

• SV •

• S

(b6)

@ •

• PN lam •

•

var • NP

(b7)

@ •

@ •

• Det • N̄

lam •

•

var • NP

(b8) • N̄, N

(b9)

lam • N̄

∧ •

@ •

• N var •

@ •

• RC var •

(b10)

lam • RC

•

• S

var • RPi, Xi

(b11)

lam • N̄

∧ •

@ •

• N var •

•

@ •

• PP var •

(b12)
@ • PP

• P • NP

(b13)

ϕ′
• α

where (w,α,ϕ,X) ∈ Lex and ϕ′ fresh

Figure 3.7: The syntax-semantics interface.

a node in one of the graphs is marked with two different variables X and Y , this
represents an equality atom X = Y .

Relative clauses require special treatment. We make the standard assumption that
a relative clause like “who Mary likes” is created from a deeper syntactic represen-
tation like “Mary likes [who]1”, which is an ordinary main clause, by moving the
relative pronoun out of its original position and before “Mary”. This means that
the relative clause should really be written “[who]1 Mary likes t1”, where t1 is a
trace as above – the empty string with identity 1 that was left behind when we
moved the relative pronoun away. Computing such coindexations between relative
pronouns and traces is beyond the capabilities of a context-free grammar, but this

3.5. AN EXAMPLE 41

is supported by all modern grammar formalisms used in computational linguistics,
e.g. by the Slash feature in HPSG (Pollard and Sag 1994)

The advantage of this analysis is that the relative pronoun with index i and the trace
with index i are linked by sharing the same index. We assume a special variable
Xi for each index i, and a lexicon that contains lexicon entries (ti,NP, X:var∧X =
Xi, X) for each trace ti. Let’s also say that the lexicon rule (b13) replaces only the
X in this lexicon entry by a fresh variable, and leaves the Xi intact. Then the trace
can be used like any other noun phrase in constructing the syntax and semantics
of the S constituent to which it belongs. When we apply the rule for relative
clauses (b10) to combine this S constituent with the relative pronoun with index
i, the object-language variable at Xi will be bound by the lam binder introduced
by (b10).

Finally, once the straightforward computation of the constraint ϕ according to the
inference rules has finished, we add an inequality atom X 6= Y for each pair of
variables X and Y that occur on the left-hand side of a labelling atom in ϕ. If we
didn’t do this, the constraint for the sentence “Every man likes every man” would
have the constructive solution ∀x.man(x) → like(x, x), as the two constraints for the
first and the second “every man” would look identical and could be mapped to the
same region of the satisfying tree. Adding the inequality constraints also means that
the naive composition of the graph fragments in Fig. 3.7 for all constituents yields
the correct constraint graph with respect to the interpretation of constraint graphs
defined in Section 2.2.2. Finally, the inequality atoms have crucial implications on
processing that we will explore in much more detail in Chapter 5.

It is possible, by adding additional further variables for bookkeeping to the four-
place relation, to derive additional dominances for scope islands. Details of this
construction can be found in (Egg et al. 2001).

3.5 An Example

In order to see how the larger grammar works, let’s go through an example. We will
compute a constraint for the following sentence, which was the example sentence
(2.7) in Section 2.1.

(3.12) Every man loves a woman.

The parse tree of (3.12) according to the context-free grammar from the previous
section is shown in Fig. 3.8. Now we can apply the inference rules in Fig. 3.7 in

42CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

S

NP

Det

every

N̄

N

man

VP

TV

loves

NP

Det

a

N̄

N

woman

Figure 3.8: Syntax tree of (3.12).

order to compute the dominance constraint. We start with five applications of
the lexicon rule (b13), one for each word in the sentence. Let’s assume that we
have lexicon entries (every ,Det, X:every, X), (man,NP, X:man, X), and so on, i.e.
every lexicon entry only introduces a labelling atom. Then the applications of (b13)
gives us a conjunction of five labelling atoms, including X11:every and X121:man.
We write Xν for the interface variable of the syntactic constituent at node address
ν in the parse tree.

Next, we can compute a constraint for the noun phrase every man by combining
the interface variables X11 and X12 with the inference rules (b8) and (b7). This
results in the following constraint:

(3.13) @ •
@ •

every • X11 man • X121, X12

lam •

•

var • X1

It is crucial to observe that the interface variable X1 is not the variable at the root
of the graph, but one that is embedded deeply inside the graph; we will come back
to this later. We can perform the analogous construction for the noun phrase a
woman, and then we can combine the two constraints for the noun phrases and the
constraint for the transitive verb by applying the rules (b3) and then (b1). The
result looks as follows:

3.5. AN EXAMPLE 43

(3.14)
@ •

@ •

a • X221 woman • X2221

lam •

• Y1

@ •

@ •

every • X11 man • X121

lam •

• Y2

@ • Z

@ •

love • X21 var • X22

var • X1

As soon as we add the required inequality atoms, this is indeed the correct under-
specified semantic representation (compare it with the constraint in 2.7). It has
exactly the two following constructive solutions:

(3.15) every(man)(λx.a(woman)(λy.love(y)(x)))

(3.16) a(woman)(λy.every(man)(λx.love(y)(x)))

The main difference from (2.7), apart from the fact that the constructive solutions
of (3.14) are formulas of higher-order and not first-order logic, is that (3.14) contains
dominance atoms Y1�

∗X22 and Y2�
∗X1, rather than atoms like Y1�

∗Z as in (2.7).
But it is easy to verify that (3.14) entails Y1�

∗Z∧Y2�
∗Z because of the additional

inequality atoms.

Our syntax-semantics interface distinguishes between the quantifiers and the rest
of the semantic representation in much the same way as Cooper storage. Where
Cooper storage added quantifiers to the quantifier store, we add their descriptions
to the constraint and add dominance atoms to control their placement. But the
process of retrieving quantifiers from the store is replaced here by the constraint
solving process, which takes place after the semantics construction is finished. In
addition, we don’t need to connect variables and quantifiers over indices i and
establish binding by variable capturing, but can connect them explicitly by a bind-
ing atom which will maintain the correct variable binding regardless of the relative
positions of binder and variable in the tree.

Another difference is that our interface applies the verb semantics to the variable
bound by a quantifier. By comparison, Cooper storage had to give an NP a residual
semantic representation λP.P (xi) after pushing the quantifier semantics into the
store. This was necessary in order to give NPs a uniform semantics that could be
applied to the verb semantics, regardless of whether the quantifier was pushed to
the store or applied directly. Because we employ dominance constraints to take care

44CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

@ •

@ •

a • comp •

lam •

•

@ •

@ •

every • lam •

∧ •

@ •

res • var •

• X ′

lam •

• X

@ •

@ •

most • lam •

∧ •

@ •

spl • var •

•

lam •

• Y

@ •

@ •

every • prod •

lam •

•

@ •

@ •

of • var •

var •

@ • Z

@ •

see • var •

var •

@ •

@ •

of • var •

var •

Figure 3.9: A dominance and binding constraint for “Every researcher of a company
saw most samples of every product.”

of the quantifier’s placement, we don’t need to make this distinction and replace
the spurious lambda abstraction by a simple plugging together of the verb and NP
semantics.

The interface can assign constraints to arbitrarily complex sentences that conform
to the given grammar. Fig. 3.9 shows the dominance and binding constraint the
grammar computes for the sentence “Every researcher of a company saw most
samples of every product”; it has fourteen constructive solutions. Notice the zig-
zag shape of this constraint graph, which connects upper and lower fragments with
dominance edges. This shape is characteristic of the constraints that are produced
by this grammar, and we will look at it more closely in Chapter 6.

3.6 Summary

In this chapter, we have seen how dominance and binding constraints can be sys-
tematically computed as underspecified descriptions for the semantics of English
sentences. Starting from the aim of compositional semantics construction, we first
reproduced a Montague-style syntax-semantics interface. When it turned out that
this interface couldn’t be easily extended to handle scope ambiguities, we switched
to an interface that directly computed dominance constraints. We used a context-
free grammar to analyse the syntactic structure of an English sentence, and then
we computed a dominance constraint by applying inference rules that traversed the
parse tree bottom-up.

The main advantage of underspecification in semantics construction is that the
syntax-semantics interface can be kept simple. Instead of artificially blowing up

3.6. SUMMARY 45

the number of syntactic readings or introducing nondeterminism and complex quan-
tifier stores into the interface, we can simply plug dominance constraints together.
The problem of the 1:n-correspondence of syntactic and semantic analyses is solved
by a later processing step, which enumerates semantic readings from underspecified
descriptions.

A key challenge in designing syntax-semantics interfaces for scope ambiguities is
to decouple the structure of the semantic representation from the variable binding,
in such a way that the results still represent binding correctly. Montague’s and
Cooper’s approaches had to assume a mechanism that kept track of traces and their
corresponding quantifiers, and then used variable capturing to establish binding
– and even so, the original Cooper storage allowed erroneous analyses in which
not all variables were bound. By contrast, the underspecification-based interface
achieved a complete separation of structure and binding; this was possible because
binding atoms guarantee correct variable binding regardless of the relative positions
of binder and variable. It uses the additional power of dominance and binding
constraints to introduce all binding atoms rule-locally: i.e. whenever it introduces
a labelling atom X:var, it introduces a binding atom λ(X) = Y at the same time.
(The only exception is the connection between the relative pronoun and its trace in
the rule for relative clauses, which needs to be added separately due to the syntactic
complexity of such long-distance dependencies.) This is another important factor
that keeps the interface simple.

46CHAPTER 3. COMPUTING DOMINANCE CONSTRAINTS FOR ENGLISH

Chapter 4

Processing Dominance
Constraints

This chapter gives an overview of algorithms for solving dominance and binding
constraints. The two most fundamental processing questions that we can ask about
a dominance constraint ϕ are:

1. Does ϕ have a solution?

2. What are the models of ϕ?

The first question is called the satisfiability problem, the second the model enumer-
ation problem of dominance constraints. The satisfiability problem can be reduced
to the model enumeration problem, as ϕ is unsatisfiable iff the set of its models
is empty. Indeed, both algorithms in this chapter will be enumeration algorithms
that also decide satisfiability as a special case.

X 1 X 2

f

Y f

Y 1 Y 2

X
The satisfiability problems of all dominance constraint lan-
guages from Chapter 2 that contain D are NP-complete.
The fact that satisfiability of SN is in NP follows from the
algorithm we present in Section 4.1; we could even allow
arbitrary propositional connectives and still stay in NP (Duchier 2000). On the
other hand, Koller et al. (2001) showed that the satisfiability problem of D is NP-
hard. The key idea in the NP-hardness proof is that disjunction in propositional
logic can be encoded into “dominance triangles”, as shown to the right. Dominance
triangles are constraints of the form X:f(X1, X2) ∧ Y :f(Y1, Y2)∧ Y�

∗X ∧X�
∗Y1,

i.e. without inequality atoms. In any solution of this dominance triangle, the vari-
able X must be mapped to the same node as either Y or Y1, and this is sufficient
to encode the 3-SAT problem.

47

48 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

There are currently three fundamentally different classes of satisfiabil-
ity/enumeration algorithms for dominance constraints:

1. Saturation algorithms: The constraint is successively enlarged by a system
of saturation rules, until a solution has been found or false has been derived.
The first sound and complete saturation algorithm for D was presented in
1998 by Koller et al. (2001); it was later extended to S by Duchier and
Niehren (2000) and to binding constraints by Erk et al. (2003).

2. Algorithms based on set constraints: The constraint is translated into a con-
straint over finite sets of integers (Gervet 1994), for which efficient solvers
are available (Müller and Müller 1997; Oz Development Team 1999). This
line of solvers was pioneered by Duchier and Gardent (1999), extended to
S by Duchier and Niehren (2000), and to the full propositional language by
Duchier (2000).

3. Graph algorithms: The most efficient class of constraint solvers considers the
constraint as a graph and then runs polynomial graph algorithms on it. As the
satisfiability problem of dominance constraints is NP-complete, polynomial
graph algorithms must assume certain restrictions on the constraints. The
first graph algorithm was given for normal dominance constraints in (Koller
et al. 2000; Althaus et al. 2001). We will take a closer look at this algorithm
in Chapter 5; it has since been improved by Thiel (2004). An efficient graph
algorithm for weakly normal dominance constraints has been proposed by
Bodirsky et al. (2004).

We will present a saturation solver for SN in Section 4.1 and a set constraint
solver for SN in Section 4.3. This presentation is based on (Koller et al. 2001;
Duchier and Niehren 2000), although some proofs are new. Then we will present
how the saturation algorithm can be generically extended to binding constraints
in Section 4.2. This algorithm generalises the saturation algorithm for binding
constraints in (Erk et al. 2003). We conclude the chapter by comparing runtimes
of different solvers, and make some observations that will lead into the polynomial
fragment in Chapter 5.

4.1 A Saturation Algorithm

The saturation algorithm is shown in Fig. 4.1. It consists of a set of saturation
rules of the form ϕ→ ψ1∨ . . .∨ψn, where n ≥ 1. The algorithm repeatedly applies
saturation rules to an input constraint, which is extended by each rule application.

4.1. A SATURATION ALGORITHM 49

A rule ϕ → ψ1 ∨ . . . ∨ ψn is applied to a constraint ϕ′ by selecting a disjunct on
the right-hand side and adding that disjunct to ϕ′. The rule can be applied only if
the following two conditions are satisfied:

1. inferences must be valid: the left-hand side ϕ is contained in ϕ′;

2. inferences must add new information: no disjunct on the right-hand side is
contained in ϕ′.

“Contained” means that each atom of some instance of the constraint is also an
atom of the other constraint.

Computation terminates when no saturation rule can be applied any more. If the
resulting constraint doesn’t contain false, the algorithm claims that the original
constraint is satisfiable. A saturated constraint that doesn’t contain false is called
a solved form, and we will see below how to extract a solution from a solved form.
If all disjunctive choices lead to constraints that contain false, the algorithm claims
that the original constraint is unsatisfiable.

Saturation algorithms like this fit nicely into the framework of constraint program-
ming (Section 1.3) if we consider rules with n = 1 as propagation rules and rules
with n > 1 as distribution rules. Thus the function of the propagation rules is
to spell out implicit information in the constraint explicitly. We apply a single
distribution rule only if no propagation rules are applicable any more. Such an ap-
plication strategy can potentially reduce the runtime of the algorithm, but makes
no difference for termination, soundness, or completeness in our case.

We call a saturation algorithm sound if unsatisfiability of a constraint ϕ follows
from the fact that all saturated constraints derivable from ϕ contain false. We call
the algorithm complete if every solved form is satisfiable. We will now prove that
SN (i.e. the algorithm combining the rule sets S and N in Fig. 4.1) terminates and
is sound and complete for SN . It will follow as a special case that S is sound and
complete for S.

Proposition 4.1 (Termination of SN). If ϕ is a dominance constraint with n
variables, SN performs at most O(n2) saturation steps on ϕ.

Proof. Each saturation step must add an atom of the form XRY that wasn’t
contained in the constraint before; but there are only 16 possible values for R. On
the other hand, the saturation algorithm never adds new variables to the constraint.
So saturation of a constraint with n variables terminates after at most 16n2 steps.

50 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

Algorithm S:

Propagation rules:

(Clash) X∅Y → false

(Dom.Refl) ϕ → X = X (X occurs in ϕ)
(Dom.Trans) X�

∗Y ∧ Y�
∗Z → X�

∗Z
(Lab.Decomp) X:f(X1, . . . , Xn) ∧ Y :f(Y1, . . . , Yn) ∧ X = Y →

∧n
i=1Xi = Yi

(Lab.Ineq) X:f(. . .) ∧ Y :g(. . .) → X 6= Y if f 6= g
(Lab.Disj) X:f(. . . , Xi, . . . , Xk, . . .) → Xi ⊥Xk where 1 ≤ i < k ≤ n
(Lab.Dom) X:f(. . . , Y, . . .) → X�

+Y
(Inter) XR1Y ∧ XR2Y → XRY if R1∩R2 ⊆ R
(Inv) XRY → Y R−1X
(Disj) X ⊥Y ∧ Y�

∗Z → X ⊥Z
(NegDisj) X�

∗Z ∧ Y�
∗Z → X¬⊥Y

(Child.up) X�
∗Y ∧ X:f(X1, . . . , Xn) ∧

∧n
i=1Xi¬�

∗Y → Y = X

Distribution rules:

(Distr.Child) X�
∗Y ∧ X:f(X1, . . . , Xn) → Xi�

∗Y ∨Xi¬�
∗Y (1 ≤ i ≤ n)

(Distr.NegDisj) X¬⊥Y → X�
∗Y ∨X�

+Y

Algorithm N :

Propagation rules:

(NonI1) ¬(X�
∗Y�

∗Z) ∧X�
∗Y → Y ¬�

∗Z
(NonI2) ¬(X�

∗Y�
∗Z) ∧ Y�

∗Z → X¬�
∗Y

Figure 4.1: Saturation rules for dominance and non-intervention constraints.

4.1. A SATURATION ALGORITHM 51

Proposition 4.2. Every solution of a constraint ϕ satisfies exactly one SN-solved
form of ϕ.

Proof. It is clear that every solution satisfies at most one SN -solved form, because
different SN -solved forms are created by choosing a different disjunct on the right-
hand side of some distribution rule; and the disjuncts of the same rule are mutually
inconsistent in SN .

For the proof that every solution satisfies at least one SN -solved form, observe
first that the left-hand side of each saturation rule entails the right-hand side if we
read choice as disjunction. This means that if a pair (M, α) satisfies the left-hand
side of any rule, it must also satisfy one of the choices on the right-hand side.
On the other hand, there are no infinite sequences of saturation steps, according to
Prop. 4.1. The claim follows by induction over the number of rule applications.

Corollary 4.3 (Soundness of SN). If all SN-saturations of the constraint ϕ
contain false, then ϕ is unsatisfiable.

Proof. We prove the contrapositive. If ϕ is satisfiable, then it has a satisfiable SN -
solved form ϕ′ according to Prop. 4.2. Because ϕ′ is satisfiable, it can’t contain
false.

As usual, the completeness proof is a bit more complex than termination and
soundness. We proceed in two steps: First we show that special simple solved
forms are satisfiable; then we show how to extend arbitrary solved forms to simple
solved forms. The proof follows Section 4 of (Duchier and Niehren 2000) for the
most part. The proof of Prop. 4.5 is new.

Definition 4.4. A variable X is labelled in the dominance constraint ϕ if there is
a variable Y with X = Y and Y :f(. . .) in ϕ. X is a root variable of ϕ if X�

∗Y
in ϕ for all Y ∈ Var(ϕ). A SN -solved form is called simple iff all its variables are
labelled, and it has a root variable.

Proposition 4.5. Every simple SN-solved form has a constructive solution. In
particular, it is satisfiable.

Proof. Let ϕ be a simple SN -solved form. We construct a model whose nodes
are equality classes of variables in ϕ. This makes sense because the relation
=ϕ := {(X, Y) | X = Y in ϕ} is an equivalence relation: Reflexivity follows from
saturation under (Dom.Refl), symmetry from saturation under (Inv), and transi-
tivity from saturation under (Dom.Trans), (Inv) and (Inter). We write X̄ for the
equivalence class of X and Var(ϕ)/ =ϕ for the set of equivalence classes.

52 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

The solution is defined as follows:

V = Var(ϕ)/ =ϕ

E = {(X̄, Ȳ) | X:f(. . . , Y, . . .) in ϕ}
LV (X̄) = f iff X ′:f(. . .) in ϕ, for some X ′ ∈ X̄
LE(X̄, Ȳ) = i iff X ′:f(Z1, . . . , Zi−1, Y

′, . . .) in ϕ, for some X ′ ∈ X̄, Y ′ ∈ Ȳ
α(X) = X̄

We have to show that τ = (V,E, LV , LE) is well-defined, is a finite constructor tree,
and that (Mτ , α) satisfies ϕ. It is then obvious that (Mτ , α) is also a constructive
solution of ϕ.

1. Well-definedness: V is well-defined because =ϕ is an equivalence relation.

LV is well-defined because every variable in ϕ is labelled, and if there are
two variables X, Y with X = Y , X:f(. . .), and Y :g(. . .) in ϕ, then f = g;
otherwise (Lab.Ineq) would have inferred X 6= Y .

Similarly, LE is well-defined because if X = Y ,
Z:f(Z1, . . . , Zi−1, X, Zi+1, . . . , Zn), and W :f(W1, . . . ,Wk−1, Y,Wk+1, . . . ,Wn)
are in ϕ and i < k, then W = Z is also in ϕ, as we will show in a moment.
But then X = Wi by (Lab.Decom), so Y = Wi by (Dom.Trans) and (Inter).
On the other hand, Y ⊥Wi by (Lab.Disj), so Y ∅Wi by (Inter), i.e. ϕ contains
false, a contradiction.

The proof that W = Z in ϕ is as follows. By (Lab.Dom), (Inter), (Trans),
and (NegDisj), we know that Z¬⊥W is in ϕ. By (Distr.NegDisj), either
Z�

∗W or Z¬�
∗W are in ϕ. If it were Z¬�

∗W , we can infer that W�
+Z in

ϕ by (Inter). Now we apply (Distr.Child) for each child of W . Wi�
∗Z leads

to a contradiction, for each i, because Yi�
∗X and Yi ⊥X (Trans, Lab.Disj),

so X ⊥Y by (Disj). Y�
∗Z leads to a contradiction because then X�

∗Z
and Z�

+X (Trans, Lab.Dom). So (Child.up) is applicable, which infers
W = Z, contradicting W�

+Z. This concludes the proof that the choice
in (Distr.NegDisj) couldn’t be Z¬�

∗W ; it must be Z�
∗W . We can apply

(Distr.NegDisj) again to W¬⊥Z; by an analogous argument as above, we
can infer that the choice couldn’t be W¬�

∗Z, and must have been W�
∗Z.

But now we know W = Z from (Inter).

2. Finite constructor tree: We show that every node has at most one father, the
graph (V,E) is acyclic, and that it has a unique root. The fact that a node
X̄ has exactly one outgoing edge with label i for each 1 ≤ i ≤ ar(LV (X̄)) will
then be obvious from the construction.

4.1. A SATURATION ALGORITHM 53

Let X, Y be variables with X = Y in ϕ, and let W :f(. . . , X, . . .) and
Z:f(. . . , Y, . . .) also be in ϕ. Then W = Z is in ϕ, as we showed above,
so X̄ has the unique father W̄ .

For the acyclicity, assume that v0, . . . , vn−1, v0 is a cycle. This means that
there are Xi1, Xi2 ∈ vi with Xi2�

+X(i+1 mod n)1 in ϕ for all 0 ≤ i < n,
by (Lab.Dom). For each i, Xi1�

∗Xi2 is also in ϕ, by (Inter). Then by
(Dom.Trans) and (Inter), X01�

∗X(n−1)2 is in ϕ, which derives X01∅X(n−1)2

together with X(n−1)2�
+X01, a contradiction.

For the uniqueness of the root, we prove that if X�
∗Y is in ϕ, then there is

a path from X̄ to Ȳ in τ . It follows that if R is the root variable assumed in
Def. 4.4, every node in V can be reached from R̄.

So let X, Y ∈ Var(ϕ) with X�
∗Y in ϕ. X is labelled, so there is an X ′ with

X ′ = X and some X ′:f(X1, . . . , Xn) in ϕ. Now because of saturation under
(Distr.Child), either there is some i such that Xi�

∗Y in ϕ, or there is no
such i and X ′ = Y in ϕ because of (Child.up). If we repeatedly apply this
construction, starting from some arbitrary X0 with X0�

∗Y , we can construct
a sequence X0, X1, X2, . . . of variables s.t. Xi�

∗Y is also in ϕ for all i. This
sequence must be finite because each X̄i is a child of Xi−1 in τ , and there are
no infinite paths in τ . Hence there must be some n with Xn = Y in ϕ; the
path from X̄0 to Ȳ is then X̄0, X̄1, . . . , X̄n.

3. Solution: We let M be the tree structure induced by τ and show that (M, α)
indeed satisfies ϕ, by proving that every single atom in ϕ is satisfied by it.
This is obvious for labelling atoms X:f(X1, . . . , Xn).

For atoms XRY with set operators, we prove the stronger claim that for any
two variables X, Y ∈ Var(ϕ), there is an r ∈ {�+,�+, ⊥ ,=} such that XrY
is in ϕ and M, α |= XrY . The claim follows trivially for r ∈ R; the case
r 6∈ R can’t occur because ϕ would also contain X∅Y in this case, by (Inter).

To prove the subclaim, we distinguish the four possible primitive relations in
which α(X) and α(Y) can stand in M.

• If α(X) = α(Y), we must have X = Y in ϕ, by construction.

• If α(X) is a proper ancestor of α(Y), then there must be a sequence
X:f1(. . . , X1, . . .), X

′
1:f2(. . . , X2, . . .), . . . , X ′

n−1:fn(. . . , Y, . . .) of atoms
in ϕ s.t. Xi = X ′

i also in ϕ for all i. By (Lab.Dom), (Inter), and
(Dom.Trans), ϕ also contains X�

∗Y . Now ϕ is also saturated un-
der (Distr.NegDisj), which is applicable here because (Inter) derives
Y ¬⊥X. If it contained the first disjunct, Y�

∗X, then (Trans) and
(Lab.Dom) would infer X ′

n−1∅Y , a contradiction. Hence ϕ must come
from the second disjunct, so Y ¬�

∗X and hence X�
+Y are in ϕ.

54 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

• The case where α(Y) is an ancestor of α(X) is symmetrical, and leads
to X�

+Y in ϕ.

• If α(X) and α(Y) are disjoint, consider their infimum Z̄ in M. X̄ and
Ȳ are below different children of Z̄, so there must be a labelling atom
Z:f(. . . , Z1, . . . , Z2, . . .) in ϕ s.t. Z1�

∗X and Z2�
∗Y (or vice versa) are

also in ϕ. But then (Lab.Disj) and (Disj) derive X ⊥Y .

The final type of constraint is non-intervention ¬(X�
∗Y�

∗Z). Assume that
(M, α) maps Y to a node between X̄ and Z̄. Then X�

∗Y and Y�
∗Z must

be in ϕ, by the argument we just made. But this would have derived a clash,
e.g. by (NonI1) and (Inter).

Lemma 4.6 (Extension by labelling). Every SN-solved form ϕ with an unla-
belled variable X can be extended to an SN-solved form ϕ ∧ ϕ′ with strictly fewer
unlabelled variables, and in which X is labelled.

Proof. The detailed proof can be found in (Duchier and Niehren 2000), Lemma
2. The key idea is to determine the equality classes of variables that can denote
children of X, and then to select one representative Xi from each class and extend
ϕ with the following constraint:

ϕ′ := X:f(X1, . . . , Xn)∧
∧

{XRZ ∧ ZR−1X | �
+ ∈ R, Xi�

∗Z in ϕ, 1 ≤ i ≤ n}∧
∧

{Y RZ | ⊥ ∈ R, Xi�
∗Y in ϕ, Xj�

∗Z in ϕ, 1 ≤ i 6= j ≤ n}

X is labelled in ϕ∧ϕ′, and all variables that were labelled before are still labelled.
In addition, it can be shown that ϕ ∧ ϕ′ is still in SN -solved form. Note that f
is some symbol of arity n. If necessary, this symbol can be simulated by using
multiple occurrences of a symbol of arity 2 or more, which we assumed to exist.

Because Duchier and Niehren only considered S, we have to check that ϕ′ is also
in SN -solved form, i.e. that (NonI1) and (NonI2) don’t become applicable by the
new atoms in the extension. But by construction and (Dom.Trans), ϕ′ contains no
atoms X1�

∗X2 that weren’t already contained in ϕ.

Proposition 4.7 (Completeness of SN). Every SN-solved form is satisfiable.

Proof. Let ϕ be a constraint in SN -solved form. If ϕ doesn’t contain a root variable,
we can pick a fresh variable X and consider the SN -solved extension ϕ∧

∧

{XRY ∧
Y R−1X | �

+ ∈ R, Y ∈ Var(ϕ)} instead. Now we can apply Lemma 4.6 and extend

4.2. PROCESSING BINDING CONSTRAINTS 55

this constraint further, obtaining a simple solved form ϕ′ after a finite number of
extension-by-labelling steps. ϕ′ is satisfiable according to Prop. 4.5. Because ϕ′

contains all atoms from ϕ, this solution also satisfies ϕ.

Note that a constraint that is in SN -solved form but not simple does not necessarily
have a constructive solution, as the “extension by labelling” process can introduce
new node labels and even new nodes.

Taking all these results together, we get the following fundamental result about
the satisfiability of dominance constraints:

Theorem 4.8 (Satisfiability of SN). The algorithm SN decides satisfiability of
constraints in SN in nondeterministic polynomial time.

As we have seen, it does this by enumerating all solved forms of the input constraint
ϕ. If the input constraint is unsatisfiable, there will be no solved forms. If it is
satisfiable, the set of solved forms will induce a partition of the solutions of ϕ, as
we have seen in Prop. 4.2. So SN solves the model enumeration problem of SN as
well, by computing representatives for classes of solutions that have only irrelevant
differences among themselves.

4.2 Processing binding constraints

Now we will extend SN with rules to process binding constraints. The goal will be
to automatically obtain a sound and complete algorithm from an axiomatisation
of the semantics of an arbitrary “well-behaved” binding specification.

We will require somewhat more expressive saturation rules to deal with binding
constraints. As an example, consider the rule that expresses that every binder of
the lambda binding specification carries the label lam:

(Λλ.Binder) λλ(X) = Y → ∃X ′.X:lam(X ′)

This rule doesn’t follow the format of the rules in SN in that it contains an existen-
tial quantifier on the right-hand side. Intuitively, the idea is that the rule shouldn’t
do anything if such a labelling atom is already present in the constraint; otherwise
it should pick a fresh variable in place of X ′ and add the resulting labelling atom.

More formally, we first define substitutions over variables of a constraint as func-
tions from some set V of variables into the complete set Vars of variables. If V is
a set of variables, ϕ a constraint, and θ : V → Vars a substitution, we write ϕθ for

56 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

the result of applying θ to ϕ and call it a V -variant of ϕ. We call the variant fresh
if θ(V) ∩ Var(ϕ) = ∅.

Then we generalise saturation as follows. Rules are now of the form

ϕ→ (∃V1.ψ1) ∨ . . . ∨ (∃Vn.ψn),

where n ≥ 1 and the Vi are sets of variables such that Var(ψi) − Var(ϕ) ⊆ Vi and
Vi ∩ Var(ϕ) = ∅ for all i. Application of such a rule to a constraint ϕ′ is possible if
(a) some variant ϕθ of the left-hand side is contained in ϕ′, and (b) no Vi-variant
of ψiθ belongs to ϕ′, for any 1 ≤ i ≤ n. The rule is then applied by selecting an i
and a fresh Vi-variant ψ′

i of ψiθ, and adding ψ′
i to ϕ′.

We can read a saturation rule as an (implicitly) universally quantified impliciation
that talks about the nodes of a tree structure. For instance, we can read the rule
(Trans) from Fig. 4.1 as the first-order formula

∀X∀Y ∀Z.(X�
∗Y ∧ Y�

∗Z) → X�
∗Z.

All rules in SN are valid in every tree structure when read as such formulas: There
can be no tree structure and variable assignment that satisfies the left-hand side
but not the right-hand side of the same rule. Rules about binding constraints won’t
necessarily be satisfied by an arbitrary lambda structure L – unless we make sure
that L is admissible with respect to the respective binding specification. Conversely,
we can read the rules as axioms that enforce that L is actually admissible.

Definition 4.9. A set R of saturation rules is called an axiomatisation of a binding
specification Λ if a lambda structure L is a model of all universal implications in
R iff L is Λ-admissible.

An axiomatisation is restrictive iff no binding atoms occur on the right-hand sides
of its rules. It is equality insensitive iff no two atoms on its left-hand side that aren’t
equality atoms talk about the same variables. It is guarded iff for each labelling
atom Z:f(. . .) on its left-hand side, there are variables X, Y such that λ(X) = Y
and either Z = X or Z = Y are also on its left-hand side.

A restrictive, equality insensitive, and guarded axiomatisation is called proper iff
it additionally contains rules of the following form:

(Func) λ(X) = Y ∧ λ(U) = V ∧X = U → Y = V
(Var) λ(X) = Y → X:varΛ
(Binder) λ(X) = Y →

∨

i ∃Y1 . . .∃YnY :fi(Y1, . . . , Yn)

Fig. 4.2 displays axiomatisations for three of the four binding specifications from
Section 2.3. Each of these axiomatisations is proper. In particular, they each

4.2. PROCESSING BINDING CONSTRAINTS 57

(Λλ.Func) λ(X) = Y ∧ λ(U) = V ∧X = U → Y = V
(Λλ.Var) λ(X) = Y → X:var
(Λλ.Binder) λ(X) = Y → ∃Y ′.Y :lam(Y ′)
(Λλ.Scope) λ(X) = Y → Y�

∗X

(Λfol.Func) λ(X) = Y ∧ λ(U) = V ∧X = U → Y = V
(Λfol.Var) λ(X) = Y → X:var
(Λfol.Binder) λ(X) = Y → ∃Y ′.Y :∃(Y ′) ∨ ∃Y ′.Y :∀(Y ′)
(Λfol.Scope) λ(X) = Y → Y�

∗X

(Λana.Func) ante(X) = Y ∧ ante(U) = V ∧X = U → Y = V
(Λana.Var) ante(X) = Y → X:ana

(Λana.Binder) ante(X) = Y →
∨

f∈Σ ∃{Y1, . . . , Yar(f)}.Y :f(Y1, . . . , Yar(f))

(Λana.Scope) ante(X) = Y → Y 6= X

Figure 4.2: Saturation rules for some binding specifications.

have a (Func) rule that ensures the binding relation is a partial function, (Var) and
(Binder) rules that ensure that the variables and binders are labelled appropriately,
and a (Scope) rule that encodes the scope specification. The rule (Λana.Binder) is
not very useful – it states that the antecedent of the anaphor has a label, which
is hopefully established by a labelling atom that came from the syntax-semantics
interface –, but it is necessary for completeness, and simply encodes the binder set
of Λana.

We can now prove that if we add such rule sets to SN , we obtain a sound and
complete saturation algorithm for the respective binding specifications, and that
the algorithm still terminates.

Lemma 4.10. Let Λ1, . . . ,Λn be binding specifications with functional, equality in-
sensitive axiomatisations R1, . . . , Rn. Then every simple SNR1 . . . Rn-solved form
is Λ1 . . .Λn-satisfiable.

Proof. Let ϕ be a simple SNR1 . . . Rn-solved form. It is in particular a simple
SN -solved form, and hence has a solution (Mτ , α) according to Prop. 4.5. We can
extend Mτ with partial binding functions λ1, . . . , λn as follows:

λi(X̄) =

{

Ȳ if λi(X) = Y in ϕ

undefined otherwise

58 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

Each λi is a well-defined partial function because Ri is functional, and it is clear
that the lambda structure L = Lτ,λ1,...,λn

satisfies ϕ. It remains to show that it is
admissible, by showing that each Ri is satisfied by L as a universal quantification.

So let l → r be a rule in some Ri, and let X̄1, . . . , X̄m be nodes in τ such that
l[X̄1, . . . , X̄m] is satisfied by L. Then there are representatives X1, . . . , Xm of
these equality classes such that l[X1, . . . , Xm] is in ϕ: We can pick representa-
tives independently for each atom in l that isn’t an equality atom (because Ri is
equality insensitive), and the two representatives Xk, X

′
k picked for some equality

atom X̄k = X̄k will be present in in ϕ because of saturation under (Dom.Refl),
(Dom.Trans), and (Inv). But ϕ is saturated under l → r, so there is a variant of a
choice in r[X1, . . . , Xm] that is also in ϕ, and hence satisfied by L.

This lemma can be generalised to a full completeness theorem by the extension-by-
labelling construction from Lemma 4.6. The main problem is that we must make
sure that the extension-by-labelling process doesn’t accidentally trigger a left-hand
side of some binding axiomatisation, as this would destroy saturation.

Theorem 4.11 (Soundness and completeness for binding constraints). Let
Λ1, . . . ,Λn be binding specifications with proper axiomations R1, . . . , Rn whose left-
hand sides only contain labelling, binding, and equality atoms. Then SNR1 . . . Rn

is sound and complete for Λ1 . . .Λn-satisfiability of SNΛ1 . . .Λn. The saturation
algorithm terminates in nondeterministic polynomial time.

Proof. Soundness means that every Λ1 . . .Λn-admissible solution of a constraint ϕ
satisfies some SNR1 . . . Rn-solved form of ϕ. This is obvious, as the rules are valid
as universal implications over Λ1 . . .Λn-admissible lambda structures, and hence
won’t allow us to derive false for Λ1 . . .Λn-satisfiable inputs.

Termination isn’t trivial, because the rules in the Ri may introduce new variables
through existential quantifiers. However, new variables can only be added once
in the application of each rule in Ri to each binding atom. But because Ri is
restrictive, no rule introduces new binding atoms, so the Ri rules only add a linear
number of new variables.

For completeness, let ϕ be an arbitrary SNR1 . . . Rn-solved form. It’s in particular
an SN -solved form, so we can add a root (as in the proof of Prop. 4.7) and perform
the “extension by labelling” process of Lemma 4.6 to obtain a simple SN -solved
form ϕ′ that entails ϕ. Now, extension by labelling will never add equality or
binding atoms, and because all the Ri are guarded, the only labelling atoms that
appear on the left-hand side of any rule are for variables that are equal to the X or
Y in some binding atom λ(X) = Y . But no such labelling atom can be added by
“extension by labelling”, as X and Y are guaranteed to be labelled by the rules we

4.2. PROCESSING BINDING CONSTRAINTS 59

required for properness. This means that ϕ′ is also a simple SNR1 . . . Rn-solved
form, so ϕ′, and hence ϕ, is Λ1 . . .Λn-satisfiable, by Lemma 4.10.

So let’s say we want to model a new object language with dominance and binding
constraints. This first requires us to encode the way this object language handles
variable binding in a binding specification. Then if we can define a proper axioma-
tisation for this new binding specification, Theorem 4.11 tells us we immediately
have a sound and complete algorithm for deciding satisfiability and enumerating
models that are consistent with the new binding specification. Thus the theorem is
a very powerful tool, which is applicable to a wide range of binding specifications.

We conclude this discussion with some examples for why the preconditions of the
theorem are all necessary, and how they can be achieved in practice.

1. R must ensure labelling atoms for the variable and binder: Consider a ver-
sion R1 of the system (Λana) from Fig. 4.2 that doesn’t contain the rule
(Λana.Binder), but that does contain a rule

(notF) ante(X) = Y ∧ Y : f(Z,W) → false

R1 is an axiomatisation of a binding specification Λ1 that is like Λana, but
doesn’t allow the label f for antecedents. Now imagine f is the only symbol
in our signature with arity greater than 1. Then the constraint X:f(Y, Z) ∧
Y�

∗Y ′∧Y�
∗Y ′′∧Y ′:a∧Y ′′:b∧Z:ana∧ante(Z) = Y is Λ1-unsatisfiable: The

extension-by-labelling process must assign the label f to the node denoted
by Y , but then the axiom (notF) is violated. However, Y isn’t labelled in
the original constraint, so the constraint is in SNR1-solved form. Similar
problems arise if an axiomatisation isn’t guarded.

Situations like these can be prevented by having the rules that are required
for properness in Def. 4.9; if a rule like (Λana.Binder) had been part of R1,
the labelling atom couldn’t have been introduced by “extension by labelling”.
Another way to make sure such problems don’t occur is by providing a suffi-
cient number of node labels with arity 2 or more that can be used to “extend
by labelling” without making a rule applicable. In the example, we could
have constructed a model if we had had another symbol g of arity 2 or more.

2. R must be equality insensitive: Consider an axiomatisation R2 of the binding
specification Λ2 that contains the following rule:

(notFG) X:f(Y) ∧ Y :g(Z) → false

The rule (notFG) won’t be applicable to the SN -solved form of the constraint
X:f(Y) ∧ Z:g(W) ∧ Y = Z, so this constraint is also in SNR2-solved form.

60 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

However, Y and Z will be mapped to the same node in every solution of
the constraint, which means that (notFG) won’t be satisfied as a universal
implication. Hence the constraint is Λ2-unsatisfiable. The term “equality
insensitive” refers to the fact that additional equality atoms in the constraint
won’t affect the applicability of the rule, which caused the problem in this
example.

It is easy to ensure equality insensitivity by naming the variables in the rule
apart, and relating them in equality atoms on the left-hand side. The rule
above would have better been written as follows:

(notFG′) X:f(Y) ∧W :g(Z) ∧ Y = W → false

3. R must not allow disjointness or unrestricted dominance on the left-hand
sides: Consider a weakened form R3 of the rule system for (Λλ) from Fig. 4.2,
in which the Scope rule has been replaced by the following rule:

(notDisj) lam(X) = Y ∧X ⊥Y → false

Let’s say R3 is an axiomatisation of a binding specification Λ3. Now consider
the constraint Z�

∗X ∧ Z�
∗Y ∧ X:lam(X ′) ∧ X ′:a ∧ Y :var ∧ λ(Y) = X.

(notDisj) isn’t applicable to the SN -normal form of the constraint, so it’s
also in SNR3-normal form. But the “extension by labelling” process will
add some labelling constraint Z:f(X, Y), so X and Y will be disjoint in the
constructed model (and in fact, must be disjoint in any model), so the model
isn’t Λ3-admissible.

Note that this particular type of problem can be avoided by rephrasing
the rule in the following way, which satisfies the application conditions of
Thm. 4.11:

(notDisj′) lam(X) = Y → X¬⊥Y

If more than one set operator atom from the left-hand side must be moved to
the right-hand side, the rule may have to be made a distribution rule. This is
computationally dangerous, but can be acceptable as long as e.g. the other
rules propagate so strongly that there is always only one choice left in the
distribution rule.

4.3 An Algorithm Based On Set Constraints

The saturation algorithm from Section 4.1 is sound and complete, and in fact
is designed in such a way that it facilitates proving soundness and completeness.

4.3. AN ALGORITHM BASED ON SET CONSTRAINTS 61

B ::= false | X1 = X2 | I ∈ D | i ∈ S | i /∈ S
C ::= B | S1 ∩ S2 = ∅ | S3 ⊆ S1 ∪ S2 | C1 ∧ C2 | C1 or C2

Figure 4.3: Finite set and finite domain constraints with disjunctive propagators.

However, it is not terribly useful for solving dominance constraints in practice, as it
spends a lot of time computing irrelevant consequences of a constraint in too much
detail. For example, as soon as it establishes the atom X�

+Y , it also computes
all atoms X R Y with �

+ ∈ R by (Inter), all atoms Y R−1 X by (Inv), and so on.

We can get a much more efficient way of solving dominance constraints by trans-
lating them into finite set constraints (Duchier and Gardent 1999; Duchier and
Niehren 2000) and applying efficient special-purpose constraint solvers for these.
These constraint solvers will provide propagation that is tailored to the problem of
solving set constraints. We will now briefly introduce finite set constraints, then
we will sketch the algorithm (i.e., the encoding of dominance as set constraints),
and then we will go through an example.

4.3.1 Finite set constraints

Finite set (FS) constraints (Gervet 1994; Müller and Müller 1997; Oz Development
Team 1999) are formulas that speak about the common relations (such as inclusion
and equality) between terms denoting finite sets of integers. The terms can be
either literals specifying a concrete set of integers, variables denoting sets, or terms
built from these components using set operations such as intersection and union.

The abstract syntax of these formulas is specified in Fig. 4.3; S are variables denot-
ing sets of integers, I are finite domain variables denoting integers (see Section 1.3),
i is an integer literal such as 5, and D is a set literal such as {1, 2, 3}. The symbol
X stands for a variable that can be either a finite set or a finite domain variable.
We will also use further formulas that are defined as abbreviated notations for the
primitive constraints, defined in Fig. 4.4. The declarative semantics of FS con-
straints is the usual semantics of the mathematical symbols. Ignore the A or B
for now; we will come back to this in Section 4.3.2.

Current implementations of constraint solvers for FS constraints are quite efficient
in deciding satisfiability and enumerating all satisfying variable assignments (Oz
Development Team 1999). Solvers in the constraint programming framework per-
form simple deterministic inferences (propagation), as described in Section 1.3.
Some propagation rules for FS constraints are shown in Fig. 4.5. Distribution rules

62 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

I 6= i for I ∈ ∆ − {i}
S1 || S2 for S1 ∩ S2 = ∅
S = D for

∧

{i ∈ S | i ∈ D} ∧
∧

{i /∈ S | i ∈ ∆ −D}
S1 ⊆ S2 for S1 ⊆ S2 ∪ S3 ∧ S3 = ∅

S = S1 ∪ S2 for S ⊆ S1 ∪ S2 ∧ S1 ∪ S ∧ S2 ∪ S
S = S1 ∪̇ S2 for S1 || S2 ∧ S = S1 ∪ S2

Figure 4.4: Some further abbreviations we will use in FS constraints.

S ⊆ D ∧ i /∈ D ⇒ i /∈ S
i /∈ S1 ∧ i /∈ S2 ∧ S ⊆ S1 ∪ S2 ⇒ i /∈ S
S ⊆ S1 ∪ S2 ∧ i ∈ S ∧ i /∈ S1 ⇒ i ∈ S2

i ∈ S1 ∧ S1 ⊆ S2 ⇒ i ∈ S2

i ∈ S1 ∧ i ∈ S2 ∧ S1 ∩ S2 = ∅ ⇒ false

Figure 4.5: Some propagation rules for FS constraints.

for FS constraints choose a set variable whose value isn’t yet completely determined,
and splits its domain into two parts.

Let’s look at an example to illustrate how a FS constraint solver searches for
a solution; say we want to solve the constraint shown on the left-hand side of
Fig. 4.6. We start by splitting the constraints into basic constraints (language
B in Fig. 4.3) and complex constraints (language C). The basic constraints, i.e.
equality, set-membership and set-non-membership constraints, are written directly
into a constraint store. The complex constraints are turned into propagators, which
concurrently watch the constraint store for changes that satisfy the preconditions
of some propagation rules.

In the leftmost constraint store, both propagators can contribute information.
First, the store entails that S1∪S2 ⊆ {1, 2, 3}, so the first propagator, S ⊆ S1∪S2,
can infer that 46∈S ∧ 56∈S ∧ 66∈S; this information is added to the store. Second,
since the store entails 1∈S ∧ 1/∈S2, the first propagator can deduce 1∈S1. On the
other hand, the second propagator, S1 ⊆ S3, can infer from 3/∈S3 that 3/∈S1; and
from 1∈S1, which was added by the first propagator, it can infer 1∈S3. But now,
the store entails S1 ∪ S2 ⊆ {1, 2}, so the first propagator can again infer that 36∈S.

The result of all these propagation steps is shown in the middle of Fig. 4.6. At
this point, the two propagators have added a significant amount of information,
which has reduced the number of possible values of the four variables from 1024
to 8. Now no further propagation is possible, so the constraint solver performs

4.3. AN ALGORITHM BASED ON SET CONSTRAINTS 63

S ⊆ S1 ∪S2 S1 ⊆ S3

S1 = {1}
S2 = /0

S = {1}
{1} ⊆ S3 ⊆ {1,2}S ⊆ S1 ∪S2 S1 ⊆ S3

S1 ⊆ {1,3}
S2 ⊆ {2}

{1} ⊆ S ⊆ {1, . . . ,6}
S3 ⊆ {1,2}

S ⊆ S1 ∪S2 S1 ⊆ S3

S1 = {1}
S2 ⊆ {2}

{1} ⊆ S ⊆ {1,2}
{1} ⊆ S3 ⊆ {1,2} S ⊆ S1 ∪S2 S1 ⊆ S3

S1 = {1}
S2 = {2}

{1} ⊆ S ⊆ {1,2}
{1} ⊆ S3 ⊆ {1,2}

Figure 4.6: Propagation and distribution for FS constraints (example).

a single distribution. It creates two copies of the constraint store (shown on the
right), and adds 2 /∈ S2 to the first one, and 2 ∈ S2 to the second. Propagation can
resume at this point, and so forth until all branches have either become inconsistent
(some propagator has inferred false) or solved (the value of each variable is known
completely).

4.3.2 Disjunctive propagators

Another type of constraint that we need for the dominance constraint solver are
the disjunctive propagators A or B. This formula has the declarative semantics
of a disjunction A ∨ B. Operationally, the propagator waits until it can infer that
either A or B is inconsistent with the current constraint store. Then it adds the
other disjunct to the constraint store.

In the example of Fig. 4.6, assume that we had the disjunctive propagator 2 ∈
S2 or 2 ∈ S3 as an additional propagator. Then this propagator would suspend
and do nothing until the constraint 2 ∈ S2 becomes inconsistent in the top right
constraint in Fig. 4.6. At that point, it would commit to the choice 2 ∈ S3 and add
it to the constraint store, which would fully determine the values of all variables in
that store.

64 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

Eq

Up

Down

Side

Figure 4.7: A tree, partitioned into the four node sets.

4.3.3 The solver

Now we have all the tools that we need to describe the FS-based solver for dom-
inance constraints. What this solver does is to translate a dominance constraint
into an FS constraint with disjunctive propagators, and then passes this encoding
to an FS solver, e.g. within the Mozart system (Oz Development Team 1999). It
was first presented by Duchier and Gardent (1999) and later extended by Duchier
and Niehren (2000). We only present the key ideas here, and refer to (Duchier and
Niehren 2000) for the complete details and the proof of soundness and complete-
ness.

The key insight underlying the solver is that each node v in a tree partitions the
tree into four disjoint sets of nodes (see Fig. 4.7): The node v itself, all nodes that
properly dominate v, all nodes that are properly dominated by v, and all other
nodes (i.e. which are disjoint from v). If we know these four node sets for each
node in the tree, we know the structure of the entire tree.

In order to encode a dominance constraint ϕ with variables X1, . . . , Xn as a set
constraint, we introduce finite set variables eq(Xi), down(Xi), up(Xi), and side(Xi)
denoting (integers fromN = {1, . . . , n} encoding) those variables that denote nodes
in those regions of the tree, relative to Xi. The fact that each node partitions the
tree into the four regions is expressed by the set constraint

N = eq(Xi) ∪̇ down(Xi) ∪̇ up(Xi) ∪̇ side(Xi).

We also introduce auxiliary variables such as eqdown(Xi) and equp(Xi), which are
related to the basic variables with constraints such as

eqdown(Xi) = eq(Xi) ∪̇ down(Xi)

4.3. AN ALGORITHM BASED ON SET CONSTRAINTS 65

The other crucial component of the encoding are choice variables. Each choice
variable CXiXk

is a finite domain variable whose value must be an element of the
set Rel = {=,�+,�+, ⊥}, encoded as the natural numbers {1, 2, 3, 4}. The value
of the choice variable determines the relationship in which the nodes denoted by
Xi and Xk stand in a solution.

For each pair of variables, there is a disjunctive propagator that relates the choice
variable for these two variables to constraints over some FS variables encoding the
semantics of the primitive tree relations, i.e. we have for each 1 ≤ i, k ≤ n

CXiXk
∈ Rel ∧

∧

{Choice(Xi, r, Xk) | r ∈ Rel},

where

Choice(X, r, Y) = D[[XirXk]] ∧ CXiXk
= r or D[[Xi¬rXk]] ∧ CXiXk

6= r.

The choice variables also drive the distribution: As soon as no propagator can
contribute new information, the constraint solver will pick one choice variable and
split its domain (rather than splitting the domain of a set variable as described
above).

The encodings D[[XirXk]] are set constraints relating the variable sets defined above.
For instance, disjointness and non-disjointness are encoded as follows:

D[[X ⊥Y]] = eqdown(X) ⊆ side(Y) ∧ eqdown(Y) ⊆ side(X)
D[[X¬⊥Y]] = eqdown(X) ∩ side(Y) = ∅ ∧ side(X) ∩ eq(Y) = ∅

The other primitive relations and their negations are encoded similarly. Labelling
constraints are encoded using additional variables for the parent and daughters of
a node, as well as its label, which are again related to the tree-region variables
defined above. Non-intervention can be encoded as follows:

[[¬(X�
∗Y�

∗Z)]] = eq(Y) ⊆ up(X) ∪ side(Z) ∪ down(Z)

That is, we can encode all of SN into finite set constraints in such a way that the
solutions of the constraints correspond one-to-one.

66 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

4.3.4 An example

An example will illustrate how the propagations on the finite set constraint cor-
respond to the original dominance constraint. Consider the dominance constraint
from Fig. 3.9 on page 44 (without the binding constraints), and let’s assume that
the propagation has already proceeded to the point where the dominance X�

∗Z
and the disjointness X ⊥X ′ have been made explicit as set constraints, i.e. it has
derived the following information from the dominance:

Z ∈ eqdown(X),

and it has derived from the disjointness,

eqdown(X) ⊆ side(X ′).

The solver can now propagate the information that Z and X ′ are also disjoint.
This is done by the disjunctive propagator for disjointness of Z and X ′, i.e.

D[[Z⊥X ′]] ∧ CZX′ = ⊥ or D[[Z¬⊥X ′]] ∧ CZX′ 6= ⊥

The first propagation rule in Fig. 4.5 can add the basic constraint Z ∈ side(X ′) to
the constraint store. But then, the constraint store for Z¬⊥X ′ in the disjunctive
propagator will fail, as it contains eq(Z)∩ side(X ′) = ∅, which clashes with the fact
that Z is a member of both sets. This means the disjunctive propagator will commit
to the branch for Z ⊥X ′, and will add the entire encoding of the disjointness atom
as a set constraint.

Once all propagation is completed, the constraint solver will distribute by splitting
the domain of a choice variable. In the example, the relative scope of X and Y is
unknown, but propagation will have derived the information CXY ∈ {=,�+,�+}
because they both dominate Z. Now the solver can split the domain of CXY , e.g.
into the cases CXY = �

+ and CXY ∈ {=,�+}. This corresponds exactly to the
behaviour of the (Distr.NegDisj) rule in Fig. 4.1.

The search tree that the set constraint solver explores looks as in Fig. 4.8. The
round nodes of the search tree represent choice points at which a distribution
step was performed; the diamond-shaped leaves (which are drawn green in the
original) represent solutions of the set constraint, i.e. solved forms of the dominance
constraint. There are fourteen green leaves because the constraint has fourteen
solved forms.

4.4. SUMMARY 67

Figure 4.8: Search tree of the FS solver for the constraint in Fig. 3.9.

The most striking feature of the search tree is that there is no failure: All leaves
represent solutions, and there are no inconsistent constraint stores, which would
be drawn as (red) boxes. This means that the propagation was so strong that no
distribution step ever made a choice where one option was unsatisfiable. Every
constraint that is useful in practice (e.g., all constraints generated by the grammar
in Section 3.4) seems to have failure-free search trees. This phenomenon, which we
call the “miracle of the green nodes”, is extremely surprising, as we have seen that
satisfiability of dominance constraints is NP-complete, which means the algorithm
should have to make choices that lead to failure, without being able to recognise
them right away. This is a strong indication that there is a useful polynomial
fragment of dominance constraints, and our constraint-based solver automatically
exploits the properties of this fragment and runs in polynomial time on it.

4.4 Summary

In this chapter, we have given an overview of algorithms for solving dominance
constraints. We have presented two solvers in more detail: one which saturates
the dominance constraint as a logical formula, and one which encodes it into finite
set constraints and runs an existing solver on the encoding. Both algorithms solve
the model enumeration problem of dominance constraints, but can also serve as
satisfiability algorithms. We have also shown how the saturation algorithm can be
extended to a complete algorithm for certain useful classes of binding constraints.

Both solvers employed a propagate-and-distribute strategy in order to keep the size

68 CHAPTER 4. PROCESSING DOMINANCE CONSTRAINTS

length solved forms saturation FS solver
2 2 10 10
3 5 40 30
4 14 390 150
5 42 2070 690
6 132 7300 2900
7 429 30230 10790

Figure 4.9: Runtimes of the two enumeration algorithms on the pure chains of
length 2–7, in milliseconds.

of the search space manageable, and indeed it can be shown that they can simulate
each other’s computations (Duchier and Niehren 2000). However, the saturation
solver computes every single atom entailed by the input constraint, which is useful
for proofs, but makes the solver too slow for practical use. Fig. 4.9 shows the
runtimes each solver takes to enumerate all solved forms of the pure chains of
length 2–7, in milliseconds CPU time on a Pentium M at 1.6 GHz. (A chain is a
constraint that connects upper and lower tree fragments in a zig-zag shape; Fig. 3.9
shows a chain of length 4. See also Section 6.4.) The FS solver outperforms the
saturation solver considerably. But we will see in the next chapter that we can
obtain further dramatic improvements in performance by designing a specialised
graph-based solver for the polynomial fragment of normal dominance constraints.

While we focus mostly on dominance constraints in this thesis, binding constraints
are extremely important if we want to use dominance constraints as underspecified
descriptions of formulas in some object language. Under this perspective, it is very
useful that the saturation algorithm for dominance constraints can be generically
extended with rules for binding constraints: We get the complete algorithm for free
if we can define a proper axiomatisation of the binding specification. The general
theorem subsumes most object languages that are used in practice, such as (first-
order or higher-order) predicate logic. One object language to which it cannot be
applied directly is Dynamic Predicate Logic, which we will look at more closely
in Chapter 7; but even there, we will be able to reuse the basic structure of the
completeness proof.

Chapter 5

Normal Dominance Constraints

The “miracle of the green nodes” is a strong indication that dominance constraints
have a useful fragment whose satisfiability problem is polynomial. In this chapter,
we present such a fragment. We present an algorithm that decides satisfiability of
normal dominance constraints in quadratic time, and can be extended to a model
enumeration algorithm for normal dominance constraints.

The key insight underlying the satisfiability algorithm for normal dominance con-
straints is that such constraints can be seen as dominance graphs, and satisfiability
can be represented as a property of such graphs. We have appealed to the intuition
that dominance constraints can be drawn as graphs a lot so far, without stating
the exact relationship between the two. Thus a second goal of this chapter is to
clarify this relationship.

The constraint and graph perspectives will be linked by the concept of a solved form.
Solved forms are the desired end results of an enumeration algorithm for constraints
or graphs; in addition, the solved forms of a normal dominance constraints serve as
representations of sets of mutually similar solutions. We will define solved forms of
graphs and solved forms of normal dominance constraints separately, but a crucial
result of this chapter will be that we can encode normal dominance constraints into
dominance graphs in such a way that their solved forms correspond. Technically, we
will first compactify normal dominance constraints, and then prove an equivalence
between compact dominance constraints and dominance graphs.

The chapter is divided into two parts; its structure is illustrated in Fig. 5.1. We
will first introduce dominance graphs in Section 5.1, and show intuitively how they
relate to dominance constraints. Then we will properly define normal (Section 5.2)
and compact (Section 5.4) dominance constraints, and prove that they are equiv-
alent, and that their solved forms are indeed representations of sets of solutions

69

70 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

dominance
graphs

solved forms
minimal

solved forms
minimal

solved forms
minimal

constraints
compact dominance

constraints

§5
.3

graphs

tree structures

constraints

normal dominance

§5
.6

−
5.

8

§5.4 §5.5

solutions

Figure 5.1: Overview of Chapter 5.

(Section 5.3). Finally we will show that compact dominance constraints correspond
to dominance graphs (Section 5.5).

In a second part of this chapter, we show how solvability of dominance graphs (and
hence, satisfiability of normal dominance constraints) can be decided with a polyno-
mial graph algorithm. We will first show how we can enumerate all minimal solved
forms of a dominance graph, given a solvability algorithm (Section 5.6). Then we
characterise solvability as the absence of simple hypernormal cycles (Section 5.7)
and show how to test a dominance graph for hypernormal cycles (Section 5.8). To
round off the chapter, we show how the algorithms carry over to normal dominance
and binding constraints in Section 5.9.

5.1 Dominance Graphs

In the first few chapters, we have frequently presented dominance constraints as
graphs. Each node of a graph represented a variable of the constraint; we used node
labels and solid edges to represent labelling atoms and dotted edges to represent
dominance atoms, and we considered the graph to be an implicit representation of
some inequality atoms.

Now we are going to make this intuition precise by defining dominance graphs.
Dominance graphs are exactly like the informal graphs we have drawn so far, except
that their nodes are unlabelled, and we assume that the tree fragments (i.e., the
connected components over solid edges) have depth at most one.

Definition 5.1 (Dominance Graph). A dominance graph is a directed graph
G = (V,E ∪̇D) satisfying the following two conditions:

5.1. DOMINANCE GRAPHS 71

f • X

• X1

g • Y

• Y1

h • W

• W1 • W2

a • Z

• X

• X1

• Y

• Y1

• W

• W1 • W2

• Z

(a) (b)

Figure 5.2: A compact dominance constraint (a) and its dominance graph (b).

1. The graph G = (V,E) defines a collection T of node disjoint trees of height
0 or 1.

2. Each edge in D goes from a leaf of a tree in T with height 1 to the root of
some other tree.

To bring out the similarity between dominance graphs and the earlier informal
graph representations more clearly, we will call the edges in E tree edges and draw
them as solid lines, and we will call the edges in D dominance edges and draw them
as dotted lines. Nodes with incoming tree edges are called holes, and all others are
called roots; i.e. Condition 2 in the definition can be stated as “dominance edges
go from holes to roots”. We will also call the elements of T the (tree) fragments of
the dominance graph.

For example, Fig. 5.2(b) shows a dominance graph with four tree edges and four
dominance edges. It contains three fragments. In the example in Fig. 5.2, X, Y ,
Z, and W are roots, and X1, Y1, W1, and W2 are holes. The node Z, which is not
adjacent to any tree edges, counts as a root and not as a hole. Notice the similarity
between the dominance graph in Fig. 5.2(b) and the graph representation in (a);
the only difference between the two graphs is that (b) has no node labels.

The purpose of a dominance constraint is to serve as an underspecified description
of a set of tree structures, and there is a clear intuition that the tree fragments
in the graph should be configured into a tree. This intuition is supported, for
instance, by the introductory example (2.5) and its solutions (2.2) and (2.4). In
a graph setting, we can define a solved form of a dominance graph G directly as
a tree-shaped dominance graph that contains the same nodes and tree edges as G
and realises all dominances that G specifies.

For the formal definition of a solved form, we take the reachability relation R∗
G of

a dominance graph to be the ordinary graph reachability relation of the graph, i.e.

72 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

• X

• X1

• Y

• Y1

• W

• W1

• Z

• W2

• X

• X1

• W

• W1

• Y

• Y1

• Z

• W2

Figure 5.3: The two solved forms of the dominance graph in Fig. 5.2.

• X

•

• Y

•

• Z

• W

•

• X

•

• W

•

• Y

•

• Z

• X

•

• Y

•

• W

•

• Z

(a) (b) (c)

Figure 5.4: A minimal solved form (a), and some solved forms that properly extend
it (b,c). (b) and (c) are not minimal.

(u, v) ∈ R∗
G iff there is a (directed) path from u to v in G.

Definition 5.2 (Solved Form of a Dominance Graph). A dominance graph
is in solved form iff it is a forest. The dominance graph G = (V,E ∪̇ D) extends
the dominance graph G′ = (V ′, E ′ ∪̇ D′) iff V = V , E = E ′, and R∗

G′ ⊆ R∗
G. A

dominance graph is a solved form of the graph G iff it is in solved form and extends
G. A minimal solved form of G is a solved form of G that is not a proper extension
of any other solved form of G. A dominance graph is solvable if it has a solved
form.

Both solved forms in Fig. 5.3 are minimal solved forms of the graph in Fig. 5.2(b).
For an example of a non-minimal solved form, consider the dominance graphs
in Fig. 5.4. The graph (a) is a dominance graph in solved form, so it is its own
minimal solved form. The graphs (b) and (c) are two different solved forms of (a)

5.2. NORMAL DOMINANCE CONSTRAINTS 73

• X

• X1 • X2

• Y

• •

• Z • W

Figure 5.5: An unsolvable, acyclic dominance graph.

that are not minimal, because they are proper extensions of (a).

Not all dominance graphs are solvable. For example, dominance graphs that have
a cycle can clearly not be unrolled into finite forests that realise all dominance
requirements of the original graph. Another example is the dominance graph in
Fig. 5.5. This graph is cycle-free, but it is still unsolvable because we can’t configure
X and Y so the whole graph becomes a tree. For instance, Y must not be dominated
by X1 in a solved form, because then W would be reachable both from X1 (via Y)
and from X2; the other three cases are analogous.

5.2 Normal Dominance Constraints

Despite the apparent similarity between the informal graph representations of dom-
inance constraints and dominance graphs, there are a number of differences that
make the relationship between dominance constraints and dominance graphs non-
trivial:

1. The fragments in a dominance constraint need not be trees. For instance,
there may be nodes that appear on the right-hand sides of two different
labelling atoms (Fig. 5.6a), or fragments could have cycles (Fig. 5.6b).

2. Dominance graphs require us to configure the fragments into a forest; the
fragments may not overlap each other. Without the inequality atoms, a dom-
inance constraint as represented by the graph in Fig. 5.5 would be satisfiable
because we can map X and Y to the same node in a tree structure.

3. Dominance atoms are not restricted to requiring dominances from a hole to
a root. The constraint in Fig. 5.6(c) is a perfectly well-formed dominance
constraint, but if we delete the node labels, it is not a dominance graph
because the dominance edge goes from a root into a hole.

74 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

f • X g • X ′

a • Y b • Z c • W

x x

f • X

a • Y g • Z

x

f • X

• Y

g • Z

• W

(a) X:f(Y, Z) ∧X ′:g(Z,W) (b) X:f(Y, Z) ∧ Z:g(X) (c) X:f(Y) ∧ Z:g(W)
∧X�

∗W

Figure 5.6: Some dominance constraints that are not normal.

4. Fragments could have a depth of more than one. This was the case in most
dominance constraints we have seen so far, e.g. in Fig. 3.9.

At least the first three problems arise only in dominance constraints that are not
needed in practice; for example, they never come up in constraints produced by the
grammar in Chapter 3. We will define normal dominance constraints as constraints
that exclude the first three problems, and compact dominance constraints as normal
constraints that also exclude the fourth problem.

In a first step, we introduce some definitions that allow us to use graph terminology
when talking about a dominance constraint, such as roots and holes, reachability,
and fragments. These notions will correspond to the respective notions in a domi-
nance graph for normal dominance constraints.

Definition 5.3 (Graph components of dominance constraints). If
X:f(X1, . . . , Xn) is a labelling atom, we say that X is the head of the labelling
atom, and X1, . . . , Xn are its children.

Let ϕ be a dominance constraint. A variable X ∈ V(ϕ) is called a root iff it is
not a child in any labelling atom in ϕ. It is called a leaf iff it is not the head of a
labelling atom of arity one or more. In particular, it is called a hole iff it is not the
head of any labelling atom.

The one-step labelling reachability relation LRϕ is the binary relation

LRϕ := {(X, Y) | X:f(. . . , Y, . . .) ∈ ϕ}.

The one-step reachability relation Rϕ is the binary relation

Rϕ := LRϕ ∪ {(X, Y) | X�
∗Y ∈ ϕ}.

If R is one of the two one-step relations, we write R+ for the transitive closure,
R∗ for the reflexive, transitive closure, and R↔ for the reflexive, transitive, and
symmetric closure. We call R∗

ϕ the reachability relation of ϕ.

5.2. NORMAL DOMINANCE CONSTRAINTS 75

A fragment in ϕ is a nonempty subset F ⊆ V(ϕ) such that F 2 ⊆ LR↔
ϕ (i.e.

a variable set that is connected by labelling constraints). We call the fragment
maximal if it has no proper superset that is also a fragment of ϕ.

Now we can use this terminology to define normal dominance constraints.

Definition 5.4 (Normal dominance constraints). A dominance constraint ϕ
in the language DI is called normal iff for all variables X, Y ∈ V(ϕ):

1. There is an atom X 6= Y in ϕ iff X and Y are different variables that occur
as heads of labelling atoms (no overlap).

2. Every variable appears at most once as a head and at most once as a child in a
labelling atom of ϕ, and LR+

ϕ has no elements of the form (X,X) (tree-shaped
fragments).

3. If X�
∗Y is in ϕ, then X is a hole (dominances out of holes).

4. Every variable in ϕ occurs in a labelling atom (no empty fragments).

This definition ensures that the problem cases (1) to (3) from above cannot occur.
The first condition explicitly excludes situations as in the dominance triangle, where
two labelled variables can be mapped to the same node in a solution. By convention,
we have assumed that each of the informal graphs we have used so far encodes an
inequality atom for each pair of labelled variables; so this condition is met by all
constraints we have seen so far.

The second condition requires all fragments in the constraint graph to be tree-
shaped by requiring each node to have a unique father, and the entire fragment to
be acyclic. This excludes cases as in Fig. 5.6(a) and (b).

Condition 3 states that no node in the constraint graph has both an outgoing dom-
inance edge and an outgoing solid edge. This excludes cases such as Fig. 5.6(c), in
which the non-hole X has an outgoing dominance X�

∗W . Note that this condi-
tion doesn’t require that a node couldn’t have both an incoming dominance and an
incoming solid edge: The constraint in Fig. 5.6(c) with Y�

∗W instead of X�
∗W

is normal.

Finally, the fourth condition states that there are no “empty” fragments which
don’t contain any labelled nodes. This is a technicality that will simplify the
relationship between constraints and graphs.

Some useful properties of normal dominance constraints are stated in the following
lemma.

76 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

Lemma 5.5 (Basic properties of normal dominance constraints). Let ϕ be
a normal dominance constraint.

1. No variable in ϕ is both a root and a hole.

2. No dominance atom in ϕ connects variables in the same fragment.

3. Every fragment F of ϕ contains exactly one root, which we call R(F). All
other variables in F are reachable from R(F).

4. Every variable X is a member of a unique maximal fragment Fmax(X).

All dominance constraints that are generated by the grammar from Chapter 3
are normal. This is because we paid attention to satisfying the second to fourth
condition in putting together the constraints, and then we applied an additional
closure operation to the result, which added the inequalities necessary to establish
the no-overlap condition. From here on, if ϕ is a dominance constraint that satisfies
conditions 2 to 4, and that has no inequality atoms X 6= Y where either X or Y is
a hole, we will write ϕ 6= for the normalisation

ϕ 6= := ϕ ∧
∧

{X 6= Y | X and Y are heads of different labelling atoms}.

It is clear that ϕ 6= is then always a normal dominance constraint.

Definition 5.4 differs in three details from the standard definition of normal dom-
inance constraints in other papers, such as (Althaus et al. 2003). First, we have
restricted the inequalities in Condition 1 to be only those that are necessary to
ensure fragments don’t overlap. The definition could alternatively require at least
those inequalities, and potentially allow more. All results in this chapter remain
essentially valid, but Section 6.3 requires the definition presented here. Secondly,
previous versions of Condition 2 didn’t require acyclicity of fragments. This makes
no difference in practice because cyclic fragments are easy to detect using depth-
first search, and all constraints with cyclic fragments are unsatisfiable. Finally,
the present version of Condition 3 permits dominances that go into non-roots, so
we can consider the constraints generated by the grammar in Chapter 3 as nor-
mal. Earlier definitions required dominances to go only into roots, and made the
constraints from the grammar normal by an additional postprocessing step. This
postprocessing step exploited the fact that the other three conditions ensure that
the normalisation of a constraint like X:f(Y) ∧ Z�

∗Y entails Z�
∗X, i.e. we can

always move the dominance edges up to the roots.

5.3. SOLVED FORMS 77

5.3 Solved Forms

When we solve dominance constraints, it is generally impossible to enumerate all
solutions of the constraint. This is because every satisfiable dominance constraint
has an infinite number of solutions, which differ from each other only in additional
material that is filled into dominance edges, or around the topmost node denoted
by a variable. If we want to compute the readings represented by an underspec-
ified description, we are not interested in such additional material – we are only
interested in the way that the existing fragments are configured.

So as we did in Chapter 4 before, we don’t require that a enumeration algorithm
should enumerate all solutions, but only the solved forms of a constraint. Solved
forms for normal dominance constraints are defined quite differently from the SN -
solved forms from the previous chapter, but they serve the same purpose: as rep-
resentations of classes of solutions that differ only in “irrelevant details”. Every
satisfiable normal dominance constraint has a finite number of solved forms, and
every solution of the constraint satisfies exactly one of its minimal solved forms.

The defininition of a solved form of a normal dominance constraint is designed in
analogy to the definition of solved forms of a dominance graph in Section 5.1.

Definition 5.6 (Solved Form). A normal dominance constraint ϕ is in solved
form if it satisfies the following three properties for all variables X, Y, Z in V(ϕ):

1. Dominance does not branch upwards: if X and Y are distinct then not both
X�

∗Z in ϕ and Y�
∗Z in ϕ.

2. Dominances go from holes to roots: there are no variables X, Y, Z such that
both X�

∗Z and some Y :f(. . . , Z, . . .) are in ϕ.

3. The graph of ϕ is acyclic: (X,X) 6∈ R+
ϕ .

We say that a constraint ϕ′ is an extension of the constraint ϕ if ϕ and ϕ′ contain
the same labelling and inequality atoms, and R∗

ϕ ⊆ R∗
ϕ′ . A solved form of a normal

constraint ϕ is a normal constraint ϕ′ that is in solved form and extends ϕ. A
solved form of ϕ which is not a proper extension of another solved form of ϕ is
called minimal.

A normal dominance constraint is solvable iff it has a solved form.

For example, the normal dominance constraint shown in Fig. 5.7(a) is not in solved
form because it does branch upwards, i.e. it contains the dominance atoms X ′

�
∗Z

and Y ′
�

∗Z. It has exactly two solved forms, which are shown as (b) and (c).

78 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

f • X

• X ′

g • Y

• Y ′

a • Z

f • X

•

g • Y

•

a • Z

g • Y

•

f • X

•

a • Z

f • X

g • Y

a • Z

h •

f • X

h •

g • Y

a • Z

c •

f •

b •

(a) (b) (c) (d) (e)

Figure 5.7: A normal dominance constraint (a) and its two solved forms (b and c),
along with two solutions of the first solved form (c and d).

Each solved form is a normal dominance constraint that represents an entire set of
solutions of (a). For example, two different solutions of (b) are shown in (d) and
(e). While (d) is the “intuitive” solution which contains only the node labels that
were mentioned in the constraint (a), there is also an infinite number of solutions
like (e), in which there is more material above and around X, or additional material
between the variables in a dominance atom (e.g. between X and Y). Note that the
constraint (X:f(Y) ∧ Y :g(Z) ∧ Z:a) 6=, which could be considered a solved form of
(a), isn’t a solved form of (a) because its labelling atoms contain different variables
(e.g. X:f(Y) rather thanX:f(X ′). In this we deviate from the definition of Althaus
et al. (2003); we have changed it for this presentation to simplify the connection
to solved forms of dominance graphs.

The constraints (b) and (c) are both minimal solved forms of (a), because they
have incomparable reachability relations. But there are also solved forms that are
non-minimal, in complete analogy to the solved forms of dominance graphs (see
Fig. 5.4). Minimal solved forms are solved forms, i.e. they are guaranteed to be
satisfiable (as we will show below); but they make the least possible commitments
beyond this. That is, they are representatives of maximal sets of solutions. In
addition, the two (minimal) solved forms in Fig. 5.7 correspond to the two read-
ings of the natural language sentence, i.e. to the two constructive solutions of the
dominance constraint. We will clarify this connection in Chapter 6.

The intuition that minimal solved forms represent classes of solutions is captured
by the following lemmas: Every solution of a constraint satisfies one of its minimal
solved forms (Lemma 5.9), and every solved form does have a solution (Lemma 5.8).

Lemma 5.7. Every normal dominance constraint that contains no dominance
atoms is satisfiable.

5.3. SOLVED FORMS 79

Proof. This is obvious for a constraint whose graph is connected. Now let’s say
that ϕ = ϕ1 ∧ . . . ∧ ϕn, where each ϕi is connected, and V(ϕi) ∩ V(ϕn) = ∅ for
any i 6= k; and let si be the ground term corresponding to a model ϕi, for each
i. Let f be a symbol of arity m ≥ 2, and let a be a nullary symbol (which
we assumed to exist). Now the tree structure corresponding to the ground term
f(s1, . . . , sm−1, f(sm, . . . , s2m−2, f(s2m−1, . . . , sn, a, . . . , a))) is a model of ϕ.

Proposition 5.8. Every normal dominance constraint in solved form has a solu-
tion.

Proof. Let’s say that ϕ is a normal dominance constraint in solved form; we have
to find a solution for ϕ. We will do this by applying Lemma 5.7. In order to do so,
we successively replace all dominance atoms in the constraint by labelling atoms,
in much the same way as in the proofs of Lemma 5.7 and Lemma 4.6.

The construction by which we eliminate the dominance atoms from ϕ is illustrated
in Fig. 5.8. Let X be a hole that appears on the left-hand side of a dominance
atom in ϕ, and let Y1, . . . , Yn be all roots with X�

∗Yi in ϕ. Further, let f |m be
a symbol with arity m ≥ 2 (which we assumed to exist), and let a be a nullary
symbol. Now let ϕ0 be the constraint obtained from ϕ by removing all dominance
atoms out of X. We distinguish two cases:

• If n > m, we introduce a new variable Z and repeat the iteration with the
constraint

(

ϕ0 ∧X:f(Y1, . . . , Ym−1, Z) ∧
n
∧

i=m

Z�
∗Yi

) 6=

.

• If n ≤ m, we introduce new variables Yn+1, . . . , Ym and repeat the iteration
with the constraint

(

ϕ0 ∧X:f(Y1, . . . , Ym) ∧
m
∧

i=n+1

Yi:a

) 6=

.

The result of each step in the iteration is a normal dominance constraint that has
fewer dominance atoms than the constraint from the previous iteration and entails
it (and hence, inductively, ϕ). Eventually the iteration terminates with a normal
dominance constraint that entails ϕ and contains no more dominance atoms. This
constraint has a solution according to Lemma 5.7, and because of the entailment,
this is also a solution of ϕ.

Proposition 5.9. Every solution of ϕ also satisfies some minimal solved form of
ϕ.

80 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

g •

• X

b • Y1 b • Y2 b • Y3 b • Y4

g •

f • X

b • Y1 b • Y2 f • Z

b • Y3 b • Y4 a • Y5

(a) (b)

Figure 5.8: Elimination of dominance atoms from a solved form.

Proof. Let (M, α) be a solution of ϕ. We construct a constraint ϕ′ which is a
solved form of ϕ and which is satisfied by (M, α). (It follows that there is also
some minimal solved form of ϕ that is satisfied by (M, α), because every solved
form extends and therefore entails some minimal solved form.) The general idea
is to define a partial function hole that maps each root to the lowest hole which
dominates it, according to α. Then we add dominance atoms connecting this hole
and the root to ϕ.

Consider a root Y of ϕ. The partial function hole : V(ϕ) V(ϕ) is defined on Y
iff there is a hole X with α(X)�∗α(Y). We define hole(Y) to be the lowest such
hole, i.e. the unique hole for which α(hole(Y))�∗α(Y) and for any other hole X
with α(X)�∗α(Y), we have α(X)�∗α(hole(Y)).

Now we make ϕ more specific by putting the dominances between every root Y and
its hole(Y) explicitly into the constraint. Let ϕl be the conjunction of all labelling
and inequality (but not dominance) atoms in ϕ.

ϕ′ = ϕl ∧
∧

{hole(Y)�∗Y | Y is a root for which hole is defined}.

ϕ′ is satisfied by (M, α), and it is a normal dominance constraint in solved form. It
remains to show that it is a solved form of ϕ, i.e. that R∗

ϕ ⊆ R∗
ϕ′ . We will do this by

proving that if X is a hole and Y is a root with α(X)�∗α(Y), then (X, Y) ∈ R∗
ϕ′ .

This establishes the claim because ϕ and ϕ′ have the same labelling atoms, and we
know for any atom X�

∗Y in ϕ that (X, Y) ∈ R∗
ϕ′.

We proceed by induction over the number n of holes on the path from α(X) to
α(Y). This path must contain α(hole(Y)), as by the definition of hole, we know
that α(X)�∗α(hole(Y))�∗α(Y). So if the number of holes on the path is 1, we
know that X = hole(Y), and we are done. Otherwise, let R be the root of the
maximal fragment that contains hole(Y). We know that α(X)�∗α(R), and the
number of holes on this path is smaller than n (it doesn’t contain hole(Y)). So by
induction hypothesis, (X,R) ∈ R∗

ϕ′ . But of course (R, hole(Y)) and (hole(Y), Y)
are also in R∗

ϕ′ , which proves the claim.

5.4. COMPACT DOMINANCE CONSTRAINTS 81

so
lv

ed
 f

or
m

s

ϕ

minimal

Figure 5.9: Solved forms and solutions of one constraint ϕ. Empty circles indicate
constraints; filled circles indicate solutions.

In fact, every solution of ϕ satisfies exactly one minimal solved form of ϕ. We don’t
have the tools yet to prove this conveniently, but we will show it in Corollary 5.25.
This clarifies the structure of the solved forms and solutions of a normal dominance
constraint as shown in Fig. 5.9. The (satisfiable) constraint ϕ has a finite number
of minimal solved forms. They are characterised as the minimal elements of the
extension order among all solved forms, but have the additional property that every
solved form extends exactly one minimal solved form. We have nothing specific to
say about the structure of the extension order, except that it has a set of maximal
elements, which is typically exponentially larger than the set of minimal solved
forms. Each maximal solved form is still satisfiable, and has an infinite number
of solutions. Thus the solved forms successively split up the solution space of a
normal constraint, and the minimal solved forms have the special status of splitting
even the set of solved forms into disjoint parts.

The dotted arrows pointing from ϕ to the minimal solved forms stand for some
mechanism of enumerating the minimal solved forms of a constraint. We will fill
in this part of the picture in Fig. 5.13.

Proposition 5.10. A normal dominance constraint is satisfiable iff it is solvable.

Proof. Follows immediately from Lemmas 5.8 and 5.9.

5.4 Compact Dominance Constraints

While normal dominance constraints are the class of constraints that we want
to use in applications (e.g. the underspecified semantic descriptions our grammar

82 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

∀ • X

→ •

man •

var •

•

∃ • Y

∧ •

woman •

var •

•

love • Z

var • Z′ var •

every man • X

•

a woman • Y

•

love var var • Z

(a) (b)

Figure 5.10: A normal dominance constraint which is not compact (a) and its
compactification (b).

computed), we will only state the encoding of constraints into graphs for compact
dominance constraints. This is essentially the class in which every fragment has
depth one, and every variable is therefore either a hole or a root. We will show
below that every normal dominance constraint can be compactified into a compact
dominance constraint with the same solutions, so by this detour we will still connect
normal constraints and dominance graphs.

Definition 5.11 (Compact Dominance Constraints). A compact dominance
constraint is a normal dominance constraint in which every variable occurs in ex-
actly one labelling atom, and for every dominance atom X�

∗Y , Y is a root.

For instance, the normal dominance constraint shown in Fig. 5.7 is compact, as all
of its fragments have depth one or less. The constraint shown in Fig. 5.10(a) is
not compact. But it is easy to see that if we replace each fragment with a single
labelling atom and move the dominances up to the roots (as in Fig. 5.10(b)), the
constraint becomes compact, and the solutions stay essentially the same – in other
words, because we have overlap-freeness, the internal structure of the fragments is
irrelevant, and we can just use fragments of depth zero or one instead. (Note that
the fragment at Z had depth one before, but e.g. the variable Z ′ was involved in
two labelling constraints.) This is what it means to compactify a normal dominance
constraint.

Definition 5.12 (Compactification). Let ϕ be a normal dominance constraint.
We construct the compactification Comp(ϕ) of ϕ as follows:

1. Let F1, . . . , Fn be the maximal fragments of ϕ.

2. For each 1 ≤ i ≤ n, let ai be the number of holes in Fi, and let fi be a new
constructor with arity ai.

5.4. COMPACT DOMINANCE CONSTRAINTS 83

3. For each 1 ≤ i ≤ n, let Xi be the root of Fi and Xi1, . . . , Xiai
be the holes of

Fi. Let Vc = {X1, . . . , Xn, X11, . . . , Xnan
}.

4. The compactification is

Comp(ϕ) :=
∧

{X�
∗R(Fmax(Y)) | X�

∗Y in ϕ}
∧

∧

{X 6= Y | X 6= Y in ϕ, X, Y ∈ Vc}
∧

∧

1≤i≤nXi:fi(Xi1, . . . , Xiai
)

Lemma 5.13 (Compactifications are compact). Comp(ϕ) is a compact dom-
inance constraint that can be computed in linear time from ϕ.

Proof. Condition 1 of Def. 5.4 carries over literally, as the two constraints have the
same roots. Conditions 2 and 4 are entailed by the stronger property of compact
constraints that every variable occurs in exactly one labelling atom, which is guar-
anteed by the construction. Dominances go from holes to roots, which establishes
the other compactness condition and Condition 3 for normal constraints.

Proposition 5.14 (Compactification preserves solutions). There is a one-
to-one correspondence between the solutions of ϕ and the solutions of Comp(ϕ).
In particular, ϕ and Comp(ϕ) are satisfiability equivalent, and have corresponding
solved forms.

Proof. We prove the first, stronger claim. Consider first a solution (M, α) of ϕ.
Let’s say that τ = (V,E, LV , LE) is the tree underlying M. We can construct a so-
lution (M′, α′) for Comp(ϕ) by specifying the tree τ ′ = (V ′, E ′, L′

V , L
′
E) underlying

M′ and the assignment α′ as follows:

V ′ = V − {α(X) | X ∈ V(ϕ) − Vc}
E ′ = {(v, w) ∈ E | v, w ∈ V ′}

∪ {(α(Xi), α(Xik)) | 1 ≤ i ≤ n, 1 ≤ k ≤ ai}

L′
V (v) =

{

fi if v = α(Xi)

LV (v) otherwise

L′
E(v, w) =

{

k if v = α(Xi) and w = α(Xik)

LE(v, w) otherwise

α′ = α|Vc

τ ′ is a finite constructor tree: Every node except for one has exactly one father (as
the only nodes which lost their fathers are the the holes, and they are now children
of the roots), the old root is still there (as it is not denoted by an internal variable
of a fragment), and the labelling functions are still total and respect arities (this is

84 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

vacuously true for unchanged nodes, and true by construction for the roots). Fur-
thermore, (M′, α′) satisfies Comp(ϕ) because it satisfies every single atom. Notice
that M can still contain nodes that are not α-denoted by any variable; these nodes
are taken over into M′ unchanged.

Conversely, consider a solution (M′, α′) of Comp(ϕ). We can construct a so-
lution for ϕ by reversing the construction above: For each labelling constraint
Xi:fi(Xi1, . . . , Xiai

) we introduce nodes for the internal nodes of Fi, and replace
all labels by the labels required by ϕ. Then we extend α′ by mapping the extra
variables in ϕ to the new nodes.

Note that all solved forms of a compact dominance constraint are compact, as they
contain the same labelling atoms.

5.5 Constraints as Graphs

We can now complete the first part of this chapter by making the connection be-
tween dominance graphs and compact dominance constraints precise. Intuitively,
we can obtain a dominance graph by drawing the informal graph for a compact
constraint and deleting all node labels. The crucial result that connects the con-
straint and graph perspectives is Prop. 5.17, which says that a constraint and its
encoding have corresponding solved forms.

Definition 5.15 (Dominance Graph of a Constraint). Let ϕ be a compact
dominance constraint. The dominance graph of ϕ is the graph G(ϕ) := (V(ϕ), E ∪̇
D) with

E = {(X,Xi) | X:f(X1, . . . , Xn) in ϕ, 1 ≤ i ≤ n}
D = {(X, Y) | X�

∗Y in ϕ}

Lemma 5.16. Let ϕ be a compact dominance constraint.

1. G(ϕ) is a dominance graph.

2. G(ϕ) and ϕ have the same roots and holes.

3. The relations R∗
ϕ and R∗

G(ϕ) are equal.

4. ϕ is in solved form iff G(ϕ) is.

5. ϕ′ is a solved form of ϕ iff G(ϕ′) is a solved form of G(ϕ).

5.5. CONSTRAINTS AS GRAPHS 85

Proof. 1. The edge sets E and D are disjoint because the head of each labelling
atom in ϕ is a root, and the variable on the left-hand side of a dominance
atom is a hole. The graph (V,E) is a forest whose trees are the maximal
fragments of ϕ (Lemma 5.5). The height of each tree in this forest is at most
one because ϕ is compact.

2. We just showed this.

3. The two relations are transitive closures over the same set.

4. Let ϕ be in solved form. All nodes in G(ϕ) have at most one incoming edge:
This is by definition for holes, and it is true for roots because ϕ is in solved
form. G(ϕ) is also acyclic because R+

ϕ = R+
G(ϕ), and the former contains no

elements of the form (X,X) . The converse direction is obvious.

5. This is an immediate consequence of the previous statements and the defini-
tions of solved forms. Note that G(ϕ′) is well-defined because solved forms
of compact constraints are compact.

We can use these basic properties to prove that a compact dominance constraints
and its corresponding dominance graph always have the same solved forms.

Proposition 5.17. Let ϕ be a compact dominance constraint. Then there is a
one-to-one correspondence between the solved forms of ϕ and the solved forms of
G(ϕ), which is given by the mapping ϕ′ 7→ G(ϕ′).

Proof. One direction follows immediately from Lemma 5.16 (5): If ϕ′ is a solved
form of ϕ, then G(ϕ′) is a solved form of G(ϕ).

Conversely, let G′ be some solved form of G(ϕ). G′ contains the same trees as
G(ϕ), each of which encodes a labelling atom in ϕ, plus some dominance edges.
So if we take ϕ′ to be the conjunction of all labelling and inequality atoms from ϕ
and the dominance atoms X�

∗Y for each dominance edge (X, Y) in G′, we know
that G′ = G(ϕ′). Applying Lemma 5.16 (5) in the other direction, it follows that
ϕ′ must be a solved form of ϕ.

Note that we have to assume here that different solved forms are encoded as differ-
ent dominance graphs. This is true if we consider the graphs themselves, and not
their isomorphy classes, i.e. solved forms such as (b) and (c) in Fig. 5.4 are still
different because W is above Y in one graph and below in the other.

86 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

Corollary 5.18. The solvability problems of compact dominance constraints and
dominance graphs are linear time equivalent.

Proof. We just reduced solvability of compact dominance constraints to solvability
of dominance graphs.

For the reverse direction, let G be an arbitrary dominance graph whose solvability
we want to check. We can pick a ranked signature Σ for dominance constraints
such that if G contains a root with outdegree k, Σ contains a symbol with arity
k. By assigning symbols with appropriate arities to the roots, we can reconstruct
a compact dominance constraint ϕ with G = G(ϕ). But then G is solvable iff ϕ
is.

5.6 Enumeration of Minimal Solved Forms

Let’s take stock at this point where we are within the story of this chapter. We
have solved the first problem we set out to solve: We can encode every normal
dominance constraint as a dominance graph, in such a way that their solved forms
correspond. This encoding consists of two smaller steps: We first compactify the
normal constraint into a compact constraint (which preserves solutions and solved
forms), and then we translate the compact constraint into a dominance graph
(which preserves solved forms).

Taking all this together, we know that satisfiability of normal dominance con-
straints is equivalent to solvability of dominance graphs, and that the solved forms
of a normal dominance constraint and its encoding as a dominance graph corre-
spond. This means that if we knew how to compute the solved forms of a domi-
nance graph efficiently, we would know how to do the same for a normal dominance
constraint; and if we had a polynomial algorithm for checking solvability of a domi-
nance graph, we could use it as a polynomial satisfiability test for normal dominance
constraints.

We will start with an enumeration algorithm which computes the minimal solved
forms of a dominance graph, given an subroutine which tests dominance graphs
for unsolvability. For the initial presentation, we will use a naive unsolvability
procedure, which simply checks the dominance graph for directed cycles. This
procedure is sound (because all dominance graphs with cycles are unsolvable), but
not complete (there are dominance graphs without directed cycles that are still
unsolvable). However, this is sufficient to prove correctness of the enumeration
algorithm. In the next section, we will then replace the cycle test by a complete
unsolvability procedure, which will speed up the enumeration.

5.6. ENUMERATION OF MINIMAL SOLVED FORMS 87

1. Make the dominance graph G irredundant, i.e. remove all dominance edges
that are implied by transitivity.

2. If unsolvable(G), then report failure.

3. If the Choice rule is applicable toG, apply it and call the algorithm recursively
for the two extended graphs.

4. Otherwise, report G as a solved form.

Figure 5.11: The enumeration algorithm.

The enumeration algorithm, shown in Fig. 5.11, is a search algorithm that suc-
cessively arranges fragments which dominate a common root (see Fig. 5.12). It is
initially called with the graph G whose solved forms we want to compute, and calls
itself recursively with extensions of G. Whenever the algorithm reaches Line 4, it
reports the current graph as a minimal solved form of G. If no recursive call ever
reaches Line 4, the graph is reported to be unsolvable.

A dominance edge d = (v, w) is redundant if there is a path from v to w in G− d.
A dominance graph is irredundant if it contains no redundant edges.

The algorithm maintains the invariant that the graph in Line 3 is acyclic and
irredundant. We call a dominance edge d = (v, w) in a dominance graph redundant
if there is a path from v to w in G− d, and we call the entire graph G irredundant
if it contains no redundant edges. In order to ensure the invariant, the algorithm
first eliminates all redundant edges, using the following simplification rule:

Simplification Rule 5.1 (Redundancy Elimination). Remove all redundant
dominance edges from a dominance graph.

We can eliminate redundancy using a standard algorithm for the transitive reduc-
tion of directed graphs (Goralcikova and Koubek 1979; Simon 1988), using time
O(mn) for a graph with n nodes and m edges.

If the resulting graph is reported as unsolvable by the unsolvability procedure,
the recursive instance of the algorithm terminates without reporting a solved form
(Line 2). If the graph is reported as solvable (in particular, it has no cycles) and
contains no nodes with two incoming dominance edges, it is a forest, and hence
reported as a solved form. Otherwise, the algorithm picks some node with two
(or more) incoming dominance edges, and arranges the two fragments dominating
this node (Fig. 5.12). This Choice rule is the driving force behind the enumeration

88 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

x

• r

• • • l •

• r′

• l′ •

• v

• • • →

x

• r

• • • l •

• r′

• l′ •

• v

• • •

x

• r

• • • l •

• r′

• l′ •

• v

• • •

Figure 5.12: The Choice rule.

process. It can be seen as a combination of the rules (NegDisj) and (Distr.NegDisj)
from Algorithm S in Chapter 4, stated in terms of dominance graphs.

Simplification Rule 5.2 (Choice). Let v be a root with at least two incoming
dominance edges (l, v) and (l′, v), and let r and r′ be the roots of the trees containing
l and l′, respectively. Generate two new graphs by adding either (l, r ′) or (l′, r) to
the dominance graph as a dominance edge.

In order to prove the correctness of the enumeration algorithm, we must of course
make some minimal assumptions about the correctness of the unsolvability proce-
dure.

Definition 5.19 (Unsolvability Procedure). A function unsolvable is a sound
unsolvability procedure iff whenever it claims a dominance graph G is unsolvable,
G is indeed unsolvable. unsolvable is a cyclicity complete unsolvability procedure
iff it claims that G is unsolvable at least whenever G has a cycle.

Note that we don’t require that unsolvable is complete in the sense that whenever
G is unsolvable, unsolvable will report it as unsolvable. It is sufficient to detect
the trivial case in which G is unsolvable because it has a directed cycle: This test
is complete on graphs to which the Choice rule can’t be applied, so it will detect
unsolvability eventually.

The correctness proof uses the concept of a choice tree, which is the tree of re-
cursive call instances of the enumeration algorithm for a given graph and a given
unsolvability procedure. We will also use choice trees in the proof of our main
Theorem 5.29 below.

Definition 5.20 (Choice Tree). Let G be a dominance graph, and let U be an
unsolvability procedure. The choice tree ctU

G is the call tree of the enumeration
algorithm parametrised with U on input G. We write ctU

G(v) for the irredundant
graph considered in node v of the choice tree.

Each node in the choice tree corresponds to a recursive call instance, and is dec-
orated with the irredundant version of the graph which was passed to it as an

5.6. ENUMERATION OF MINIMAL SOLVED FORMS 89

argument; in particular, the root of ctU
G is decorated with G. The leaves of the

choice tree can either be successful (i.e. the graph argument was reported as a
solved form), or failed (i.e. the unsolvability procedure claimed the graph was un-
solvable). Every internal node has two children, which correspond to the two graphs
generated by the Choice rule.

Lemma 5.21. Let G be a dominance graph, U any unsolvability test, and v, v1, v2

arbitrary nodes in ctU
G.

1. ctU
G(v1) extends ctUG(v2) if v2 dominates v1 in ctU

G; otherwise the two graphs
have no solved forms in common.

2. ctU
G(v) extends G.

3. If v1 and v2 are different leaves of ctU
G, then ctU

G(v1) and ctU
G(v2) have no

solved forms in common.

Proof. We only prove (1), as the other two statements follow trivially from it.

Applications of the Choice rule don’t affect nodes and tree edges, and strictly
increase the reachability relation. Redundancy elimination changes neither nodes,
tree edges, nor reachability. This means that if v2 dominates v1, ctUG(v1) extends
ctU

G(v2).

If v1 and v2 are in disjoint positions of the choice tree, there must be a lowest node
v that dominates both v1 and v2 and different children v′1 and v′2 of v such that v′1
dominates v1, and v′2 dominates v2. ctU

G(v′1) and ctU
G(v′2) were created by the same

application of the Choice rule, and therefore there are two leaves l and l′ for which
one of the two graphs claims that l dominates l′, and the other graph claims that
l′ dominates l, i.e. they make contradictory claims about the reachability relation.
Because ctU

G(v1) and ctUG(v2) make these same contradictory claims, they can have
no solved forms in common.

Lemma 5.22. Let G be a dominance graph, U a sound unsolvability test, and S
an arbitrary solved form of G. Then there is a successful leaf v of ctU

G of which S
is an extension.

Proof. Induction over the height of ctU
G. If the height is 0, G decorates a leaf. It

is either failed, in which case G is unsolvable (due to the soundness of U) and has
no solved forms; or it is a successful leaf, in which case G is in solved form and
therefore S is an extension of G.

If the height n is positive, then the two children H and H ′ of G in the choice tree
are extensions of G. They are the results of an application of Choice to G, so S is

90 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

a solved form either of H or of H ′. Let’s say S is a solved form of H. The choice
tree for H has depth n− 1, so it has a successful leaf v of which S is an extension,
by induction hypothesis. But v is of course also a leaf in the choice tree of G.

Lemma 5.23. Let G be a dominance graph and U an unsolvability test which is
cyclicity complete.

1. For every successful leaf v of ctU
G, ctU

G(v) is a graph in solved form.

2. The length of every path in ctU
G is finite and in O(|VG|2).

Proof. 1. The graph decorating a successful leaf of ctU
G has no node with two

incoming edges (because Choice isn’t applicable), and it is cycle-free (because
U doesn’t report it as unsolvable). This means it is a forest.

2. Because the graphs are made irredundant before the Choice rule is applied,
rG = |R∗

G| increases strictly from parent to child in the choice tree. An acyclic
graph G with n nodes can have at most n2 pairs in its reachability relation,
i.e. rG ≤ n2. So every path in ctU

G can contain at most n2 acyclic graphs. But
if a node v on a path is decorated with a cyclic graph, U would report v as
a failure and terminate the computation on this path.

Proposition 5.24 (Correctness of the enumeration algorithm). The algo-
rithm in Fig. 5.11, parameterised with a sound and cyclicity complete unsolvability
test, terminates and computes exactly the minimal solved forms of a dominance
graph.

Proof. Termination is clear from the fact that the choice tree is finite (Lemma 5.23).

Now let G be a dominance graph, and let U be a sound and cyclicity complete
unsolvability test. If we pick any minimal solved form G′ of G, we can show that
G′ decorates some successful leaf of ctU

G. This is because G′ extends ctUG(u) for some
successful leaf u (Lemma 5.22), and ctU

G(u) is itself in solved form (Lemma 5.23(1)).
Because G′ is minimal this means that the two graphs must have the same reach-
ability relations, and therefore must be equal.

On the other hand, let v be an arbitrary successful leaf of ctU
G. ctUG(v) is a solved

form of G (Lemma 5.23(1); Lemma 5.21(2)). It is minimal, for assume it weren’t,
and let S ′ be a minimal solved form of which ctU

G(v) is an extension. S ′ also
decorates a leaf v′ of ctU

G, and v and v′ are disjoint nodes. But then ctU
G(v) and S ′

have no solved forms in common (Lemma 5.21(3)), which contradicts the fact that
ctU

G(v) solves both of them.

5.6. ENUMERATION OF MINIMAL SOLVED FORMS 91

ϕ

so
lv

ed
 f

or
m

s

minimal

ch
oi

ce
 tr

ee

Figure 5.13: Getting from a normal dominance constraint to its minimal solved
forms, and then on to the solutions.

As a further application of Lemma 5.21, we can now give the promised proof of
the fact that every solution of a normal dominance constraint satisfies exactly one
minimal solved form.

Corollary 5.25. Every solution of a normal dominance constraint ϕ satisfies ex-
actly one minimal solved form of ϕ.

Proof. We proved existence of a minimal solved form in Lemma 5.9. For the
uniqueness, consider the fact that any two different minimal solved forms of ϕ
correspond to different minimal solved forms of G = G(Comp(ϕ)), and therefore
to different leaves of ctU

G. As we argued in the proof of Lemma 5.21(1), different
leaves of the choice tree make contradictory claims about the relative positions of
encodings of two variables X and Y in ϕ; i.e. the two minimal solved forms must
have disjoint solution sets.

This allows us to complete the picture in Fig. 5.9 by filling in the gap between the
constraint ϕ and the minimal solved forms. We can read the empty circles either
as normal dominance constraints or as dominance graphs. The choice tree is shown
in the upper part of the picture: It has the original constraint at its root, and its
leaves are the minimal solved forms. Each minimal solved form is extended by a
number of other solved forms. In the case of constraints (rather than graphs), each
solved form is then satisfied by an infinite number of solutions, in such a way that
each solution satisfies exactly one minimal solved form.

Thus we have a complete correspondence between the constraint world and the
graph world, and we can apply the graph-based enumeration algorithm to compute
minimal solved forms of the constraints.

92 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

• X

• X1 • X2

• Y

• •

• Z • W

• X

• X ′

• Y

• •

• Z • W

• X

•

• Y

• •

• Z • W

(a) (b) (c)

Figure 5.14: The dominance graph in (a) has a simple hypernormal cycle and is thus
unsolvable. The graph in (b) has an undirected cycle which is not hypernormal; it
has the solved form (c).

5.7 Hypernormal Cycles

Now we are prepared to answer the second question above, i.e. how to check a
dominance graph for solvability in polynomial time. This polynomial algorithm
can take the role of a very strong propagator in the context of the enumeration
algorithm. Choice trees using this algorithm will be smaller than choice trees using
a simple cyclicity test, because the latter can contain entire subtrees that have only
failed leaves. A consequence in terms of runtime is that we can use the polynomial
solvability algorithm to compute a minimal solved form in polynomial time; but of
course the number of all minimal solved forms can still be exponential in the size
of the graph.

The polynomial solvability algorithm will test whether a dominance graph contains
a certain type of undirected cycle: a simple hypernormal cycle. We will define
hypernormal cycles and prove their relation to graph solvability in this section, and
then we will show how to check for the presence of a hypernormal cycle efficiently
in Section 5.8.

Let’s first try to get an intuition for what sort of dominance graphs is unsolvable.
The simplest example is a dominance graph with a cycle: It is clear that cyclic
dominance requirements can never be realised by a tree-shaped solved form. But
an unsolvable graph need not contain a directed cycle. An example is the graph
shown in Fig. 5.14(a). This graph is unsolvable because the fragments at X and Y
cannot be arranged with respect to each other without overlap. It is acyclic, but
its undirected version has a cycle. On the other hand, the graph in Fig. 5.14(b) is
solvable – the solved form is shown in (c) –, and its undirected graph has a cycle,
too. The crucial difference is that the cycle in (b) visits a fragment via a dominance
edge into the hole X ′ and leaves it by a dominance edge, without going through

5.7. HYPERNORMAL CYCLES 93

a tree edge first. The cycle in (a) enters the fragment of X by the hole X1 and
leaves it by the hole X2, going across tree edges in between. Undirected cycles as
in (a) are called hypernormal, and they are the type of cycle we will check for to
establish unsolvability.

Definition 5.26. If G is a dominance graph, we write Gu for the undirected graph
obtained by deleting the direction of all edges in G. The nodes of Gu are still
partitioned into roots and holes, and the edges are still partitioned into dominance
and tree edges.

A bend in a (directed or undirected) graph is a triple 〈e, v, f〉 of two edges e, f and
a node v such that e ◦ f is a path whose middle node is v. Cycles in undirected
graphs are defined as usual. A bend is on a cycle if its two edges appear in adjacent
positions on the cycle.

A bend 〈e, v, f〉 is called hypernormal if either v is a root, or one of e and f is a
tree edge. A hypernormal path is a path in an undirected dominance graph whose
bends are all hypernormal. A hypernormal cycle is a hypernormal path which is a
cycle.

The cycle in Fig. 5.14(a) is hypernormal, because all of its bends are hypernormal:
for instance, the bends at X and X1 each use a tree edge, and the bend at Z is at
a root. On the other hand, the cycle in (b) is not hypernormal because the bend
at X ′ is not hypernormal.

We will now prove that a dominance graph is unsolvable iff its undirected version
has a simple hypernormal cycle, i.e. a hypernormal cycle that visits no node twice.
This proof will go by induction over the structure of the choice tree using the
naive cyclicity test. So I will first show that the two simplification rules used in
the enumeration algorithm from Section 5.6 preserve the presence of hypernormal
cycles, and then we will put the pieces together in the main theorem. The structure
of this proof follows (Thiel 2004), and simplifies the original proof from (Althaus
et al. 2003).

Lemma 5.27. Let the dominance graph G′ be the result of applying Simplification
Rule 5.1 (Redundancy Elimination) to G. Then Gu has a simple hypernormal cycle
iff G′

u has one.

Proof. If G′
u has a simple hypernormal cycle, then Gu also has one, as it contains

all edges that are in G′
u.

Conversely, let’s say that Gu has a simple hypernormal cycle C, and that redun-
dancy elimination has removed the edge e = (l, s) from G. Because C is hypernor-
mal, the bend at the leaf l is also hypernormal, which means that C also uses the

94 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

l

s

r

x

P

C

P

C

x

x

s

rx

R

Q

Q

R1

22

1

l 1

r1 2

l 2

(Lemma 5.27) (Lemma 5.28)

Figure 5.15: Construction of the hypernormal cycles in the proofs of Lemmas 5.27
and 5.28. Squares indicate roots, circles indicate holes.

tree edge {r, l} into l. So let’s say that C starts with {r, l} and uses {l, s} as its
second edge.

Since e is redundant in G, there is a simple directed path P from l to s in G′. Let
x be the last node on C which is also visited by P ; we know x 6= l, but x may be
equal to s. Let Px be the prefix of P from l to x. If x = r, then Px ◦ (r, l) is a
simple directed cycle in G′, which translates to a simple hypernormal cycle in G′

u.

So assume x 6= r; this means that the suffix Cx of C from x to r is not empty (see
Fig. 5.15). Identifying Px with the corresponding undirected path in G′

u, we obtain
the simple cycle C ′ = {r, l} ◦ Px ◦ Cx. Since x 6= l, we can conclude that C ′ (and
in particular, Cx) does not use the edge {l, s}, and hence it is a cycle in G′

u.

It is obvious that the bends at r and l and all bends on Cx are hypernormal. All
bends on Px must also be hypernormal, because Px is a directed path. Furthermore,
the bend at x is also hypernormal, as it is either a root, or the directed path Px

enters it via a tree edge. This means that C ′ is also a hypernormal cycle, which
concludes the proof.

Lemma 5.28. Let H and H ′ be the two dominance graphs computed by Simplifi-
cation Rule 5.2 (Choice) from G. Then Gu has a simple hypernormal cycle iff both
Hu and H ′

u have simple hypernormal cycles.

Proof. Again, it is clear that if Gu has a simple hypernormal cycle, then both Hu

and H ′
u have a (the same) simple hypernormal cycle too.

5.7. HYPERNORMAL CYCLES 95

For the converse direction, let’s assume that G contains the dominance edges (l1, s)
and (l2, s), and that we created Hu and H ′

u by adding the edges (l1, r2) and (l2, r1),
respectively, where each ri is the root of the fragment containing li. Let’s say
further that both Hu and H ′

u have simple hypernormal cycles, C1 and C2. We
can assume that the two cycles use the new edges, otherwise the proof is trivial.
We can decompose the cycles into C1 = {r2, l1} ◦ {l1, r1} ◦ P1 (in Hu) and C2 =
{r1, l2} ◦ {l2, r2} ◦ P2 (in H ′

u). Because C1 and C2 are simple, we know that P1

avoids l1, and P2 avoids l2.

Now we distinguish the following cases.

1. P1 or P2 visits s. Then we can construct a simple hypernormal cycle in Gu

as follows. Suppose P1 = P ′ ◦ P ′′ such that P ′ ends in s. Then

C = P ′ ◦ {s, l1} ◦ {l1, r1}

is a hypernormal cycle because all bends in P ′ are hypernormal, s is a root,
and we leave l1 through a tree edge. C is simple because P1 avoids l1. The
analogous argument applies if P2 visits s.

2. Neither P1 nor P2 visits s. In this case, let x be the first node on P1 different
from r1 that also lies on P2. If x = r2, i.e. P1 and P2 have no inner node in
common, then P1 ◦ P2 is a simple cycle. This cycle is hypernormal because
all bends on P1 and P2 are, and the two paths are joined at the roots r1 and
r2, so these bends are hypernormal too.

3. The final case is that neither P1 nor P2 visits s, and x 6= r2. In this case we
construct a simple hypernormal cycle by first decomposing P1 and P2 into
Pi = Qi ◦Ri, where Qi ends at x, and Ri starts at x. Q1 is a path from r1 to
x, and R2 is a path from x to r1, so Q1 ◦R2 is a simple cycle.

If Q1 ◦R2 is also hypernormal, we are done.

Otherwise, the bend at x must be not hypernormal, i.e. x is a leaf, Q1 ends
with a dominance edge, and R2 starts with a dominance edge. This situation
is shown in Fig. 5.15. Now we consider the cycle

C = Q2 ◦Q1
rev ◦ {r1, l1} ◦ {l1, s} ◦ {s, l2} ◦ {l2, r2}.

Let’s prove simplicity of C first. Q1 and Q2 have no nodes in common, except
for x. We know that Q1 avoids l1 and s and that Q2 avoids l2 and s, because
each Qi is a prefix of the respective Pi. It remains to show that Q1 avoids l2
and that Q2 avoids l1; we show the case of Q1 and l2, the other case follows
by analogy. So let’s assume that even P1 visits l2. Because the bend of P1

96 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

at l2 is hypernormal, P1 must either enter or leave l2 through the tree edge
{r2, l2}. But P1 is a simple path that ends in r2, so this must be the last
edge on P1. Q1 is the prefix of P1 that ends in x. Now x 6= r2 as per our
assumption for the third case above; and on the other hand, x 6= l2 because
it x is on Q2, and Q2 does not visit l2. This means that l2 is an inner node
of R1, and hence not visited by Q1.

As for hypernormality of C, we know that all bends on Q1 and Q2 are hy-
pernormal. The bend at x is hypernormal because P2 is hypernormal and R2

starts with a dominance edge, so Q2 must end with a tree edge. The bends
at the ri and li all involve a tree edge, and s is a root. Therefore all bends
on C are hypernormal, which concludes the proof.

Theorem 5.29 (Solvability of dominance graphs). A dominance graph G is
unsolvable iff Gu has a simple hypernormal cycle.

Proof. Assume first that Gu has a simple hypernormal cycle. Because of the Lem-
mata 5.27 and 5.28, we know that every dominance graph that decorates any node
of ct

cyc
G , where cyc is the cyclicity test, has a simple hypernormal cycle. Now let v

be any leaf of the choice tree. ct
cyc
G (v) contains no node with two incoming domi-

nance edges, which means that the simple hypernormal cycle which its undirected
version contains can never change directions. Hence, it contains a directed cycle,
and is thus reported as a failed leaf by the enumeration algorithm. But because
of Prop. 5.24, we know that a graph whose choice tree has only failed leaves is
unsolvable.

Conversely, assume that Gu doesn’t have a simple hypernormal cycle. Consider
again the choice tree ct

cyc
G . Because the two simplification rules also preserve the

absence of a hypernormal cycle, we know that at least one child of each node in ct
cyc
G

that doesn’t have a simple hypernormal cycle doesn’t have a simple hypernormal
cycle either. The choice tree has only finite paths, so it must have some leaf v whose
graph G′ doesn’t have a simple hypernormal cycle, and therefore no directed cycle
either. But this means that G′ is in solved form, and therefore solves G.

The simplicity condition in the theorem and the lemmas is essential. This is il-
lustrated by the example in Fig. 5.16. The dominance graph (a) has a non-simple
hypernormal cycle, which starts at A1, traverses the left-hand cycle via B, F , and
C, then moves via A1 and A to A2, then traverses the right-hand cycle via D, G,
and E, and then returns to A1 via A2 and A. The cycle is not simple because

5.7. HYPERNORMAL CYCLES 97

• A

• A1

• B

• B1

• C

• C1

• A2

• D

• D1

• E

• E1

• F • G

• A

• A1

• B

• B1

• C

• C1

• F

• A2

• D

• D1

• E

• E1

• G

(a) (b)

Figure 5.16: A graph which has a non-simple hypernormal cycle, but no simple
one (a), and one of its solved forms (b).

it visits the nodes A, A1, and A2 twice. Indeed, the graph does not contain any
simple hypernormal cycle, and it does have a solved form, shown in (b).

The definition of hypernormal cycles in (Althaus et al. 2003) is subtly different
in that it requires that a hypernormal cycle may contain no two dominance edges
that emanate from the same hole; these two dominance edges can be anywhere
in the cycle, and need not be in adjacent positions, i.e. the cycle in Fig. 5.16
would not count as hypernormal. Let’s call this definition graph hypernormality,
and the one from Def. 5.26, path hypernormality. The two notions coincide in the
case of simple cycles. Graph hypernormal cycles always have simple graph hyper-
normal sub-cycles, which is why Althaus et al. (2003) could state Theorem 5.29
for arbitrary and not just simple cycles. From this perspective, the example in
Fig. 5.16 illustrates that there are path hypernormal cycles that have no simple
path hypernormal sub-cycles.

We have still chosen to state the theorem in terms of path hypernormal cycles
because it simplifies the definitions and proofs, and is more directly tested by the
hypernormality algorithm in the next section. However, note the following lemma,
which can be used to relax the application condition of Theorem 5.29. An edge-
simple path in a graph is one that uses each edge only once.

Lemma 5.30. If an undirected dominance graph has an edge-simple hypernormal
cycle, it also has a simple hypernormal cycle.

Proof. Let C be an edge-simple hypernormal cycle. We can assume that C contains
no roots twice, as we can cut out subcycles that join the main cycle at a root without
destroying the hypernormality. But such a cycle cannot contain a hole twice either,

98 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

for assume that v is a hole that appears twice on C. At most one tree edge on C can
be incident to v (as only one tree edge is incident to v in G, and C is edge-simple).
This means that all other (at least three) edges on C that are incident to v must
be dominance edges, which contradicts the assumption that C is hypernormal.

5.8 Testing for Hypernormal Cycles

The keystone of this chapter is a quadratic algorithm that tests a dominance graph
for hypernormal cycles, which we will define now. We reduce the problem of de-
tecting hypernormal cycles to a matching problem in an auxiliary graph. Recall
the following basic definitions from matching theory.

Definition 5.31. A matching M in a graph G is a set of edges of G such that
every node of G is incident to at most one edge in M . M is a perfect matching iff
every node is incident to exactly one edge in M . We call the edges in M matching
edges and the other edges non-matching edges. An alternating path with respect
to M is a simple path which alternately uses a matching edge and a non-matching
edge. An alternating cycle is a cycle which is an alternating path.

We construct the auxiliary graph A(Gu) from the undirected dominance graph Gu

as follows. For every edge e = {v, w} in Gu, A(Gu) contains the nodes ev = (e, v)
and ew = (e, w). A(Gu) contains edges of two different types:

(a) For every edge e = {v, w} in Gu, A(Gu) contains the edge a(e) = {ev, ew}.

(b) For every hypernormal bend 〈e, v, f〉 in Gu, A(Gu) contains the edge
b(〈e, v, f〉) = {ev, fv}.

The edges of type (a) form a perfect matching M in A(Gu), and connect the two
nodes corresponding to each edge. These edges are drawn as solid lines in the
example graph in Fig. 5.17. The edges of type (b) encode hypernormal bends, and
are drawn as dashed lines in Fig. 5.17. Note that all bends in the example are
hypernormal, except for the bend at c – which is why the nodes {c, d}c and {c, f}c

are not connected by an edge of type (b) in A(Gu).

Now compare the simple undirected cycles in G in Fig. 5.17. The cycle (a, b, d, c, a),
which is hypernormal, translates to an alternating cycle in A(Gu) with respect
to M . However, the cycle (c, d, e, h, g, f, c), which is not hypernormal, does not
correspond to an alternating cycle in A(Gu). The crucial edge of type (b) at the
exclamation mark is missing to close the cycle. We can make a detour (d, b, a, c)

5.8. TESTING FOR HYPERNORMAL CYCLES 99

d

b c

a

e

f

g

h

d

b c

a

e

f

g

h

!

G uA(G)

Figure 5.17: Construction of the auxiliary graph A(Gu).

in A(Gu) to obtain an alternating cycle again, but this again corresponds to a
(different) simple hypernormal cycle in G. This suggests the following proposition.

Proposition 5.32. The undirected dominance graph Gu contains a simple hyper-
normal cycle iff the auxiliary graph A(Gu) contains an alternating cycle with respect
to the matching M .

Proof. Suppose first that Gu contains a simple hypernormal cycle C. Then every
pair of consecutive edges on C forms a hypernormal bend. Suppose C = e0 ◦ e1 ◦
. . .◦en−1, where ei = {vi, vi+1} for i = 0, . . . , n−1. Then C ′ = a(e0)◦b(〈e0, v1, e1〉)◦
a(e1) ◦ · · · ◦ a(en−1) ◦ b(〈en−1, v0, e0〉) is an alternating cycle in A(Gu).

Conversely, suppose that A(Gu) contains an alternating cycle C ′ = a(e0) ◦
b(〈e′0, v

′
1, e

′
1〉) ◦ a(e1) ◦ . . . ◦ b(〈e′n−1, v

′
0, e

′
0〉). By construction of A(Gu), we know

that for each 0 ≤ i ≤ n − 1, either ei = e′i and e(i+1) mod n = e′(i+1) mod n, or
ei = e′(i+1) mod n and e(i+1) mod n = e′i; i.e., both ei and e(i+1) mod n are adjacent to
v′(i+1) mod n. This means that the sequence C = e0◦ . . .◦en−1 is a cycle in Gu, which

is edge-simple because A(Gu) is simple. Every bend in C is hypernormal because
any two consecutive edges came from a type (b) edge in A(Gu), which encoded
hypernormal bends; so C is hypernormal. Combined with Lemma 5.30, this means
that Gu has a simple hypernormal cycle.

It remains to show how the alternating cycle can be found in polynomial time.

Proposition 5.33. An irredundant dominance graph Gu with n nodes and m edges
can be tested for the presence of hypernormal cycles in time O(m′), where m′ =
O(m+

∑

v∈V deg(v)2) = O(nm).

100 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

Proof. We first bound the size of the auxiliary graph A(Gu); then we determine
the runtimes of algorithms on a graph of that size.

The graph A(Gu) has n′ = 2m nodes – two for each edge in Gu. It has m edges
of type (a). For the edges of type (b), we count the number of hypernormal bends
at a node v. For a leaf, we get outdeg(v) hypernormal bends (one bend for the
incoming tree edge and each outgoing dominance edge), so the total number of
type (b) edges around leaves is O(m). For a root, we get

(

deg(v)
2

)

(one bend for each
pair of edges incident to v). Thus the number of edges of A(Gu) is

m′ = O(m+m+
∑

v is a root

(

deg(v)

2

)

) = O(m+
∑

v is a root

deg(v)2).

Now we bound the sum over the square degrees of the roots. We can assume that
each root has outdegree 2 or less; otherwise we replace each root of higher arity
with a small binary tree, which does not affect hypernormal cycles and increases
the number of nodes and edges only by a constant factor. On the other hand, any
root with indegree greater than n must have two incoming dominance edges from
different leaves of the same fragment because Gu is irredundant. This situation
can be recognised in time O(m), and we do not need to consider it further, as the
graph has an obvious hypernormal cycle in this case. So if we have r ≤ n roots,
and the indegree of the i-th root is di, we have di ≤ n and

∑r
i=1 di ≤ m.

The sum S =
∑r

i=1 d
2
i is maximised if we set d1, . . . , dm/n = n and dm/n+1, . . . , dr =

0. For consider otherwise; then the maximising assignment has indices i, k with
0 < di ≤ dk < n. But then if we increase dk and decrease di by 1, we still have
a valid assignment for which the sum of the squares is strictly greater than S, a
contradiction. Thus S = O(m/n · n2) = O(nm), and hence

∑

v is a root

deg(v)2 = O(nm),

i.e. m′ = O(mn).

Now we can apply an algorithm by Gabow et al. (2001) which decides whether
A(Gu) has an alternating cycle with respect to M in time O(m′). This proves the
claim that Gu can be tested for hypernormal cycles in time O(mn).

Corollary 5.34 (Solvability of dominance graphs). Solvability of a dominance
graph with n nodes and m edges can be decided in time O(mn). A minimal solved
form can be computed in time O(mn3).

Proof. The paths in the choice tree have a depth of at most n2. In each node of the
choice tree, we must make the graph irredundant (i.e. transitive reduction) and
test it for hypernormal cycles. This takes time O(mn) each.

5.9. NORMAL DOMINANCE AND BINDING CONSTRAINTS 101

Corollary 5.35 (Satisfiability of normal dominance constraints). Satisfi-
ability of a normal dominance constraint with m atoms can be decided in time
O(m2). A solved form can be computed in time O(m4).

Proof. The dominance graph of a constraint with m atoms and n variables has n
nodes and O(m) edges, and of course n = O(m).

5.9 Normal Dominance and Binding Constraints

To conclude this chapter, we will show how satisfiability of certain dominance and
binding constraints can also be decided in polynomial time. The crucial property
of these constraints will be that the dominance part is normal, and strong enough
to represent the relevant structural implications of the binding part. This will
allow us to simply delete the binding atoms while preserving solutions, and run the
satisfiability algorithm for normal dominance constraints.

Definition 5.36. A dominance and binding constraint ϕ is called normal iff its
dominance part is normal and it satisfies, for any binding specification Λ, the
following additional conditions:

5. If X is a variable in ϕ, then there is at most one variable Y in ϕ s.t. λΛ(X) =
Y .

6. If λΛ(X) = Y is in ϕ, then the labelling atoms X:varΛ and Y :b(Y1, . . . , Yn)
are in ϕ, where b is a binder of Λ.

If Λ is a binding specification whose scope specification is just dominance (i.e.
S = �

∗), a normal dominance and binding constraint ϕ is called elaborated with
respect to Λ iff for any λΛ(X) = Y in ϕ, (X, Y) ∈ R∗

ϕ.

All the dominance and binding constraints generated by the grammar in Chapter 3
are normal and elaborated.

Proposition 5.37 (Deleting Binders). Let ϕ be an elaborated normal dominance
and binding constraint with respect to the binding specification Λ, and let ϕ0 be the
result of deleting all binding atoms λΛ(X) = Y from ϕ. Then ϕ is satisfiable iff ϕ0

is satisfiable. In fact, there is a one-to-one correspondence between the solutions of
ϕ and the solutions of ϕ0.

102 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

Proof. We prove the second, stronger claim. Let (Lτ,λ, α) be a Λ-admissible solution
of ϕ. Then it is clear that (Mτ , α) is a solution of ϕ0, because it must satisfy all
labelling, dominance, and inequality atoms.

Conversely, let (Mτ , α) be a solution of ϕ0, and let

λ(v) =

{

α(Y) if λ(X) = Y in ϕ and v = α(X)

undefined otherwise.

This function is well-defined because of Condition 5 in Def. 5.36. The labelling
requirements of each binding atom in ϕ are met because of Condition 6. Each
binder/variable pair is in the scope relation for S (namely, dominance) because ϕ
is elaborated. Hence (Lτ,λ, α) is a Λ-admissible solution of ϕ.

The proposition generalises Theorem 4.3 from (Erk et al. 2003), which said the
same thing for the binding specifications Λλ and Λana (see Fig. 2.3 on page 25).
It could itself be further generalised to cover certain cases where Condition 5 and
the elaboratedness condition aren’t satisfied. This would, however, complicate the
proofs, while being not very useful in practice.

5.10 Summary

In this chapter, we have shown that the satisfiability problem of normal domi-
nance constraints can be decided in polynomial (quadratic) time, and a minimal
solved form can be computed in polynomial (biquadratic) time as well. This re-
sult is highly relevant, as all practically interesting dominance constraints seem to
be normal; this is certainly true for all constraints generated by the grammar in
Chapter 3.

In defining the algorithms, it was instrumental to establish the equivalence of nor-
mal dominance constraints and dominance graphs, as this made it possible to bring
tools from graph theory (e.g., cycles and matchings) to bear on the problem. In
many cases, the graph metaphor also made it much easier to speak about properties
of a constraint. We also defined the fragment of compact dominance constraints as
a stepping stone in the encoding of normal constraints as dominance graphs.

The algorithm reported here was historically the first polynomial satisfiability al-
gorithm for a useful fragment of dominance constraints (or, indeed, any underspec-
ification formalism). As the runtimes in Fig. 5.18 illustrate, it is dramatically more
efficient than the previous algorithms. Building upon the work reported here, even

5.10. SUMMARY 103

length solved forms saturation FS solver graph solver
2 2 10 10 <10
3 5 40 30 <10
4 14 390 150 10
5 42 2070 690 30
6 132 7300 2900 110
7 429 30230 10790 400

Figure 5.18: Runtimes of the different enumeration algorithms on the pure chains
of length 2–7, in milliseconds.

more efficient satisfiability algorithms have been developed. Thiel (2004) gives an
insightful algorithm based on depth-first search that tests for the presence of hy-
pernormal cycles in time O(n + m), where n is the number of nodes and m the
number of edges of the dominance graph. This translates to a satisfiability test for
normal dominance constraints that runs in time linear in the number of atoms in
the constraint. Thiel also defines an incremental algorithm for redundancy elimi-
nation and an optimised version of the enumeration algorithm in Fig. 5.11 whose
recursion depth is bounded by n. This allows him to compute a minimal solved
form of a graph in time O(mn), i.e. in time O(m2) for a constraint.

In addition, Bodirsky et al. (2004) have defined weakly normal dominance con-
straints, which generalise normal dominance constraints by allowing that a vari-
able can appear as the head both of a labelling and of a dominance atom. They
present an enumeration algorithm which also gets by with runtime O(m2) to com-
pute one minimal solved form for this more powerful class of constraints. Their
algorithm is also a graph algorithm, but operates fundamentally differently than
the one presented here.

On a conceptual level, the polynomial satisfiability algorithm explains the “miracle
of the green nodes” from the previous chapter. We can modify the enumeration
algorithm from Fig. 5.11 so it computes all possible results of a Choice rule applica-
tion to a certain node, but then checks each resulting graph for solvability and only
calls itself recursively on solvable graphs. If we read the search tree in Fig. 4.8 as
a choice tree spanned by the modified enumeration algorithm, it is clear that each
node and in particular each leaf corresponds to a satisfiable dominance constraint.

104 CHAPTER 5. NORMAL DOMINANCE CONSTRAINTS

Chapter 6

Hypernormal Connections

The algorithm from the previous chapter is very efficient at checking whether solved
forms exist, and at enumerating all minimal solved forms. We know that solved
forms are satisfiable, so from a purely computational perspective, the satisfiability
probem of normal dominance constraints is solved. However, from the perspective
of modelling scope ambiguities, we still have one problem left: The standard as-
sumption is that the grammar already specifies all the material that should go into
a semantic representation, so we are interested in constructive solutions. There
are linguistic theories which allow us to deliberately add semantic material in a
process of reinterpretation (Egg 2003; Koller et al. 2000), but even these theories
introduce material in a controlled, linguistically motivated fashion, and not just to
make a solved form satisfied.

Not all normal dominance constraints in solved form have constructive solutions.
An example is the constraint in Fig. 5.8, in whose graph the node X has four
different outgoing dominance edges; these edges have to be realised by additional
branching labels f in the solution. However, there are constraints in which a node
has multiple outgoing dominances, and which still have constructive solutions. An
example is the constraint in Fig. 5.14(b), whose solved form in Fig. 5.14(c) clearly
has a constructive solution. This discrepancy begs the question: Is there a class of
normal dominance constraints for which we can guarantee that every solved form
has a constructive solution, and which is large enough to encompass all constraints
that are needed in practice?

In this chapter, we give an affirmative answer to this question by defining the class of
hypernormally connected dominance constraints. We prove that all solved forms of
a hypernormally connected dominance constraints are simple, and that every simple
solved form has a constructive solution. In addition, we prove that all constraints

105

106 CHAPTER 6. HYPERNORMAL CONNECTIONS

generated by the grammar in Chapter 3 are hypernormally connected; together with
further empirical evidence which we will cite, this supports our conjecture that all
dominance constraints that arise in underspecification are indeed hypernormally
connected.

By connecting the graph-based concept of hypernormal connectedness and
the constraint-based concept of constructive satisfiability, these results further
strengthen the relationship between the graph perspective and the constraint per-
spective. In addition, we can also use them to build a bridge between normal
dominance constraints and other underspecification formalisms. We prove that the
hypernormally connected fragments of dominance constraints and Hole Seman-
tics (Bos 1996; Bos 2002) are equivalent; the crucial point is that the pluggings
of Hole Semantics correspond to constructive solutions of dominance constraints,
and we can then exploit the constructive satisfiability of hypernormally connected
constraints to e.g. apply the solver from Chapter 5 to Hole Semantics.

A third class of results in this chapter concerns chains, a special class of hypernor-
mally connected constraints which impose a left-to-right order on tree fragments
and therefore allow us to derive additional structural properties. As a consequence
of these structural properties, every binary tree is the constructive solution of ex-
actly one pure chain. This induces an equivalence relation on the set of all binary
trees. We derive an alternative characterisation of this relation’s equivalence classes
as the equality classes of a rewrite system that rotates binary trees. These results
clarify the structure of a chain’s solution space, and will be useful in Chapter 8.

The structure of the chapter is as follows. We will first define hypernormally
connected graphs (and constraints), prove that all of their solved forms are simple,
and show that simple solved forms have constructive solutions (Section 6.1). Then
we will show that all constraints generated by the grammar are hypernormally
connected (Section 6.2). We will then prove the equivalence of the hypernormally
connected fragments of dominance constraints and Hole Semantics (Section 6.3),
and conclude with the investigation of chains (Section 6.4).

6.1 Simple Solved Forms

If we look back at the examples in Fig. 5.8 and Fig. 5.14 more closely, we can observe
that the deeper reason why the constraint in Fig. 5.14(b) has a constructive solution
and the constraint in Fig. 5.8 doesn’t is that Fig. 5.14(b) has a solved form (c) in
which all holes have exactly one outgoing dominance edge. In such a case, we can
obtain a constructive solution by mapping the ends of each dominance edge to the
same node.

6.1. SIMPLE SOLVED FORMS 107

It is easy to guarantee that every hole in every solved form of a constraint ϕ has
at least one outgoing dominance edge: We only need to require that every hole
in ϕ has at least one. The property that every hole in a solved form has at most
one outgoing dominance is a little harder to establish. The following definition
captures this property in terms of dominance graphs.

Definition 6.1. A dominance graph G is called a simple solved form iff it is a tree
and every hole has at most one outgoing dominance edge.

We will now first prove that all hypernormally connected dominance graphs (and
hence, constraints) have only simple solved forms; then we will prove that simple
solved forms without open holes have constructive solutions.

6.1.1 Solved forms are simple

One way in which we can guarantee that all solved forms of a graph are simple is
to find a property that is invariant under the Choice and Redundancy Elimination
rules from Chapter 5 and that will ensure that every solved form with this property
is simple. If a graph has this property, every graph in its choice tree will have it
too, and in particular all minimal solved forms will have it and thus be simple.
Simple solved forms can’t be extended (in the sense of Definition 5.2), so it follows
that all solved forms are minimal and thus simple.

A property that satisfies these two conditions is that every pair of nodes is con-
nected by a simple hypernormal path:

Definition 6.2. A dominance graph G is called hypernormally connected iff ev-
ery pair of nodes is connected by a simple hypernormal path in Gu. A normal
dominance constraint is hypernormally connected iff its graph is.

On the one hand, we have already seen that Choice and Redundancy Elimination
preserve the presence of hypernormal cycles, and we can adapt the proofs to hy-
pernormal paths. On the other hand, a solved form that is not simple cannot be
hypernormally connected: Either the solved form has more than one connected
component (i.e. it is a forest that is not a tree); or there must be two nodes that
are children of the same node over dominance edges, and then these two nodes
can’t be connected by a simple hypernormal path either. Consider the solved form
in Fig. 5.8 for illustration; no two of its leaves are hypernormally connected.

Below we make this intuitive argument precise.

108 CHAPTER 6. HYPERNORMAL CONNECTIONS

Lemma 6.3. Let G be a dominance graph, and let G′ be the result of applying
Redundancy Elimination (Simplification Rule 5.1) to G. Then G is hypernormally
connected iff G′ is hypernormally connected.

Proof. Analogous to Lemma 5.27, except that we may have to split up the directed
path P that replaces the redundant edge twice in order to make it simple – once
for the prefix of the hypernormal path before it enters l, and once for the suffix of
the hypernormal path after it leaves s.

Lemma 6.4. Let G be a dominance graph, and let G′ be a result of applying Choice
(Simplification Rule 5.2) to G. If G is hypernormally connected, then G′ is also
hypernormally connected.

Proof. The Choice rule adds a new edge, so all hypernormal paths are still present
in G′.

Unlike the analogous lemma in the previous chapter, Lemma 6.4 only goes in one
direction: IfG is connected, then G′ is connected. The converse direction required a
substantial amount of cycle manipulation in the proof of Lemma 5.28; in particular,
we extracted simple subcycles from hypernormal cycles in some cases, and the same
construction wouldn’t be applicable here because the start and end node of the path
must remain fixed.

However, even as they are stated here, the two lemmas are sufficient to prove the
following proposition.

Proposition 6.5. All solved forms of a hypernormally connected dominance graph
are simple.

Proof. Let G be some hypernormally connected dominance graph. We prove that
all minimal solved forms ofG are simple. It follows that all solved forms are simple,
because simple solved forms can’t be extended, and therefore all solved forms are
minimal.

So let G1, . . . , Gn be the minimal solved forms of G. We know from Prop. 5.24 that
each Gi can be reached from G by a sequence of Choice and Redundancy Elimina-
tion steps. By Lemma 6.3 and Lemma 6.4, we know that each Gi is hypernormally
connected. But hypernormally connected solved forms are simple.

We conjecture that the converse of Proposition 6.5 is also true, i.e. that all domi-
nance graphs that have only simple solved forms must be hypernormally connected.
This would give us a complete characterisation of those dominance graphs that have

6.1. SIMPLE SOLVED FORMS 109

only simple solved forms, i.e. we could establish that hypernormal connectedness
is not just a sufficient, but also a necessary condition for this. The crucial question
is whether the converse of Lemma 6.4 is true; if yes, the proof of Prop. 6.5 could
be straightforwardly extended for the following conjecture.

Conjecture 1. A solvable dominance graph is hypernormally connected if and only
if all its solved forms are simple.

6.1.2 Simple solved forms have constructive solutions

We turn to the proof that all constraints in simple solved form that have no open
holes have constructive solutions.

Definition 6.6. A hole in a dominance graph is called open iff it has no outgoing
dominance edge.

The two conditions together imply that every hole in the graph of the constraint
has exactly one outgoing dominance edge. Because simple solved forms are trees,
this means that we can obtain a constructive solution by identifying the endpoints
of each dominance edge.

Proposition 6.7. Every simple solved form without open holes has a constructive
solution.

Proof. Let ϕ be such a simple solved form. We “read off” a constructive solution
for ϕ. Define first a partial function p : Var(ϕ) Var(ϕ) that maps X to Y iff
X�

∗Y is in ϕ. p is functional because ϕ is simple, and therefore no variable in ϕ
has two outgoing dominance edges. The domain of p is the set of all holes of ϕ.

Let L(ϕ) be the set of all variables in Var(ϕ) that occur on the left-hand side of a
labelling atom. Now we can define a finite constructor tree τ = (V,E, LV , LE) and
a variable assignment α as follows:

V = L(ϕ)
E = {(α(X), α(Y)) | X:f(. . . , Y, . . .) in ϕ}

LV (X) = f if X:f(. . .) in ϕ
LE(X, Y) = i if there is a Z with α(Z) = Y and Z is i-th child in X:f(. . .)

α(X) =

{

X if X ∈ L(ϕ)

p(X) otherwise.

110 CHAPTER 6. HYPERNORMAL CONNECTIONS

f • X

•

g • Y

•

a • Z

h • W

•

f • X

g • Y

h • W

a • Z
(a) (b)

Figure 6.1: Solved forms that are not simple (a) can still have constructive solutions
(b).

α : Var(ϕ) → V is a total function because every variable is either the head of a
labelling atom (i.e. a member of L(ϕ)), or it is a hole and therefore occurs on the
left-hand side of a dominance atom.

Because the graph of ϕ is a tree, every node in (V,E) has at most one incoming
edge, and there are no cycles. Every hole has exactly one outgoing dominance edge,
so there is exactly one root that has no incoming dominance edge; this root is the
root of (V,E). Hence, (V,E) is a tree. By construction, τ also respects the arities
of the labelling atoms, and so τ is a finite constructor tree.

It remains to prove that (Mτ , α) is a constructive solution of ϕ. All labelling and
inequality atoms are obviously satisfied. The dominance atoms are satisfied as
equalities: If X�

∗Y is a dominance atom in ϕ, then α(X) = p(X) = Y = α(Y).
The solution is constructive because Mτ only contains nodes that are denoted by
labelled variables.

The converse of Proposition 6.7 does not necessarily hold, i.e. there are non-simple
solved forms with open holes that do have constructive solutions. An example is the
constraint in Fig. 6.1(a), which has the constructive solution shown in Fig. 6.1(b).
The general problem of deciding whether a constraint in solved form has a con-
structive solution is NP-complete (Althaus et al. 2003), although we just showed
that the special case of simple solved forms is trivial.

We can put the propositions together in the following theorem.

Theorem 6.8. Every solved form of a hypernormally connected normal dominance
constraint without open holes has a constructive solution.

Proof. Let ϕ be a hypernormally connected normal dominance constraints without
open holes, and let ϕ′ be one of its solved forms. We know from Prop. 6.5 that ϕ′

is simple. Because all solved forms are simple, we also know that ϕ′ is minimal,

6.2. GRAMMARS AND HYPERNORMAL CONNECTIONS 111

so we can obtain ϕ′ from ϕ by a sequence of Choice and Redundancy Elimination
steps. Neither of these two operations adds new open holes, so because ϕ doesn’t
have open holes, ϕ′ doesn’t have any either. But then we can apply Prop. 6.7 to
obtain a constructive solution for ϕ′.

6.2 Grammars and Hypernormal Connections

The second half of the story about hypernormally connected constraints is that we
claim that all dominance constraints that are actually used for scope underspeci-
fication are hypernormally connected. We will prove this for all constraints that
can be generated by the grammar in Chapter 3. Then we will present evidence
that supports the claim on a broader scale. Finally, we will relate our claim to an
earlier, much less well-founded claim that was used to speed up a solver for context
unification for the purpose of scope underspecification (Koller 1998).

Lemma 6.9. Let ϕ0, ϕ1, . . . , ϕn be hypernormally connected constraints such that

1. Var(ϕi) ∩ Var(ϕj) = ∅, for 1 ≤ i < j ≤ n,

2. Var(ϕ0) ∩ Var(ϕi) = {Xi}, for 1 ≤ i ≤ n,

where X1, . . . , Xn are open holes in ϕ0. Then the constraint ϕ0 ∧ · · · ∧ϕn is hyper-
normally connected.

Proof. We prove this by induction over n. The case n = 0 is trivial. For the
induction step, let’s pick a variable X in ψ = ϕ0 ∧ . . . ϕn−1 and a variable Y
in ϕn. By induction hypothesis, there is a simple hypernormal path π1 from X
to Xn in Gu(ψ) and a simple hypernormal path π2 from Xn to Y in Gu(ϕn).
The concatenation π1 ◦ π2 is a path in Gu(ψ ∧ ϕn). This path is simple because
Var(ψ)∩Var(ϕn) = {Xn}. It is hypernormal because π1 enters Xn over a tree edge
by assumption.

The Xi will generally not be open holes (or even holes at all) in ϕ0 ∧ . . .∧ϕn; they
only need to be open holes in ϕ0.

Proposition 6.10. Every constraint generated by the grammar in Fig. 3.7 is hy-
pernormally connected if all constraints in the lexicon entries are hypernormally
connected.

112 CHAPTER 6. HYPERNORMAL CONNECTIONS

@ •

Peter • lam •

•

@ •

@ •

say • •

var •

@ •

@ •

every • man •

lam •

•

@ •

@ •

a • woman •

lam •

•

@ •

@ •

love • var •

var •

Figure 6.2: The constraint for the sentence “Peter says every man loves a woman”
is not a chain, but it is hypernormally connected.

Proof. We prove this by structural induction over the syntax tree. The constraint
for each leaf comes from the lexicon, so it is hypernormally connected by assump-
tion. Now all semantics construction rules except for (b5) and (b10) introduce a
new hypernormally connected constraint ϕ0 and plug the constraints for the syntac-
tic daughters into it, so they maintain hypernormal connectedness by Lemma 6.9.
A similar argument works for (b5) if we consider the fact that the only way in
which the S child can be expanded is via the rule (b1), and the conjunction of the
constraints introduced by (b1) and (b5) is again hypernormally connected. Finally,
(b10) maintains hypernormal connectedness because the interface variable of the
RPi child will always be in the same fragment as the interface variable of the S child
because it will be identified with the variable Xi introduced by the trace ti.

As the constraints in the lexicon are generally in simple solved form in practice
(and often consist of a single labelling atom), the precondition of the proposition
is satisfied. Note that we said in Section 3.4, after introducing the grammar, that
a more serious version of this grammar, e.g. the one from (Egg et al. 2001), would
introduce additional dominance atoms to enforce island constraints. For instance,
such a grammar produces the constraint in Fig. 6.2 for the sentence “Peter says
every man loves a woman.” The dominance edge from “say” to “every man” repre-
sents the scope island created by the sentence-embedding verb, from which the uni-
versal noun phrase may not escape. Such constraints, too, are hypernormally con-
nected, as additional dominance atoms can never break the hypernormal connectiv-
ity. However, Fig. 6.2 is an example of a hypernormally connected constraint that
doesn’t fall into the more specific class of chains, which we will look at in Section 6.4.

6.2. GRAMMARS AND HYPERNORMAL CONNECTIONS 113

For larger grammars, it is probably unfeasible to prove formally that they only
generate hypernormally connected constraints. However, we still conjecture that
this is the case:

Conjecture 2. Every dominance constraint that is needed for underspecified se-
mantics is hypernormally connected.

Fuchss et al. (2004) evaluate the claim on all constraints that the English Resource
Grammar (Copestake and Flickinger 2000), a large-scale HPSG grammar, produces
for the sentences from the Redwoods Treebank (Oepen et al. 2002). It turns out
that over 80% of the computed constraints are indeed hypernormally connected.
The remaining constraints seem to be systematically incomplete, i.e. they represent
too many semantic readings; when they are restricted to the correct set of readings,
it seems they generally become hypernormally connected. So while there is no
conclusive evidence at the time of writing, there is at least considerable support
for the claim that the conjecture is true.

The realisation that all constraints that are needed in scope underspecification are
hypernormally connected also helps justify a restriction made in (Koller 1998). The
aim of this paper was to speed up a solver for context unification. Context unifica-
tion (CU) is a restricted form of second-order unification that can also be used for
scope underspecification (Niehren et al. 1997b); it is known that dominance con-
straints can be encoded into CU (Niehren and Koller 2001; Erk et al. 2003). There
are sound and complete (but not necessarily terminating) solution procedures for
context unification (Niehren et al. 1997a), but they span huge search spaces and
are very slow even for rather small examples.

We obtained a dramatically faster solver (which was, however, still much slower
than even the saturation algorithm from Chapter 4 on encodings of dominance
constraints) by removing the following rule from the complete solution procedure:

(Flex-Flex2) C(t)=C ′(t′) −→ true | C 7→ λY.C1(f(π(X,C2(Y), C3(t
′)))),

C ′ 7→ λZ.C1(f(π(X,C2(t), C3(Z))))
where π is a permutation

The main effect of this rule is that it can assign a solution to unification problems
such as X = C1(a) ∧ X = C2(b) – solutions such as X = f(a, b), which contain
a symbol f that was not mentioned in the unification problem. Removing this
rule makes the algorithm incomplete in general, but even then, there was a clear
intuition that it should never be necessary to add more semantic material when
resolving scope ambiguities.

114 CHAPTER 6. HYPERNORMAL CONNECTIONS

∃ •

∧ •

comp • var •

•

∀ •

→ •

∧ •

• res •

•

•

∃ •

∧ •

product •

var •

•

of •

var • var •

work on •

var • var •

h0

l1 : ∃u.(comp(u)∧h1) l2 : ∀w.((h2 ∧ res(w)) → h3) l3 : ∃x.(product(x)∧h4)

l4 : of(w,u) l5 : work on(x,w)

Figure 6.3: The normal dominance constraint (left) and the Hole Semantics de-
scription (right) for “Every researcher of a company works on a product.”

Conjecture 2 allows us to phrase this intuition in more concrete terms. The dom-
inance constraints that are needed in scope underspecification are hypernormally
connected, so their solved forms are simple and therefore have hypernormal solu-
tions. Hence, the relevant solutions of the CU encodings of these constraints can be
computed purely by applying rules that use the present semantic material, rather
than inventing new symbols.

6.3 Hole Semantics as Dominance Constraints

A second application of Theorem 6.8 is that it allows us to establish the equivalence
of the hypernormally connected fragments of dominance constraints and of Hole
Semantics (Koller et al. 2003). Hole Semantics (HS, Bos 1996; Bos 2002) is an
alternative formalism for scope underspecification in which formulas of an object
language (e.g. predicate logic or DRT) can have holes that can be plugged by other
formulas.

The similarity between underspecified descriptions based on dominance constraints
and on Hole Semantics is apparent (Fig. 6.3). Both formalisms specify the material
of which the actual semantic representation should consist (in one case, as tree
fragments; in the other, as formulas with holes), as well as constraints on the way
in which this material can be combined. So it is a natural question whether this
similarity is only superficial, or whether the two formalisms are related more deeply.

The answer we give here is that it is straightforward to encode HS descriptions into
normal dominance constraints, and vice versa, in such a way that the solutions of
the HS description correspond to the constructive solutions of the normal domi-
nance constraint: HS requires us to plug each hole with exactly one formula, which
means that e.g. constraints as in Fig. 5.8(a) are unsatisfiable. This means that the
solver from Chapter 5, which computes solved forms, overgenerates in the sense of
Hole Semantics; and indeed it means that the general solvability problem of Hole
Semantics is NP-complete and cannot possibly be solved by a polynomial solver

6.3. HOLE SEMANTICS AS DOMINANCE CONSTRAINTS 115

(unless P=NP). By restricting ourselves to the hypernormally connected fragments,
we can exploit the correspondence between solved forms and constructive solutions
so the solver becomes correct for Hole Semantics.

6.3.1 Hole Semantics

Let’s first define Hole Semantics. The definition we give here follows (Bos 2002),
as the definition given there is closer to dominance constraints, and repairs some
flaws in the definition of admissible pluggings in (Bos 1996).

Hole Semantics configures formulas of an object language (such as FOL or DRT)
that have holes into which other formulas can be plugged. Formally, a formula
with n holes is a complex function symbol of arity n, just like in the definition of
dominance constraints. We assume a signature Σ of ranked function symbols, and
disjoint infinite sets of labels and holes. The equivalent of a dominance constraint
is an underspecified representation (USR).

Definition 6.11 (Underspecified Representation). An USR U = (LU , CU)
consists of a finite set LU of labelled formulas l:F (h1, . . . , hn), where l is a label
and F is an object-language formula with holes h1, . . . , hn, and a finite set CU of
constraints. Constraints are of the form l ≤ h, where l is a label and h a hole; this
constraint means that h outscopes l.

As we have seen in Fig. 6.3, there is a natural way of writing USRs as graphs,
which is very similar to the way we write dominance constraints as graphs. The
nodes of this graph are the labelled formulas with holes, and the edges indicate the
outscoping constraints.

There is again a class of underspecified representations that are considered par-
ticularly well-behaved, in the same sense that normal dominance constraints also
exclude pathological cases that are never needed for underspecified semantics.

Definition 6.12 (Proper USR). An USR U is called proper if it has the following
properties:

(P1) U has a unique top element, from which all other nodes in the graph can be
reached.

(P2) The graph of U is acyclic.

116 CHAPTER 6. HYPERNORMAL CONNECTIONS

(P3) Every label and every hole except for the top hole occurs exactly once in
LU .1

For example, the USR shown in Fig. 6.3 is proper; its top element is h0.

The solutions of underspecified representations are called admissible pluggings. A
plugging is a bijection from the holes to the labels of an USR. Intuitively, we
“plug” every hole with exactly one formula (named by its label), and a plugging is
admissible if it respects the constraints.

Definition 6.13 (P -domination). Let k, k′ be holes or labels of some under-
specified representation U , and P a plugging on U . Then k P -dominates k′ iff one
of the following conditions holds:

1. k:F ∈ LU and k′ occurs in F , or

2. k is a hole and P (k) = k′, or

3. there is a hole or label k′′ such that k P -dominates k′′ and k′′ P -dominates
k′.

Definition 6.14 (Admissible Plugging). A plugging P is admissible for a proper
USR U iff k ≤ k′ ∈ CU implies that k′ P -dominates k.

6.3.2 Hole Semantics as Dominance Constraints

Now we can make the intuitive similarity between Hole Semantics and dominance
constraints precise. We define encodings from Hole Semantics to normal dominance
constraints and back, and show that the admissible pluggings of the USR and the
constructive solutions of the dominance constraint correspond.

To keep things simple, we will present the encoding only for compact dominance
constraints. This has the advantage that every variable is either a root or a hole.
It is no restriction because every normal constraint can be compactified in a way
that preserves constructive solutions (Prop. 5.14).

From Hole Semantics to Dominance Constraints. Assume U = (LU , CU) is a
proper USR. To obtain a compact dominance constraint ϕU that encodes the same
information, we first encode every labelled formula l:F (h1, . . . , hn) as the labelling
atom l:F (h1, . . . , hn). We encode every constraint l ≤ h in CU as a dominance

1The restriction on hole occurrences is missing in (Bos 2002), but is necessary to rule out
counterintuitive USRs.

6.3. HOLE SEMANTICS AS DOMINANCE CONSTRAINTS 117

constraint h�∗l – except if h is the unique top hole and does not occur as a hole
in a labelled formula. Finally, we add a constraint l 6= l′ for every pair of different
labels l, l′.

This encoding maps labels and holes to variables; labels end up as roots, and holes
become holes. Because of (P3), every variable appears in exactly one labelling atom
(in particular, Conditions 2 and 4 of Def. 5.4 are satisfied). Outscoping constraints
go from holes to labels, so Condition 3 and the two additional conditions from
Def. 5.11 are also satisfied. Finally, Condition 1 is satisfied by construction. Hence
ϕU is compact.

From Dominance Constraints to Hole Semantics. Assume ϕ is a compact
dominance constraint whose graph is acyclic. To obtain a proper USR Uϕ encoding
the same information, we first split the variables V(ϕ) into holes and labels: roots
become labels, and holes become holes. This can be done in a unique way, because
every variable in ϕ occurs exactly once in a labelling constraint, either on the left
or on the right hand side.

Then we encode every labelling atom X:f(X1, . . . , Xn) as the labelled formula
X:f(X1, . . . , Xn), and we encode every dominance constraint X�

∗Y as the con-
straint Y ≤ X. Finally, we add a new top hole h0 and a constraint l ≤ h0 for every
label l in Uϕ.

It follows from the compactness of ϕ that Uϕ is indeed an USR which satisfies the
axiom (P3). (P1) is clear from the construction (h0 is the unique top hole), and
(P2) follows from acyclicity of G(ϕ). Therefore Uϕ is a proper USR.

This back-and-forth encoding has the following property:

Theorem 6.15. Normal dominance constraints ϕ with acyclic graphs and proper
USRs U can be encoded into each other, in such a way that the pluggings of U and
the constructive solutions of ϕ correspond.

Proof. We only show that the solutions of an USR U and its encoding ϕU corre-
spond. The other direction is analogous, after compactifying ϕ if necessary.

Assume first that we have an admissible plugging P of U . If we consider the
constraint ϕ′ = ϕU ∧

∧

{h�∗l | P (h) = l} and make it irredundant by applications
of Simplification Rule 5.1, we get a simple solved form of ϕU without open holes,
which has a constructive solution, by Prop. 6.7.

Conversely, assume we have a constructive solution (M, α) of ϕU . We know from
Lemma 5.9 that M satisfies some simple solved form ϕ′ of ϕU , because hole(X)
in the proof of the lemma is the unique root Y with α(X) = α(Y). But then the
plugging P with P (h) = l iff h�∗l in ϕ′ is an admissible plugging for U .

118 CHAPTER 6. HYPERNORMAL CONNECTIONS

Definition 6.16. We call an USR U hypernormally connected iff ϕU is chain-
connected and has no open holes. We say that U has no open holes if every hole h
of U appears on the right-hand side of an outscoping constraint l ≤ h.

Corollary 6.17. If U or ϕ are hypernormally connected and have no open holes,
the admissible pluggings of the USR and the solved forms of the dominance con-
straint correspond. In particular, solvability of hypernormally connected USRs with
no open holes can be decided in polynomial time.

Proof. Follows immediately from Thm. 6.15 together with Thm. 6.8 and Corol-
lary 5.35.

6.4 Pure Chains

In the last part of this chapter, we will focus our view on a subclass of hypernormally
connected constraints called pure chains. Pure chains are special cases of chains,
which were the first known class of hypernormally connected constraints (Koller
et al. 2000). The fragments in a chain are arranged in a left-to-right order which
allows us to make very strong claims about the structure of their solutions.

We will first define pure chains and prove some of these basic structure lemmas.
Then we will prove that every binary tree is the constructive solution of exactly
one pure chain. This means that pure chains induce an equivalence relation on the
set of all binary trees. Next, we will prove that subtrees and subchains correspond,
and finally we will apply these results to give an alternative characterisation of the
equivalence classes as the equality classes of a rewrite system.

6.4.1 Chains and their basic Properties

A chain is intuitively a normal dominance constraint that looks as in Fig. 6.4. Each
triangle in the picture stands for a fragment of the constraint, and the bullets at its
lower side represent holes of the fragment. The chain consists of upper fragments
and lower fragments, in such a way that each lower fragment is linked to two upper
fragments with dominances, and each upper fragment is linked to at most two lower
fragments, by dominances going out of different holes.

Chains occur very frequently in dominance constraints that are used for under-
specified semantics. This is not terribly surprising because it can be shown that
every pair of variables in a hypernormally connected constraint is also connected

6.4. PURE CHAINS 119

U1 U2 U3

L1 L2 L3 L4

X l
1 X r

1 X l
2 X r

2 X l
3 X r

3

Y1 Y2 Y3 Y4

Figure 6.4: A schematic picture of a pure chain.

by a chain. But many interesting constraints even consist of a single chain; the
constraint in Fig. 3.9 is an example.

Here we will focus on the special case of pure chains; see e.g. (Koller et al. 2000)
for more details about chains in general. Pure chains are constraints that look
exactly as in Fig. 6.4, i.e. the upper fragments all have exactly two holes, and they
are linked to the lower fragments by dominance atoms.

Definition 6.18. A pure chain C of length n is a dominance constraint of the form

(

n
∧

i=1

Xi:fi(X
l
i , X

r
i) ∧

n+1
∧

i=1

Yi:ai ∧
n
∧

i=1

(X l
i�

∗Yi ∧X
r
i �

∗Yi+1)

) 6=

The upper fragments of C are the variable sets Ui = {Xi, X
l
i , X

r
i } for 1 ≤ i ≤ n,

and the lower fragments of C are the variable sets Li = {Yi} for 1 ≤ i ≤ n+ 1. We
write C = (L1, U1, L2, . . . , Un, Ln+1).

It is clear that every pure chain is compact and hypernormally connected, and that
the upper and lower fragments are fragments in the sense of Definition 5.3. The
following lemma holds about the structure of a pure chain.

Lemma 6.19 (Structural Relations in Chains). Let ϕ be a pure chain, and
let 1 ≤ i, k ≤ n with i 6= k.

1. If Ui is an upper fragment and 1 < i < k, then

ϕ |= ¬ X l
i�

∗Xk.

If n > i > k, then
ϕ |= ¬ Xr

i �
∗Xk.

120 CHAPTER 6. HYPERNORMAL CONNECTIONS

2. The following entailment holds:

ϕ ∧Xi ⊥Xk |= Xi ⊥Xk at Ui,k,

where Ui,k is the set of all variables in the upper fragments {Ui+1, . . . , Uk−1}
that are not holes.

Proof. 1. We prove the case for 1 < i < k; the other direction is analogous. So
let ϕ′ = Comp(ϕ ∧ X l

i�
∗Xk). Because ϕ is a pure chain, there must be a

simple hypernormal path π from X l
i to Xk in Gu(ϕ). Hence, π ◦ {Xk, X

l
i} is

a simple cycle in Gu(ϕ
′). It is hypernormal because π leaves X l

i via a tree
edge. So ϕ′ is unsatisfiable, i.e. the claimed entailment holds.

2. Let’s assume w.l.o.g. that i < k, and let (M, α) be an arbitrary solution of
ϕ ∧Xi ⊥Xk. We know (Lemma 5.9) that there is some minimal solved form
ϕ′ of ϕ that is also satisfied by (M, α); this solved form is simple (Prop. 6.5).
Because this means that G(ϕ′) is a tree in which each hole has only one
outgoing dominance edge, there must be some labelling atom Xj:f(X l

j, X
r
j)

for which X l
j and Xr

j dominate Xi and Xk in (M, α). Because of (1), we know
that these two dominances must be α(X l

j)�
∗α(Xi) and α(Xr

j)�
∗α(Xk), and

that i < j < k. This proves the claim.

That is, we can make rather strong predictions about the structure of a solution of
a pure chain. We know that all the variables in lower fragments end up as (disjoint)
leaves in a satisfying tree structure. In addition, we have just shown that upper
fragments may dominate each other or they may be mapped to disjoint nodes –
but if they dominate each other, they must dominate each other usingenerag the
hole that faces the dominated fragment, and if they are disjoint, their branching
point must be denoted by the root of one of the upper fragments between them.

We have proved Lemma 6.19 only for pure chains, but it remains true for general
chains. The proof is more complex, but it hinges on the same idea of closing a
hypernormal path to a hypernormal cycle to establish unsatisfiability.

6.4.2 Pure chains and binary trees

In fact, a pure chain fixes the structure of its solutions so strictly that we can turn
the structure lemma around to prove that every binary tree is the constructive
solution of only one pure chain: Every other pure chain would impose a different
ordering on the nodes in the tree.

6.4. PURE CHAINS 121

f •

g •

a • b •

h •

k •

c • d •

e •

g •

• •

f •

• •

k •

• •

h •

• •

a • b • c • d • e •

(a) (c)

f •

• •

h •

• •

g •

a • b •

k •

c • d •

e •

g •

• •

f •

• •

a • b • k •

• •

h •

• •

c • d • e •

(b) (d)

Figure 6.5: A binary tree (a) and some hypernormally connected chains that it
satisfies constructively (b,c,d). Only (c) is a pure chain.

Such a claim is not true for hypernormally connected constraints in general. For
instance, the binary tree in Fig. 6.5(a) is a constructive solution of the hypernor-
mally connected constraints shown in Fig. 6.5(b), (c), and (d). Even if we require
that the constraint should be compact – which excludes (b) and fixes the set of
fragments –, a hypernormally connected constraints could still require dominances
between upper fragments (d). In this sense, pure chains are maximally weak among
all hypernormally connected constraints: They impose no structure on the set of
fragments beyond the dominances that are needed to make the constraint con-
nected.

Proposition 6.20. Every finite binary tree is the constructive solution of exactly
one pure chain (up to renaming of variables).

Proof. Let τ be a binary tree with leaves v1, . . . , vn+1 and non-leaves u1, . . . , un;
we know that there is one more leaf than there are non-leaves because the tree is
binary. Now we assign each node in τ an index, i.e. a position number between 1
and n + 1. The leaves are numbered in order of their linear precedence, and the
index of a leaf is its position in this order. The index of a non-leaf is the maximum
index of any leaf that its left-hand child dominates. The binary tree from Fig. 6.5,
together with its node indices, is shown in Fig. 6.6. It is easy to see that both
each leaf and each non-leaf is assigned an index that is unique among all leaves
and all non-leaves, respectively, and that the leaves get indices 1 to n + 1 and the
non-leaves get indices 1 to n.

Now let’s assume w.l.o.g. that the u1, . . . , un and the v1, . . . , vn+1 are ordered with

122 CHAPTER 6. HYPERNORMAL CONNECTIONS

f • 2

g • 1

a • 1 b • 2

h • 4

k • 3

c • 3 d • 4

e • 5

Figure 6.6: A binary tree with indices, as used in the proof of Prop. 6.20.

respect to ascending indices, i.e. if i < j, the index of ui (of vi) is smaller than the
index of uj (of vj). Then we can define the following pure chain; I write τ(u) for
the label of the node u in the tree τ .

ϕ :=

(

n
∧

i

Xi:τ(ui)(X
l
i , X

r
i) ∧

n+1
∧

i=1

Yi:τ(vi) ∧
n
∧

i=1

(X l
i�

∗Yi ∧X
r
i �

∗Yi+1)

) 6=

The tree structure of τ , together with the obvious variable assignment, satisfies
ϕ, as vi is dominated in τ by the left-hand child of ui by construction, and vi+1

is the successor of vi in the precedence relation and therefore dominated by the
right-hand child of ui. It remains to prove that ϕ is the only pure chain (up to
renaming of variables) that is constructively satisfied by τ .

It is clear that the labelling and inequality atoms in ϕ are unique up to variable
renaming. What we need to show is that the dominance atoms that are required to
connect the fragments into a pure chain are exactly the atoms of the forms X l

i�
∗Yi

and Xr
i �

∗Yi+1. Because ϕ is a pure chain, there must be exactly one dominance
atom Xr

i �
∗Yk for some k. We can conclude k > i from Lemma 6.19. Now assume

that we had k > i + 1; let i be minimal with this property. For all s > i we know
that Xr

s�
∗Yt for some t > s. This means that there is no j with Xr

j �
∗Yi+1 in ϕ,

as all the Xr
j to the left of Xr

i dominate Yj+1, and all the Xr
j to the right of Xr

i

dominate Yl with l > i + 1. This is a contradiction, because there must be some
dominance atom with Yi+1 on its right-hand side. Hence we have Xr

i �
∗Yi+1 in ϕ,

for each i. The analogous argument shows that we also have the X l
i�

∗Yi in ϕ.

This means that we can now say that the relation

PC = {(σ, τ) | Mσ and Mτ constructively satisfy the same pure chain}

over the finite binary trees is an equivalence relation. Before we had Proposi-
tion 6.20, it was not clear that the relation was transitive. We can furthermore
say that there is a bijection between the set of all pure chains and the equivalence
classes of PC. We will derive an alternative characterisations of the equivalence
classes as equality classes of a rewrite system in Section 6.4.4.

6.4. PURE CHAINS 123

6.4.3 Subchains and subtrees

But first, let’s take a closer look at the relationship between subchains of a compact
chain and the subtrees of its constructive solutions. It is relatively easy to see that
if Mτ is a constructive solution of the pure chain ϕ, and τ ′ is a subtree of τ , then
Mτ ′ is a constructive solution of some subchain of ϕ. Much less obvious is the
converse result which we will prove next: It says that the constructive solutions of
subchains are always subtrees of the constructive solutions of the complete chain.
This is interesting by itself, but it will also be crucial for the proofs in Section 6.4.4.

Proposition 6.21. Let ϕ be a pure chain with fragments (F1, . . . , Fn), let Mτ be
a constructive solution of ϕ, and let τ ′ be a subtree of τ . Then there are indices
1 ≤ i ≤ k ≤ n such that τ ′ is a constructive solution of ϕ restricted to the variables
in the subchain (Fi, . . . , Fk).

Proof. The important point of the proof is to show that the sequence of fragments
denoting nodes in τ ′ is contiguous, i.e. if Fr and Fs belong to the sequence, then
all Fj for j between r and s also belong to it. In the proof, we will again write
Xi for the root of Fi and X l

i and Xr
i for its left and right hand connecting hole,

respectively.

So let (Mτ , α) be a constructive solution of ϕ, let τ ′ be a subtree of τ , let Fr be
the upper fragment that is mapped to the root of τ ′, and let Fs be an arbitrary
upper fragment that is mapped into τ ′, such that r 6= s. Now let Fj be a third
upper fragment with j between r and s; let’s assume s < j < r, the other case
is analogous. We will argue that Xj must be dominated by Xr in (Mτ , α). If
it weren’t, then either α(Xr

j)�
∗α(Xr), from which we can obtain α(Xr

j)�
∗α(Xs),

in contradiction to Lemma 6.19. Or α(Xj)⊥α(Xr), in which case the branching
point v of α(Xj) and α(Xr) is in a fragment between Fj and Fr. But because
α(Xr)�

∗α(Xs), v is also the branching point of α(Xs) and α(Xj), which must be
between Fs and Fj by Lemma 6.19, a contradiction.

So we know that there are numbers i′ ≤ k′ such that the set of upper fragments
denoting nodes in τ ′ is the set of upper fragments between Fi′ and Fk′. All lower
fragments between Fi′−1 and Fk′+1 are also mapped into τ ′. It remains to show
that no lower fragments outside of this range are mapped into τ ′. Assume there
is an index 1 ≤ j < i′ − 1 such that Fj is a lower fragment and α(X l

r)�
∗α(Xj).

(The case j > k′ + 1 is analogous.) Then Xj+1, the root of the adjacent upper
fragment, must dominate Xr, as it is not itself dominated by Xr (by assumption),
and cannot be disjoint because Xj is below Xr. But then α(Xr

j+1)�
∗α(Xr) and

α(X l
j+1)�

∗α(Xj), so α(X l
r) and α(Xj) are disjoint, a contradiction.

124 CHAPTER 6. HYPERNORMAL CONNECTIONS

f

g

x y

z ↔

g

x f

y z

Figure 6.7: Schematic picture of the rotation rules.

6.4.4 A rewrite system for chains

We can use results on subchains and subtrees to characterise the equivalence classes
of PC as the equality classes of a rewrite system. This rewrite system is of inde-
pendent interest as a tool for rewriting readings of a chain into each other, and we
will use it this way in Chapter 8.

The rewrite system we will use is defined as follows; Fig. 6.7 illustrates the defi-
nition. We switch freely between tree structures, trees, and ground terms here to
keep the presentation transparent.

Definition 6.22. The right rotations and left rotations over the signature Σ are
defined as follows:

f(g(x, y), z) →rrot g(x, f(y, z))
g(x, f(y, z)) →lrot f(g(x, y), z),

for all f |2, g|2 ∈ Σ.

The union of the two rewrite systems →rot = →rrot ∪ →lrot is called the rewrite
system of rotations.

Proposition 6.23. Let ϕ be a pure chain. If σ is a constructive solution of ϕ, and
if σ →rot τ , then τ is also a constructive solution of ϕ.

Proof. We prove the direction σ →rrot τ ; the other direction is symmetrical. Let
σ = C[σ′] and τ = C[τ ′], where C is the context under which the rule →rrot is
applied. According to Lemma 6.21, there is a subconstraint ϕ′ of ϕ that is also a
pure chain and that is satisfied by σ′. Let’s say that the root of σ′ is denoted by Xf ,
and its left child is denoted by Xg, and that we have labelling atoms Xf :f(X l

f , X
r
f)

and Xg:g(X
l
g, X

r
g) in ϕ, for some f and g. Finally, let’s say that the roots of the

subterms x, y and z are denoted by the variables Rx, Ry, and Rz, respectively.

The fragments Ff and Fg containing Xf and Xg must be upper fragments in the
chain, because they couldn’t dominate Ry otherwise. It is sufficient to prove that
τ ′ is also a constructive solution of ϕ′, as all other atoms in ϕ remain satisfied.

6.4. PURE CHAINS 125

τ ′ satisfies all labelling atoms in ϕ′, and it satisfies all dominance atoms that σ′

satisfies, except possibly for the following atoms:

• Xr
g�

∗Rz: but Fg must appear to the left of Ff in the chain (Lemma 6.19),
so such a dominance atom can’t be entailed by the chain;

• X l
f�

∗Xg: but a pure chain never entails a dominance between upper frag-
ments.

This means that τ ′ is also a constructive solution of ϕ′.

Prop. 6.23 is not generally true for compact chains; a counterexample is the compact
chain in Fig. 6.5(d), which has a solution which contains the subtree f(b, k(c, d)),
but no constructive solution which contains the subtree k(f(b, c), d). The problem
here is that this chain does entail a dominance between the variables with labels f
and k.

Proposition 6.24. Let σ, τ be constructive solutions of the pure chain ϕ. Then
there is a sequence of rewrite steps σ →∗

rot τ .

Proof. Induction over the length n of the chain ϕ. The base case is trivial, for
n = 1 means that ϕ has only one constructive solution.

Now let ϕ be of arbitrary length n, and let Fi be the fragment at the root of τ .
There is a (possibly empty) sequence σ →rot . . . →rot σ

′ that moves Fi to the top
of the tree σ′ = fi(σ

′
1, σ

′
2). Let’s say that τ = fi(τ1, τ2).

σ′ is still a constructive solution of ϕ by Prop. 6.23, so by Lemma 6.21, the two
subtrees σ′

1 and σ′
2 are constructive solutions of two disjoint pure subchains ϕ1 and

ϕ2 of ϕ. Each σ′
j contains the same fragments as the respective τj, namely the

ones to the left of Fi and the ones to the right of Fi, respectively. So τ1 is also a
constructive solution of ϕ1, and τ2 is a constructive solution of ϕ2. But ϕ1 and ϕ2

both have length strictly less than n, so by the induction hypothesis, σ ′
1 →∗

rot τ1
and σ′

2 →
∗
rot τ2.

So we can characterise the set of constructive solutions of a pure chain in terms of
the rewrite system. This leads immediately to the following corollary, which tells
us what, exactly, the equivalence classes that pure chains induce on the set of finite
binary trees look like.

Corollary 6.25. The equivalence classes of PC and the equality classes of →rot

are identical.

126 CHAPTER 6. HYPERNORMAL CONNECTIONS

6.5 Summary

In this chapter, we have investigated hypernormally connected constraints. The
key property of hypernormally connected constraints is that all their solved forms
have constructive solutions. This closes the gap between the linguistic modelling
of scope ambiguities, which focuses on constructive solutions, and the efficient al-
gorithm from the previous chapter, which computes solved forms. In addition,
the hypernormally connected fragments of dominance constraints and of Hole Se-
mantics are equivalent. Finally we investigated pure chains, a very specific kind
of hypernormally connected constraints that impose a left-to-right order on their
fragments. Every binary tree is the constructive solution of exactly one pure chain,
and the equivalence classes thus induced can also be characterised as the equality
classes of a certain rewrite system.

The work on hypernormally connected constraints originally stems from research
on chains, which were first introduced to make structural statements about the
solutions of a constraint; the paper (Koller et al. 2000) contains a structure lemma
very similar to Lemma 6.19. Chains were generalised to chain-connected domi-
nance constraints in (Koller et al. 2003), which proved that the chain-connected
fragments of dominance constraints and Hole Semantics are equivalent. This result
is reported here as Corollary 6.17, but the proof presented here is much simpler. A
normal dominance constraint is chain-connected iff it is hypernormally connected,
but they are defined in rather different terms, and the notion of hypernormal con-
nectedness is not restricted to normal constraints. Finally, Niehren and Thater
(2003) introduced the notion of nets to establish an encoding from MRS (Copes-
take et al. 1999) to dominance constraints. Nets are special weakly normal dom-
inance constraints; we strongly believe that all nets are hypernormally connected,
but have no detailed proof for this yet.

The research in this chapter is relevant first of all because it closes the gap between
modelling and computation. The intuition that the discrepancy between solved
forms and constructive solutions should never cause problems in practice had been
around for quite a while; the simultaneous proof that hypernormal connectedness
guarantees constructive satisfiability and is satisfied by the constraints generated
from grammars makes this intuition concrete. The solved forms still have noncon-
structive solutions, so the mechanisms for reinterpration developed in (Egg 2003;
Koller et al. 2000) can still be applied; but the addition of more material just to
satisfy the solved form is never necessary.

At the same time, this discrepancy is the key difference between dominance con-
straints and other similar underspecification formalisms, most notably Hole Se-
mantics and MRS. Because the discrepancy can be resolved for hypernormally

6.5. SUMMARY 127

connected underspecified descriptions, we have built the first ever bridge between
practically useful underspecification formalisms. An immediate benefit of the en-
coding between the formalisms is that we can share resources. For instance, there
are large-scale HPSG grammars that can generate MRS descriptions (Copestake
and Flickinger 2000); on the other hand, users of Hole Semantics and MRS can
now use the constraint solvers for normal dominance constraints. A comparison
by Fuchss et al. (2004) shows that dominance constraint solvers can outperform a
native solver for MRS by several orders of magnitude.

It will probably remain unfeasible to give a formal proof that all constraints gener-
ated by a grammar are hypernormally connected for grammars that are larger than
the small one from Chapter 3. However, an empirical study by Fuchss et al. (2004)
for the large-scale English Resource Grammar (Copestake and Flickinger 2000)
provides substantial evidence that all correct underspecified descriptions should
indeed be hypernormally connected (or, as they literally claim, nets). The evi-
dence is so persuasive that one might even consider hypernormal connectedness as
a well-formedness condition on the semantic outputs of a grammar: A sentence
to which the grammar assigns an underspecified semantic description that is not
hypernormally connected could be interpreted as a warning sign for an error in
the semantics construction component. A further evaluation of the hypernormal
connectedness hypothesis is an exciting issue for further research.

Finally, the results on pure chains are the first ever theorems about the structure
of the solution set of a dominance constraint. One consequence is that we can now
make claims about what sets of trees can be described as constructive solutions of
one constraint, in a spirit that is similar but more application-oriented than the
perspective taken by Ebert (2003). But another important detail is that any two
pure chains have disjoint solution sets. Because it is also easy to enumerate all
their solved forms, this makes them a candidate for being the outputs of a new
kind of dominance constraint solver. Such a solver might only enumerate a set
of chains that partition the solution set of a (perhaps hypernormally connected)
constraints, rather than all minimal solved forms. Whether this new type of solver
would be faster than the existing ones is an open question, but certainly one that
merits further research.

128 CHAPTER 6. HYPERNORMAL CONNECTIONS

Chapter 7

Resolving Scope Ambiguities
Using Anaphora

At this point in the thesis, we have developed the formalism of dominance con-
straints into a powerful tool for scope underspecification. We have seen how to com-
pute constraints as underspecified semantic representations of English sentences,
we have seen how to enumerate all their minimal solved forms efficiently, and we
have seen that the minimal solved forms correspond to the constructive solutions,
and hence to the readings of the ambiguous sentence.

A formalism that allows us to represent all readings of a sentence compactly, and to
enumerate all readings by need, is certainly useful because it saves memory, gives
us control over when we want to spend time on enumeration, and makes semantics
construction simpler. However, this is only half the story of underspecification.
When we motivated it in the introduction, we claimed that underspecified repre-
sentations could be enriched with external information, so as to eliminate readings
that are theoretically possible but not intended in the specific context in which the
sentence was uttered.

In the final two chapters of the thesis, we will model two sources of such informa-
tion – anaphora and world knowledge – that can be used to disambiguate scope
ambiguities. Both models reduce the set of constructive solutions of a constraint to
the set of those constructive solutions that are compatible with the external infor-
mation. We will then apply the results from the earlier chapters to show how the
set of compatible constructive solutions can be computed. Applied to constraints,
our algorithms will be able to propagate away some (but not necessarily all) of the
incompatible readings. Applied to solved forms, they will be complete in the sense
that they detect whether the (unique) constructive solution is compatible or not.

129

130 CHAPTER 7. RESOLVING SCOPE AMBIGUITIES USING ANAPHORA

∧ • Z

• Z1

∀ • X

⇒ • X1

man •

var •

• X2

∃ • Y

∧ •

woman •

var •

• Y2

name • Z2

var • Z3 mary •

love • W

var • var •

Figure 7.1: Constraint graph for (7.1).

In this chapter, we start with the effect of anaphoric references on the disambigua-
tion of scope ambiguities. Consider the following example.

(7.1) Every man loves a woman. Her name is Mary.

The first sentence on its own is ambiguous; but taken together with the second
sentence, the reading which assigns the universal quantifier wide scope is no longer
felicitous, and the ambiguity goes away. That is, the scope ambiguity in the first
sentence gets resolved once we take the anaphoric reference into account.

The infelicity of the second reading can be explained using a theory of dynamic
semantics (Kamp and Reyle 1993; Groenendijk and Stokhof 1991) which deter-
mines the indefinite “a woman” to be inaccessible for the anaphoric reference with
the pronoun “her”. We will model the felicitous readings as those in which all
antecedents of pronominal anaphora are accessible in the theory of Dynamic Pred-
icate Logic (DPL), one particular formalism of dynamic semantics. Then we will
recast accessibility as admissibility of a lambda structure according to a certain
binding specification ΛDPL. Finally we will use the methods from Section 4.2 to
obtain a sound and complete algorithm for this binding specification.

The structure of the chapter is as follows. We will first give a brief introduction
to DPL in Section 7.1. Then we will define ΛDPL, the binding specification which
represents the binding behaviour of DPL, in Section 7.2. In Section 7.3, we will
extend the inference system SN from Fig. 4.1 with rules that are sound and com-
plete for ΛDPL. Finally, we will go through some examples in Section 7.4 in order
to illustrate that the new rules for ΛDPL can indeed resolve ambiguities without
enumerating solutions, and explore the limits of our system.

7.1. DYNAMIC PREDICATE LOGIC IN A NUTSHELL 131

7.1 Dynamic Predicate Logic in A Nutshell

Dynamic Predicate Logic (DPL, Groenendijk and Stokhof 1991) belongs to a family
of logics developed in the eighties known as dynamic logics. The primary challenge
in natural language semantics that dynamic logics address is to capture the pecu-
liarities of anaphoric reference across clause boundaries, as in the examples (7.2)
and (7.3) below. The indices 1 and 2 indicate which anaphora refer to which
antecedents.

(7.2) [A man]1 walks in the park. He1 whistles.

(7.3) If [a farmer]1 owns [a donkey]2, he1 beats it2.

It seems like an attractive idea to analyse pronouns simply as bound variables in a
first-order representation of the semantics of a sentence. Such an approach works
well for sentences such as (7.4), whose semantics can be represented by the formula
(7.5):1

(7.4) [Every man]1 loves his1 mother.

(7.5) ∀x.(man(x) ⇒ love(x,mother of(x)))

But if we try to do this for the examples (7.2) and (7.3), we get semantic represen-
tations with free variables:

(7.6) (∃x.man(x) ∧ walk in park(x)) ∧ whistle(x)

(7.7) (∃x.farmer(x) ∧ ∃y.donkey(y) ∧ own(x, y)) ⇒ beat(x, y)

The basic idea of dynamic semantics, pioneered in theories such as Discourse Repre-
sentation Theory (DRT, Kamp and Reyle 1993) and File Change Semantics (Heim
1983a), was to view each clause as changing the hearer’s context of interpretation,
rather than just as transporting truth conditions as we assumed in Chapter 3.
Such theories assume that when a hearer processes the indefinite “a man”, a new
discourse referent x for an individual who is a man is inserted into his context of in-
terpretation. Other clauses can then refer back to this discourse referent by means
of anaphora. There are linguistically motivated restrictions on which anaphora
can refer to which antecedents, but the discourse referent x can generally be used
outside of the scope of the quantifier that introduces it.

1We write the logical connectives of the object language (predicate logic or DPL) as ∧, ∃, etc.,
in order to distinguish them from the respective connectives in dominance constraints.

132 CHAPTER 7. RESOLVING SCOPE AMBIGUITIES USING ANAPHORA

[[P (t1, . . . , tn)]]M = {(g, g) | M, g |= P (t1, . . . , tn)}
[[¬A]]M = {(g, g) | exists no h s.t. (g, h) ∈ [[A]]M}

[[A ∧B]]M = {(g, h) | exists k s.t. (g, k) ∈ [[A]]M and (k, h) ∈ [[B]]M}
[[A ∨B]]M = {(g, g) | exists h s.t. (g, h) ∈ [[A]]M or (g, h) ∈ [[B]]M}

[[A⇒B]]M = {(g, g) | for all h s.t. (g, h) ∈ [[A]]M, ex. k s.t. (h, k) ∈ [[B]]M}
[[∃x.A]]M = {(g, h) | exists k s.t. g[x]k and (k, h) ∈ [[A]]M}
[[∀x.A]]M = {(g, g) | for all h s.t. g[x]h, there is a k s.t. (h, k) ∈ [[A]]M}

Figure 7.2: Semantics of Dynamic Predicate Logic.

Dynamic Predicate Logic achieves the goal of allowing a quantifier to bind variables
outside of its scope by using ordinary formulas of first-order predicate logic, but
giving them a different semantics, shown in Fig. 7.2. It uses ordinary first-order
variables as discourse referents, and models the current context of interpretation
(which specifies how each discourse referent is interpreted) as a variable assignment.
The denotation of each formula is now a binary relation between variable assign-
ments, which represents how each possible “input” variable assignment is changed
into an “output” variable assignment when the hearer interprets the clause.

To understand the definition in Fig. 7.2, let’s take a closer look at the interpre-
tation of the existential quantifier and the conjunction. Starting from some input
variable assignment g, the existential quantifier in a formula ∃x.A allows us to
make an arbitrary change to the value of x; the notation g[x]k indicates that g and
k agree on the value of each variable except possibly for x. Then the formula A is
interpreted with k as its input variable assignment. A might make some changes
to k, resulting in the assignment h, and then h is passed on as the output variable
assignment of ∃x.A. Because the formula ∃x.A is capable of changing the input
variable assignment, we call the connective ∃ externally dynamic. By contrast,
connectives such as ∨ for which the input and output assignments must be equal
are called externally static.

Now conjunction A ∧ B starts with some input variable assignment g and inter-
prets A with respect to g. A might be externally dynamic, i.e. it might change
g into a different output assignment k. Then B is interpreted with the input as-
signment k, and its output assignment h is passed on as the output assignment
of the conjunction. Thus conjunction is clearly externally dynamic, but it is also
internally dynamic: It is a binary connective that passes the output assignment
of its left-hand subformula on to the interpretation of its right-hand subformula.
Again, disjunction A ∨ B is an example of an internally static connective: Even
if A changes a variable assignment, B is interpreted with respect to the original

7.1. DYNAMIC PREDICATE LOGIC IN A NUTSHELL 133

input assignment g and not with respect to the changed assignment.

It is this behaviour of the connectives ∃, ∧, and ⇒ (which is internally but not
externally dynamic) that gives (7.6) and (7.7) meaningful interpretations in DPL.
The existential quantifier in each formula changes the original input variable as-
signment by giving x some random value. The changed assignment is directly
available for the atoms in the scope of the quantifier. Atoms act as tests, i.e. their
denotations include only pairs (g, g), and they contain a pair (g, g) only if M, g
satisfies the atom in the ordinary sense. So the output assignment of the formula
∃x.man(x)∧walk in park(x) in (7.6) may have a changed value for x, but x must de-
note a man who walks in the park. Because conjunction is internally dynamic, this
changed variable assignment is used in the interpretation of the formula whistle(x)
– that is, the variable x has a well-defined value even outside the syntactic scope
of ∃x.

We still say that the occurrence of x is bound by the quantifier occurrence ∃x, as it
is this quantifier occurrence that assigned x the value that is used when interpreting
the variable occurrence. A variable occurrence no longer has to be in the scope of a
quantifier occurrence to be bound by it; it only has to be accessible. Some position
in a formula counts as accessible from another position if a quantifier occurrence in
the first position will bind a variable occurrence in the second position. As usual,
a formula is called closed if all of its variables are bound. DPL predicts that a
semantic representation of a sentence can be felicitous only if it is a closed formula,
i.e. all of its anaphora have accessible antecedents.

Now let’s apply DPL to the motivating example (7.1) above. The two readings
of the sentence are shown below; (7.8) is the felicitous reading, whereas (7.9) is
infelicitous.

(7.8) (∃y.woman(y) ∧ (∀x.man(x) ⇒ love(x, y))) ∧ name(y,mary)

(7.9) (∀x.man(x) ⇒ (∃y.woman(y) ∧ love(x, y))) ∧ name(y,mary)

The variable y in the conjunct name(y,mary) represents the anaphor “her” refer-
ring to “a woman”. It is bound by the existential quantifier in (7.8), because the
quantifier changes its output variable assignment so as to give y a value, and this
changed variable assignment is passed on by the conjunctions because they are
internally and externally dynamic. In (7.9), however, the existential quantifier is
in the scope of a universal quantifier. Although it assigns y a value in its out-
put assignment, the universal quantifier is externally static, and therefore doesn’t
pass this change on to the outside, so the existential quantifier is accessible from
the variable occurrence in (7.8), but not in (7.9). That is, DPL can explain the
difference in felicity by the fact that (7.8) is closed and (7.9) isn’t.

134 CHAPTER 7. RESOLVING SCOPE AMBIGUITIES USING ANAPHORA

7.2 DPL in Dominance Constraints

If we see DPL formulas as lambda structures, we can recast the binding behaviour
of DPL as a binding specification ΛDPL (see Definition 2.3). We will now define
ΛDPL, in such a way that a lambda structure representing a DPL formula is ΛDPL-
admissible iff the formula is closed.

First, let’s assume a signature Σ that is partitioned into three sets: connectives
Σcon = {∀|1,∧|2,¬|1, . . .}, predicate symbols Σpred = {man|1, likes|2, . . .}, and term
symbols Σterm = {var|0, peter|0,mother of|1, . . .}. Term symbols are the variable
symbol var, constant symbols such as peter, and function symbols such as mother of.
Two lambda structures based on Σ, representing the DPL formulas (7.8) and (7.9),
are shown in Fig. 7.3. Among the connectives, we further distinguish the internally
dynamic connectives Σdyn

con = {∧,⇒} and the externally static connectives Σstat
con =

{¬, ∀,⇒,∨}.

Now the binding specification ΛDPL = (BDPL, SDPL) consists of the binder set
BDPL = {∀, ∃} and the scope specification SDPL for which (v, w) ∈ SDPL(M) iff

1. v�∗w; or

2. there is a node u such that LM(v) = ∃, v⊥w at u, u1�∗v, u2�∗w, LM(u) ∈
Σdyn

con , and no node between u1 and v, inclusively, is labelled with an externally
static connective from Σstat

con .

The first case reflects the standard situation from ordinary predicate logic where
the variable is in the syntactic scope of the (existential or universal) quantifier. The
second case is the situation where the quantifier is accessible, but the variable is
not in its scope. Here the quantifier must be existential (i.e. it changes the output
assignment of the quantified subformula so the variable has a defined value), all
connectives up to the branching point u must be externally dynamic (i.e. pass the
changed variable assignment along), and the label of the branching point itself
must be internally dynamic (i.e. pass the changed variable assignment on to its
right-hand child). It is easy to check that this structural notion of accessibility
indeed coincides with the one that follows from the semantics in Fig. 7.2.

Lemma 7.1. A lambda structure whose underlying tree represents a first-order
formula is ΛDPL-admissible iff the formula is a closed DPL-formula.

The two readings of the running example are shown as lambda structures in Fig. 7.3.
If we apply our new binding specification ΛDPL to them, we see that the left-hand
lambda structure (representing the felicitous reading) is indeed ΛDPL-admissible.

7.3. THE INFERENCE PROCEDURE 135

∧ • u

∃ • v

∧ •

woman •

var •

∀ •

⇒ •

man •

var •

love •

var • var •

name •

var • w mary •

∧ • u

∀ •

⇒ •

man •

var •

∃ • v

∧ •

woman •

var •

love •

var • var •

name •

var • w mary •

Figure 7.3: Lambda structures with binding arrows representing the two readings
of (7.1).

All variable-binder pairs are in a dominance relation, except for the pair (v, w)
marked in the picture by a darker arrow. The branching point u of v and w is the
root of the tree, which is labelled by ∧ – an internally dynamic connective. v is
below the left-hand child u1 of u, w is below the right-hand u2 child of u. u1 = v
is labelled with ∃, which is externally dynamic. So all conditions for the second
clause of the scope specification are satisfied.

On the other hand, the lambda structure shown on the right, representing the
infelicitous reading, is not ΛDPL-admissible. The branching point u of v and w is
again the root, but now the path from u1 to v contains a node with the label ∀,
which is externally static.

Syntactically, the binding specification comes with a binding atom λDPL(X) =
Y . We will use the language SNΛDPL to speak about dynamic binding within a
dominance and binding constraint.

7.3 The Inference Procedure

Now let’s turn to the problem of computing the ΛDPL-admissible solutions of a
dominance and binding constraint. One possible solution for this problem would
be to run the sound and complete enumeration algorithm SN for dominance con-
straints from Section 4.1, ignoring all binding constraints. Then we could extract
constructive solutions from the solved forms of the algorithm, and check each of
them for ΛDPL-admissibility. This algorithm would enumerate both lambda struc-
tures shown in Fig. 7.3 for the input constraint in Fig. 7.1, and would then filter
out the inadmissible one.

The obvious disadvantage of this procedure is that it potentially requires us to

136 CHAPTER 7. RESOLVING SCOPE AMBIGUITIES USING ANAPHORA

(ΛDPL.Func) λDPL(X) = Y ∧ λDPL(U) = V ∧X = U → Y = V

(ΛDPL.Var) λDPL(X) = Y → X:var

(ΛDPL.Binder) λDPL(X) = Y → ∃Y ′.(Y :∀(Y ′) ∧ Y ′
�

∗X) ∨
∃Y ′.(Y :∃(Y ′) ∧ Y ′

�
∗X) ∨

∨

f∈Σdyn
con

∃Y ′ZZ1Z2.(Y :∃(Y ′) ∧ Z:f(Z1, Z2) ∧ Z1�
∗Y ∧ Z2�

∗X)

(ΛDPL.NonInter) λDPL(X) = Y ∧ Z:f(Z1, Z2) ∧ Z1�
∗Y ∧ Z2�

∗X ∧W :g(W1, . . . ,Wn)
→ ¬(Z1�

∗W�
∗Y) (f ∈ Σdyn

con , g|n ∈ Σstat
con)

Figure 7.4: An axiomatisation of ΛDPL.

enumerate many solutions that turn out not to be admissible later. So we will once
again use propagation rules to detect inadmissibility early, which we will add to
the rule system SN from Chapter 4. In many cases, these rules will either allow
us to derive a contradiction when all solutions of a constraint are inadmissible, or
they will even allow us to derive explicit dominance atoms that are satisfied in all
remaining admissible solutions.

Fig. 7.4 displays an axiomatisation of ΛDPL. The first two rules are the standard
functionality and variable-labelling rules that were also present in the axiomatisa-
tions in Section 4.2. The function of the (Binder) and (Scope) rules from the earlier
axiomatisations is performed here by the rules (Binder) and (NonInter) together.
(ΛDPL.Binder) states that if Y is a binder, it must be labelled with ∀ or ∃, can
either dominate the variable X, or can be connected to X via an internally dy-
namic branching point. Thus, it contains positive information about the label of the
binder and about the relative positions of the binder and the variable. The negative
information that if X and Y are linked by an internally dynamic branching point,
there must be no externally static connective blocking the binding, is expressed by
(ΛDPL.NonInter). This rule uses the non-intervention constraint ¬(Z1�

∗W�
∗Y)

from the language N , which expresses that W must not be between Z1 and Y in
a solution.

Lemma 7.2. The rules in Fig. 7.4 are an axiomatisation of the binding specifica-
tion ΛDPL.

Because they are an axiomatisation of ΛDPL, it is clear that all the rules are sound
over ΛDPL-admissible lambda structures, i.e. whenever the left-hand side is ΛDPL-
satisfied, the right-hand side is also ΛDPL-satisfied. As for completeness, Theo-
rem 4.11 showed that an axiomatisation could be read immediately as a complete
set of saturation rules, if it met certain prerequisites. Unfortunately, not all of these

7.4. EXAMPLES 137

prerequisites are satisfied in the case of ΛDPL. In particular, (ΛDPL.NonInter) is
not guarded, and its left-hand side contains dominance atoms. This means that
problems similar to the counterexample (1) in Section 4.2 (on page 59) could occur.

By arguing a little more carefully, we can nevertheless prove the following com-
pleteness result.

Proposition 7.3. Every solved form of SNΛDPL is ΛDPL-satisfiable.

Proof. We know that every simple SNΛDPL-solved form is SNΛDPL-satisfiable, by
Lemma 4.10: (ΛDPL.NonInter) is not equality insensitive, but this is no problem
here because SN derives X�

∗Z from X = Y ∧ Y�
∗Z.

It remains to show that the “extension by labelling” process from the proof of
Prop. 4.7 can be done in such a way that (ΛDPL.NonInter) doesn’t become ap-
plicable – we get this for free for the three other rules, because they satisfy the
preconditions of Theorem 4.11. So let’s assume that we choose the connective
∧ 6∈ Σstat

con as the connecting symbol f in the extension by labelling process. Thus
this rule will never be triggered either.

Note that it is indeed necessary to choose the connecting symbol f carefully in this
proposition. Consider a variant of the constraint in Fig. 7.1 without the bottom
fragment (whose root is the variable W). This constraint is in solved form but not
simple, so the “extension by labelling” procedure adds a labelling atom for Z1 to
make it simple. If the label f in this labelling atom is externally static, we obtain
an extended solved form that has only inadmissible solutions – a fact which would
be detected by the (ΛDPL.NonInter) rule if we could still apply it to the extended
solved form. On the other hand, if we choose ∧ as our label f , the extended
solved form is a simple solved form that is SNΛDPL-saturated, and therefore has
a ΛDPL-admissible solution.

7.4 Examples

To illustrate how SNΛDPL excludes inadmissible solutions, we will now go through
two examples. we will first consider our running example (7.1), and then a more
complex example which demonstrates the limits of the propagation rules.

Consider the constraint graph in Fig. 7.1. This is a normal dominance and bind-
ing constraint from DIΛDPL, i.e. it contains an inequality atom for each pair of
variables that are heads of labelling atoms. We want to infer the information that
the existential quantifier must have wide scope, i.e. Y2�

∗X.

138 CHAPTER 7. RESOLVING SCOPE AMBIGUITIES USING ANAPHORA

∃ • X

∧ •

company •

var •

•

∀ • Y

⇒ • Y1

∧ •

visitor •

var •

•

•

∃ • Z

∧ •

∧ •

of •

var • var •

department •

var •

•

of •

var • var •

see • W

var • var •

Figure 7.5: Constraint graph for (7.10).

In the first step, we want to apply the rule (ΛDPL.NonInter) to the binding atom
λDPL(Z3) = Y in order to infer a non-intervention atom. We first establish the
dominance preconditions by some applications of (Lab.Dom) and (Inter). Then we
can apply the following rule instance:

(ΛDPL.NonInter) λDPL(Z3) = Y ∧ Z: ∧ (Z1, Z2) ∧ Z1�
∗Y ∧ Z2�

∗Z3 ∧X:∀(X1)
→ ¬(Z1�

∗X�
∗Y)

The rule was applicable because ∀ is an externally static connective. Now we can
convert the non-intervention information into a positive dominance atom Y�

∗X
by exploiting the non-disjointness atom we can get from the two dominances into
W , with the following SN derivation:

(NonI1) ¬(Z1�
∗X�

∗Y) ∧ Z1�
∗X → X¬�

∗Y
(NegDisj) X�

∗W ∧ Y�
∗W → X¬⊥Y

(Inter) X¬�
∗Y ∧X¬⊥Y → Y�

∗X

Because the constraint contains an inequality atom for each pair of labelled vari-
ables, further applications of the rules (Child.down), (Lab.Disj), (NegDisj), and
(NegDom) will derive Y2�

∗X. This means that we have resolved the scope am-
biguity purely by propagation based on the anaphoric reference: We started with
an implicit description of the scope ambiguity, and then strengthened it until only
one scope reading remained.

Now let us consider a more complicated example, which illustrates the limitations
of the algorithm. Fig. 7.5 is the underspecified description of the semantics of the
following sentence:

(7.10) Every visitor of [a company]1 saw one of [its]1 departments.

7.5. SUMMARY 139

This dominance and binding constraint from DIΛDPL has five constructive solu-
tions, but only three of them are ΛDPL-admissible: the two where X takes wide
scope and Z is either between X and Y or below the right-hand hole of Y , plus the
one where X is below the left-hand hole of Y and Z is below the right-hand hole.
These three solutions can be characterised as satisfying the additional dominance
constraint Z¬�

∗X.

Unfortunately, this information cannot be inferred just by using the propagation
rules in SNΛDPL. The two choices X�

∗Y and Y�
∗X give rise to very different

structural constraints on Z. The case X�
∗Y ΛDPL-entails X�

∗Z: If this domi-
nance did not hold, (ΛDPL.Binder) would tell us that X and Z must be disjoint
(with an internally dynamic label at a branching point that is not denoted by any
variable), which contradicts the fact that both X and Z dominate W . But the
atom X�

∗Z is not inferred by SNΛDPL. In the case of Y�
∗X, the algorithm will

infer a new labelling atom for ⇒; it can’t infer without additional distribution that
the head of this labelling atom must be Y1.

This means that the propagation rules in Fig. 7.4 are incomplete in the sense that
they do not compute all atoms that are ΛDPL-entailed by the constraint. This is
unfortunate, but as the rules are still guaranteed to detect ΛDPL-unsatisfiability
on constraints to which no more distribution rules can be applied, it is a bearable
limitation, and it is still an improvement over a naive generate-and-test algorithm.
In addition, complete propagation rules would probably require some form of hypo-
thetical reasoning such as the disjunctive propagators we used in the set constraint
based solver in Section 4.3. This would make the propagation itself more computa-
tionally expensive, and it is unclear whether such a step would actually make the
whole system more efficient.

7.5 Summary

In this chapter, we have shown how to resolve scope ambiguities by taking anaphoric
information into account. We first recast the accessibility conditions of DPL as a
binding specification ΛDPL for dominance and binding constraints. Then we defined
an axiomatisation for this binding specification, which can be used in a sound and
complete saturation algorithm. This algorithm is guaranteed to enumerate exactly
the ΛDPL-admissible solutions of the constraint – corresponding to the felicitous
readings of the sentence –, and is capable of resolving some (but not all) cases of
scope ambiguity by propagation, i.e. without enumerating the infelicitous readings
at all.

The chapter looks deceptively simple: There was no deep logic involved, and all

140 CHAPTER 7. RESOLVING SCOPE AMBIGUITIES USING ANAPHORA

our claims were so obviously true that we didn’t prove most of them explicitly,
but relied on an informal explanation. However, it is important to note that we
owe this simplicity to the general theory of dominance constraints developed in the
first two parts of the thesis. It was essential that we could build upon the sound
and complete algorithm SN for dominance constraints, as well as on the earlier
results on axiomatisations of binding specifications. It is thus rather a testament to
the power of dominance constraints how easily they could be adapted to an object
language with a highly nonstandard notion of variable binding. The pioneer work in
combining underspecification and dynamic semantics (Schiehlen 1997) still had to
develop quite a formidable formal apparatus specifically to compute the admissible
solutions. By comparison, our formal tools are straightforward extensions to the
basic theory, and in addition we are now able to eliminate inadmissible solutions
by propagation.

It is interesting to compare the relationship between formula structure and variable
binding in DPL and in lambda structures. In DPL, an occurrence of a quantifier ∀x
or ∃x defines a set of positions in the formula at which it can bind occurrences of x.
This means that the relative positions of the quantifier and the variable determine
the binding relation. By contrast, the primitive concept in a lambda structure is
the binding function mapping variable occurrences to quantifier occurrences. This
binding function, together with the binding specification, determines the possible
relative positions in which the quantifier and the variable can stand in an admissible
lambda structure. In other words, in DPL structure determines binding, and in
lambda structures binding restricts structure. This reversal of the relationship
between binding and structure was instrumental in our algorithm, as it made it
much easier to infer structural information (such as dominance atoms) from binding
atoms. Defining a similar algorithm based purely on DPL (or any other formalism
that establishes binding based on variable names) would have been much more
difficult.

Chapter 8

Resolving Scope Ambiguities
Using World Knowledge

The second source of information that we will use to resolve scope ambiguities is
world knowledge. Consider the following examples.

(8.1) Every boy ate a cookie.

(8.2) So we put a wooden elephant into every package.
(British National Corpus, AJ9-135)

These sentences will be analysed as ambiguous by a standard grammar, such as
the one from Chapter 3, because they contain two quantified noun phrases that
are arguments of the same verb. However, one reading of each sentence is highly
implausible: cookies are typically not eaten more than once, and an elephant won’t
be inside multiple packages. A human listener will automatically discard the im-
plausible readings, thus resolving the scope ambiguity.

In this chapter, we model this kind of implausibility as inconsistency with world
knowledge. We assume that our world knowledge contains axioms that talk about
the eating of cookies and the location of physical objects, and that both our se-
mantic representations and the axioms are formulas of ordinary first-order predicate
logic. We will consider only readings that are logically consistent with the world
knowledge as “compatible” in the sense of the introduction of Chapter 7. Our aim
in this chapter will be to model the incompatible readings, and to provide computa-
tional mechanisms for strengthening an underspecified descriptions so incompatible
readings are eliminated.

141

142CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

Because world knowledge is much more complex than anaphoric reference, we will
approach this problem differently than in the previous chapter. We will develop a
procedure for checking whether all constructive solutions of a constraint are unsat-
isfiable. Then we will strengthen a constraint ϕ by performing a single distribution
step on it; let’s say that the two possible results are ϕ1 and ϕ2. If ϕ1 has only
unsatisfiable constructive solutions, we commit to ϕ2; this constraint has fewer
constructive solutions than ϕ, but contains the same satisfiable constructive solu-
tions. Such a procedure fits straightforwardly into the enumeration algorithm from
Chapter 5, where it could be used as a propagator that removes entire subtrees
from the search tree, if all of its constructive solutions are unsatisfiable.

The main challenge in this approach is to check efficiently that all constructive
solutions of a constraint are unsatisfiable. We define unsatisfiability criteria as
a general framework for tackling this problem (Section 8.1), and show how an
unsatisfiability criterion can be obtained based on a rewrite system that makes
a constructive solution weaker (Section 8.2). Then we present a rewriting-based
unsatisfiability criterion for classical unsatisfiability. This criterion makes it pos-
sible to establish the unsatisfiability of all constructive solutions of a constraint
by checking only some constructive solutions for unsatisfiability, and it is cheap to
determine which solutions need to be checked.

However, it will turn out at this point that classical unsatisfiability doesn’t reflect
the linguistic intuition about the perceived logical strength of a reading, because
it doesn’t take presuppositions into account – in our case, this is most apparent
for the existential presuppositions of universally quantified noun phrases. We will
investigate several candidate definitions for these presuppositions (Section 8.3), but
none of them supports a working unsatisfiability criterion. Nevertheless, this part
of the chapter lays a foundation of concepts and methods upon which later research
can build.

8.1 Unsatisfiability Criteria

The key component of the architecture we have just described is a procedure that
checks, for any given normal dominance constraint ϕ, whether all of its readings
are inconsistent with our world knowledge. For now, we assume that the world
knowledge is represented as a set Γ of first-order formulas, and that a formula A is
“inconsistent with our world knowledge” if the formula set Γ∪{A} has no common
model. We write capital Latin letters A, B, etc. for first-order formulas; as before,
we use underlined connectives, such as ∧ and ∀, for the connectives in the object
language.

8.1. UNSATISFIABILITY CRITERIA 143

test set

all readings

Figure 8.1: An unsatisfiability criterion.

It is conceptually straightforward to check a formula set Γ∪{A} for mutual incon-
sistency – all we need to do is send the conjunction over all formulas to a theorem
prover and have it test the conjunction for unsatisfiability. But of course, if we have
a sentence with N readings, where N is exponential in the size of the underspecified
representation, this approach is computationally unfeasible.

Fortunately, the different constructive solutions of a normal dominance constraint
are not an arbitrary set of formulas. We know that they are built up from the
same fragments, and there are restrictions on the way that these fragments can be
configured. Thus it may be possible to establish that all constructive solutions of
a constraint are unsatisfiable by selecting an appropriate subset (the “test set”)
and proving that the constructive solutions in this subset are unsatisfiable. We
formalise this idea in the following definition.

Definition 8.1. A triple C = (U, T, P) is called an unsatisfiability criterion iff

1. U is a property of first-order formulas (the unsatisfiability condition);

2. P is another property of first-order formulas (the test condition);

3. for any dominance constraint ϕ, T (ϕ) is a subset of the constructive solutions
of ϕ (the test set); and

4. if all elements of T (ϕ) have the property P , then all constructive solutions of
ϕ have the property U .

The naive strategy for unsatisfiability checking that we just described fits easily
into this framework, as follows:

C1 = (U1, T1, P1): check all readings
U1 = {A | Γ ∧ A is unsatisfiable}
P1 = U1

T1(ϕ) = all constructive solutions of ϕ

144CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

It is trivial that C1 is indeed an unsatisfiability criterion, but as we have already
argued, it is computationally unfeasible because the test set can be very big.

We can obtain an unsatisfiability criterion C2 with a much smaller test set if we
consider that first-order entailment is a pre-order (i.e. a reflexive and transitive
relation) on the set of all first-order formulas. Thus if we could prove that those
readings of a constraint that are minimal with respect to this order (i.e., that don’t
properly entail any other constructive solution) are unsatisfiable, we would know
that all constructive solutions are unsatisfiable.

C2 = (U2, T2, P2): check minimal readings
U2 = {A | Γ ∧ A is unsatisfiable}
P2 = U2

T2(ϕ) = the |=-minimal elements of the constructive solutions of ϕ

The set of constructive solutions will generally have just a few minimal elements,
so the number of theorem prover calls that we need to establish unsatisfiability
of the test set is much smaller than for C1. However, it is not obvious how the
set of minimal elements can be computed in general without computing the entire
entailment pre-order. If ϕ has N constructive solutions, computing the entire pre-
order will require O(N 2) theorem prover calls. Even if we exploit equivalences
and transitivity to reduce the number of necessary proofs somewhat (Gabsdil and
Striegnitz 2000), this model is computationally even more expensive than C1. So
we will somehow have to strike a balance between computing a small test set on
the one hand and computing this test set efficiently.

Note that the minimal elements of the entailment order are very close in spirit
to the notion of weakest readings that is sometimes considered in the underspec-
ification literature, see e.g. (Monz and de Rijke 1998). If a formula A entails a
formula B, B is “weaker” in that it contains less information than A. One hope
in underspecification is that there are unique weakest readings, which could then
be taken as representing the safe information that is common to all readings of
an ambiguous sentence. Unfortunately, there are sentences with more than one
minimal reading. But the idea of looking for minimal constructive solutions is a
generalisation of looking for weakest readings that is still applicable in this case.

8.2 Rewriting-Based Unsatisfiability Criteria

We will now show how a balance between computing a small test set and computing
a test set cheaply can be achieved by defining unsatisfiability criteria based on

8.2. REWRITING-BASED UNSATISFIABILITY CRITERIA 145

+
∃

∀

A B

C →a

+
∀

A ∃

B C

−
∀

A ∃

B C

→a−

−
∃

∀

A B

C

Figure 8.2: Some instances of the rotation rewrite system. The rule (a) weakens a
formula; (a−) strengthens it.

rewriting. We will achieve this by defining a rewrite system that transforms first-
order formulas into other first-order formulas, such that each rewrite step makes
the formula weaker. Essentially, every entailment-minimal constructive solution of
a constraint will be in normal form with respect to such a rewrite system, because
it can’t be made weaker by any rewrite step. So we can take those constructive
solutions of a constraint that are normal forms of the rewrite system as our test set.
The test set will typically be smaller than the whole set of constructive solutions,
and it can be computed efficiently, as we only need to check the N constructive
solutions for applicability of the rewrite rules.

To make these ideas more concrete, let’s consider the following example.

(8.3) A researcher of every company is paid well.

(8.4) (∀x : comp(x))[(∃y : res(y) ∧ of(x, y))[paidwell(y)]]

(8.5) (∃y : (∀x : comp(x))[res(y) ∧ of(x, y)])[paidwell(y)]

We represent the two readings of the sentence – (8.4) and (8.5) – in a variant of
first-order predicate logic with binary quantifiers (∀x : R)[S] and (∃x : R)[S]. This
is to preserve the distinction between the linguistic scope and the restriction of
the quantifier. In this case, the restriction of the indefinite is “researcher of every
company” and the scope is “is paid well”; the restriction of the universal quantifier
is “company” and the nuclear scope is “of”. The formulas can be straightforwardly
translated to ordinary predicate logic by replacing every occurrence of (∀x : R)[S]
by ∀x.R⇒ S and every occurrence of (∃x : R)[S] by ∃x.R ∧ S.

The second reading of the sentence is intuitively stronger: If there is a single
researcher who works for every company and who is paid well, it is of course true
that every company employs some well-paid researcher. We can map the stronger
reading into the weaker one by the rewrite step (a) in Fig. 8.2. The example
motivates a general intuition that switching the positions of an existential and
a universal quantifier in this way should make the semantic representation of a

146CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

∀ •

• •

∃ •

• •

comp •

var •

∧ •

res •

var •

of •

var • var •

paidwell •

var •

∀ •

• •

∃ •

• •

comp • res of • paidwell •

(a) (b)

Figure 8.3: Constraint for (8.3), as an elaborated normal dominance constraint (a)
and as the compactified pure chain (b).

sentence weaker – if the redex occurs in a positive context. If the redex occurs
in a negative context (“It is not true that a researcher of every company is paid
well”), the same rewrite step would make the formula stronger (shown as (a−) in
Fig. 8.2). Indeed, this intuition is supported by the fact that the left-hand side of
(a) logically entails its right-hand side, but not vice versa, and the converse claim
holds for (a−).

Both rules in Fig. 8.2 are instances of the rotation rewrite system from Def. 6.22,
with particular symbols substituted for f and g. For constraints that are pure
chains, we know that instances of these rules only map solutions to solutions
(Prop. 6.23). The lambda structures corresponding to the formulas (8.4) and (8.5)
don’t satisfy any pure chain, because they contain unary symbols. But they both
satisfy the alternating chain in Fig. 8.3(a). Alternating chains (which we will de-
fine in a moment) are constraints whose compactifications are pure chains: The
compactification of the example constraint is shown in Fig. 8.3(b). Because of
this correspondence, the relevant rewriting lemmas from Section 6.4.4 still hold
for alternating chains. Many interesting sentences have underspecified semantic
representations that can be written as alternating chains, but there are sentences
that don’t; we will investigate their exact expressive power below.

8.2.1 Alternating chains

Before we define how to obtain unsatisfiability criteria by way of rewrite systems,
let’s now first have a closer look at alternating chains and at the class of formulas
that they can describe.

Definition 8.2. An alternating chain is a normal dominance and binding con-
straint of the form
(

n
∧

i=1

Xi:fi(X
l
i , X

r
i) ∧

n+1
∧

i=1

ϕL
i

) 6=

∧
n
∧

i=1

(X l
i�

∗Yi∧X
r
i �

∗Yi+1)∧
n
∧

i=1

(λ(Y vl
i) = Xi∧λ(Y vr

i+1) = Xi),

8.2. REWRITING-BASED UNSATISFIABILITY CRITERIA 147

where (a) fi ∈ {∀, ∃} for each i, (b) each ϕL
i is a description of a first-order formula

that consists only of labelling atoms for symbols that are neither ∀ and ∃, (c) the
root of ϕL

i (as a fragment) is Yi, (d) no two ϕL
i have any variables in common, and

no Xi, X
l
i , or Xr

i occurs in any ϕL
k , (e) Y vl

i , Y
vr
i ∈ V(ϕL

i).

Alternating chains are elaborated (in the sense of Def. 5.36), so we can remove
the binding atoms and compactify an alternating chain ϕ and obtain a compact
dominance constraint ϕ′ whose constructive solutions correspond one-to-one to the
constructive solutions of ϕ (Prop. 5.37, Prop. 5.14). This constraint ϕ′ will be a
pure chain with the same upper fragments as ϕ. The name “alternating chain”
derives from the fact that as we follow the dominance edges of the dominance
graph, we alternate between holes representing the scope and the restriction of the
respective quantifier.

Now consider all instances of the rotation rules from Def. 6.22 in which each symbol
f and g can be either ∀ or ∃. No such rule can rewrite a redex inside the denotation
of a lower fragment, as we have assumed that the ϕL

i don’t contain the symbols
∀ or ∃. So it follows immediately that Propositions 6.23 and 6.24 carry over to
alternating chains.

We can characterise the sets of formulas that can occur as constructive solutions
of an alternating chain as the formulas in the language F .

Definition 8.3. Let V be some set of (object-language) variables, and let • /∈ V
be another symbol. Then F is defined as follows:

1. A ∈ Fx,y if A is a quantifier-free first-order formula whose free variables are
x and y;

2. A ∈ F•,x and A ∈ Fx,• if A is a quantifier-free first-order formula whose only
free variable is x;

3. if A ∈ Fx,y and B ∈ Fy,z for some x, z ∈ V ∪{•} and y ∈ V , then (∀y : A)[B]
and (∃y : A)[B] are in Fx,z.

4. F :=
⋃

x,y∈V ∪{•} Fx,y.

Intuitively, the subscript of Fx,y indicates the free variables of a formula; • is a
placeholder to indicate that the formula has less than two free variables. It is
easy to show that a formula in F is closed iff it is in F•,•. The order of the two
variables in the subscript determines how the formula can be combined with others:
A quantifier (as per clause 3 of the definition) must bind the right-hand variable
of its restriction and the left-hand variable of its scope.

148CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

Many interesting natural-language sentences have semantic representations that
belong to F . For instance, both formulas (8.4) and (8.5) are members of F•,•.
F contains all semantic representations that the grammar in Chapter 3 assigns
to sentences whose main verb is intransitive, and whose subject is an arbitrarily
complex structure built from noun phrases (NP) and prepositional phrases (PP).

However, not all sentences have semantic representations in F . Our familiar run-
ning example, “Every man loves a woman”, one of whose readings is repeated here
as (8.6), is one such sentence.

(8.6) (∀x : man(x))[(∃y : woman(y))[love(x, y)]]

The reason for this is that the subformula love(x, y) is in the scope of both quan-
tifiers, rather than in the scope of one and the restriction of another. In order to
combine the subformulas woman(y) and love(x, y) via the quantifier ∃y, we must
consider the former as a formula in F•,y and the latter as a formula in Fy,x; so the
entire existential formula is in F•,x. But this means it cannot be the right-hand
subformula of a quantifier ∀x, as the x appears as the right-hand variable.

It is straightforward to see that alternating chains and F belong together in the
same ways as pure chains and binary trees.

Proposition 8.4. A formula in F is the constructive solution of exactly one al-
ternating chain, and all constructive solutions of an alternating chain are in F .

Proof. The first claim follows essentially like the proof that a binary tree satisfies
exactly one pure chain (Prop. 6.20). For the second point, observe that the con-
structive solution that satisfies Xr

i �
∗Xi+1 for all i is in F . The claim follows if we

combine this with Prop. 6.24.

8.2.2 Rewrite systems with polarities

Now we are prepared to connect rewriting to unsatisfiability criteria. We will equip
rewrite systems with a notion of polarity, so as to be able to distinguish positive
and negative contexts of a redex. Then we will show how a rewrite system with
polarities can be used to define an unsatisfiability criterion.

First, let’s equip rewrite systems with a mechanism for keeping track of polarities.
We take the notion of a term and a ground term (i.e., a variable-free term) for
granted. A substitution θ is a mapping from variables to terms; we write sθ for
the result of the application of the substitution θ to the term s.

8.2. REWRITING-BASED UNSATISFIABILITY CRITERIA 149

Definition 8.5. A term with polarities A is a pair (t, p) of a term t and a function p
that maps the nodes of t to polarities in {+,−}. A context is a term with polarities
that has exactly one hole. The context is positive if the polarity of the root and
the hole are equal, and negative otherwise.

A rewrite system with polarities R is a set of triples (s, t, ε) of terms s, t (which may
include variables) and a polarity ε ∈ {+,−}. The rule r = (s, t, ε) can be applied
to the term A with polarities iff A = C[s′], where C is a context, s′ = sθ is an
instance of s, and the polarity of C’s hole is ε. The result of the rule application
is C[tθ]. We write A →r,C B in this case. If R is a rewrite system with polarities,
we write A→R,C B if there is some r ∈ R such that A→r,C B. We write A→R B
(or just A→ B) if there is a context C such that A→R,C B.

The definition of rewrite systems with polarities is a straightforward extension
of ordinary rewrite systems which only allows the application of rewrite rules to
positions of appropriate polarity. We can read formulas from F as terms with
polarities in the obvious way: The root of the whole formula is positive; the two
children of a node v with label ∃ and the right-hand child of a node with label ∀
have the same polarity as v; and the left-hand child of a node with label ∀ has the
other polarity. An example for a rewrite system that operates on F is the two-rule
system in Fig. 8.2; note that each rule is marked with the polarity in which it is
applicable.

Definition 8.6. A triple CR = (U,R, P) is called a rewriting-based unsatisfiability
criterion iff

1. U and P are properties of first-order formulas (the unsatisfiability and test
conditions as in Def. 8.1);

2. R is a weakly normalising rewrite system with polarities;

3. if A and B are constructive solutions of the same dominance constraint,
A→∗

R B, B is in R-normal form, and P (B), then U(A) holds.

The idea is that because the rewrite system normalises weakly, every constructive
solution A of a constraint ϕ can be rewritten into some normal form B in a finite
number of steps. Intuitively, each rewrite step makes the formula weaker. Now
assume that we know P (B) for all normal forms. Then the third clause will allow
us to conclude that we must have U(A) for any constructive solution A. This means
that a rewriting-based unsatisfiability criterion induces an ordinary unsatisfiability
criterion (in the sense of Def. 8.1) with the same P and U , and whose test set is
the set of R-normal forms among the constructive solutions of a constraint.

150CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

Lemma 8.7. If CR = (U,R, P) is a rewriting-based unsatisfiability criterion, then
C = (U, TR, P), where TR(ϕ) is the set of constructive solutions of ϕ that are
normal forms of R, is an unsatisfiability criterion.

So one way to create an unsatisfiability criterion is as follows:

1. Decide upon an unsatisfiability condition U that we are interested in.

2. Define a weakly normalising rewrite system with polarities R such that each
rewrite rule makes the formula it is applied to “weaker” with respect to U .

3. Find a suitable test condition P such that (U,R, P) becomes a rewriting-
based unsatisfiability criterion.

4. Apply Lemma 8.7 in order to get the induced unsatisfiability criterion.

The main problem with this recipe is to prove that (U,R, P) is a rewriting-based
unsatisfiability criterion. More specifically, it is hard to establish the third condition
of Definition 8.6. This condition makes a very strong claim about the connection
of “semantic” notions such as U and P and “syntactic” notions such as the rewrite
system R, and it isn’t trivial to prove such a connection.

We can solve this problem by assuming a binary relation E between terms; if U
and P are intuitively unsatisfiability, E is intuitively entailment. On the one hand,
we will require that P (B) and E(A,B) together imply U(A). On the other hand,
we will use the following lemma to prove that A→∗ B implies E(A,B) by looking
only at single rewrite steps. We will say that R weakens formulas with respect to
E if it satisfies the latter condition.

Importantly, we assume that R is an antisymmetric rewrite system with polarities
(ARSP). If we consider the two rules in Fig. 8.2 again, it is obvious that if we
reverse the direction of (a), the rule becomes a strengthening rule. If we apply
the reversed rule in a negative context, it becomes a weakening rule again. The
defining characteristic of an ARSP is that if we reverse a weakening rule and apply
it in the wrong polarity, we get a weakening rule again.

Definition 8.8. If r = (s, t, ε) is a rewrite rule with polarities , we call r− =
(t, s,−ε) the antisymmetric rule of r. An entire rewrite system with polarities R
is called antisymmetric iff {r− | r ∈ R} ⊆ R. The antisymmetric closure R↔ of a
rewrite system R with polarities is the system R ∪ {r− | r ∈ R}.

Lemma 8.9. Let R be an ARSP and E a binary relation over F . Then A →∗ B
implies E(A,B) if

8.2. REWRITING-BASED UNSATISFIABILITY CRITERIA 151

1. E is reflexive.

2. If A→• B, then E(A,B).1 (base case)

3. If E(A,B) and C is a positive context, then E(C[A], C[B]). If C is a negative
context, then E(C[B], C[A]). (insertion into contexts)

4. If E(A,B) and B → C, then E(A,C). (transitivity)

Proof. Because of the reflexivity and transitivity conditions, it is sufficient to show
that A → B implies E(A,B). To do this, we first let R+ be the positive polarity
rules in R as an ordinary rewrite system, i.e. R+ = {(s, t) | (s, t,+) ∈ R}. Then
we prove by structural induction over the context C of the redex that A→R+,C B
implies E(A,B) if C is positive, and E(B,A) if C is negative.

Assume we had this, and assume that A →R,C B. If C is positive, then the
rewrite step was also a rewrite step according to R+, and we have E(A,B) directly.
If C is negative, it was an application of a negative rewrite rule r = (s, t,−).
Because R is antisymmetric, it also contains the rule r− = (t, s,+). Now let
R−1 = {(s, t, ε) | (t, s, ε) ∈ R}. Then we know that B →(R−1)+,C A, by the version
of r− without polarities. Because R−1 is an ARSP that simply contains the reversed
rules of R, the lemma is applicable with all the arguments of E reversed. If we
apply the above result of the structural induction, we find that B →(R−1)+,C A
implies E(A,B), which concludes the proof.

Now for the structural induction. Because A ∈ F , we have to consider only the
following two cases.

C = • This is the base case (condition 2). The empty context is positive.

C = D(C ′) where C ′ is a smaller context, and D is either f(A′, •) or f(•, A′), where
f ∈ {∀, ∃} and A′ ∈ F . Let’s say that C ′ and D are both negative contexts;
the proof is analogous for the other three cases. Then by induction hypothesis,
we have E(C ′[B], C ′[A]). By condition 3, we then have E(D[C ′[A]], D[C ′[B]]).

1• is the empty context.

152CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

+
∃

A ∃

B C

→e

+
∃

∃

A B

C

−
∃

∃

A B

C →e−

−
∃

A ∃

B C

+
∃

∃

A B

C →f

+
∃

A ∃

B C

−
∃

A ∃

B C

→f−

−
∃

∃

A B

C

Figure 8.4: The equivalence rules e and f .

+
∃

∀

A B

C →a

+
∀

A ∃

B C

−
∀

A ∃

B C

→a−

−
∃

∀

A B

C

+
∀

∃

A B

C →b

+
∃

A ∀

B C

−
∃

A ∀

B C

→b−

−
∀

∃

A B

C

+
∀

A ∀

B C

→c

+
∀

∀

A B

C

−
∀

∀

A B

C →c−

−
∀

A ∀

B C

Figure 8.5: The weakening rules a, b, and c.

8.2.3 Classical unsatisfiability

Now let’s apply our recipe for rewriting-based unsatisfiability criteria to our original
problem of checking whether all constructive solutions of a constraint are unsatis-
fiable.

Using the rewrite rules from Fig. 8.4 and Fig. 8.5, we can define two different
rewriting-based unsatisfiability criteria as follows:

8.2. REWRITING-BASED UNSATISFIABILITY CRITERIA 153

+
∀

A ∃

B C

→g

+
∃

∀

A B

C

−
∃

∀

A B

C →g−

+
∀

A ∃

B C

+
∃

A ∀

B C

→h

+
∀

∃

A B

C

−
∀

∃

A B

C →h−

−
∃

A ∀

B C

+
∀

∀

A B

C →i

+
∀

A ∀

B C

−
∀

A ∀

B C

→i−

−
∀

∀

A B

C

Figure 8.6: The strengthening rules g, h, and i.

C3 = (U3, R3, P3): rewriting-based, with rule e
U3 = U1 = {A | Γ ∧ A is unsatisfiable}
P3 = U3

R3 = {a, e}↔ = {a, e, a−, e−}

C ′
3 = (U3, R

′
3, P3): rewriting-based, with rule f

U3 = U1 = {A | Γ ∧ A is unsatisfiable}
P3 = U3

R′
3 = {a, f}↔ = {a, f, a−, f−}

The two criteria differ only in the choice of adding either e of f to the rule system.
A criterion can’t contain both rules because this would destroy weak normalisa-
tion. An example for a formula that has no normal form is (∃x : A(x))[(∃y :
B(x, y))[C(y)]].

Lemma 8.10. Both C3 and C ′
3 are rewrite-based unsatisfiability criteria.

Proof. We need to establish Conditions 2 and 3 of Definition 8.6. Let’s start with
Condition 3, and let’s use the following relation as our stepping stone to prove the
connection between U3, P3, and R3 (or R′

3):

E3(A,B) :⇔ A |= B.

154CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

Note that A and B may be subformulas of the complete constructive solution, and
may therefore contain free variables. We deal with these free variables as usual,
i.e. A |= B is equivalent to |= ∀x1 . . .∀xn(A⇒B).

It is clear that P3(B) and E3(A,B) imply U3(A). Now we need to check the
applicability conditions of Lemma 8.9. All conditions except Condition 2 are obvi-
ous. Condition 2 can be verified automatically, after substituting formulas A(x, y),
B(y, z), and C(z, w) for the three subterms.

In fact, the left-hand side of the rule (a) strictly entails the right-hand side, and the
right-hand side of (a−) strictly entails the left-hand side. This means that these
rule can be applied only a finite number of times. The rules (e) and (e−) can only
be applied finitely often either because each rotation leaves the polarity of every
subterm intact. So R3 normalises, even strongly. The same argument goes through
for R′

3.

Thus we have achieved the goal we have set for ourselves in the beginning of the
chapter. We have defined an unsatisfiability criterion with which we can establish
the unsatisfiability of all constructive solutions without sending every single con-
structive solution to a theorem prover: Unsatisfiability of the reducible solutions
follows from the unsatisfiability of the normal forms. On the other hand, it is rel-
atively cheap to decide which constructive solutions are in normal form and which
aren’t.

However, the practical efficiency gain may not be as high as we hoped. The rewrite
rules (e) and (f) allow us to save on theorem prover calls for obviously equivalent
readings, and beyond that we have essentially a single rewrite rule (a) that actually
moves us from stronger readings to weaker ones. Because the rules are so specific,
most readings are in normal form.

8.3 Existential Presuppositions

But there is a more fundamental problem with unsatisfiability criteria for classical
unsatisfiability in general: Classical unsatisfiability doesn’t reflect the linguistic
intuitions on the relative strength of readings. This becomes apparent when we
consider the rules (b) and (c) from Fig. 8.5. The following example sentences
illustrate the kind of inference that these two rules represent:

Rule (b): Every researcher of a company is paid well.

The left-hand reading says that every researcher who works for any company

8.3. EXISTENTIAL PRESUPPOSITIONS 155

at all is paid well. We can conclude from this that if we pick one specific
company, all the researchers it employs must be paid well.

Rule (c): Every researcher of every company is paid well.

The left-hand reading says that it is true for every company that every re-
searcher who works for it is paid well. But if that is the case, then surely
every researcher who works for all companies is paid well too.

So intuitively, the right-hand sides seem to follow from the left-hand sides, and we
would like to be able to use the rules (b) and (c) in our weakening rewrite system.
However, neither side of these rules entails the other side logically. This means that
no unsatisfiability criterion based on the rotations can contain these rules if we want
to model classical unsatisfiability, because they might rewrite a satisfiable reading
into an unsatisfiable one. Conversely, if we take any rewriting-based unsatisfiability
criterion that weakens with respect to classical entailment, the criterion will use
test sets that contain intuitively non-minimal readings. Clearly there is some part
of the meaning of a sentence which we haven’t represented yet.

8.3.1 Existential presuppositions

The reason why the semantics of the example sentences seems to be incompletely
represented is that they contain universal noun phrases. A universally quantified
formula (∀x : R(x))[S(x)] in predicate logic is vacuously satisfied by a model in
which the extension of R is empty. Under this interpretation of the universal
quantifier, the readings of the example sentences are indeed incomparable. In the
case of (b), if there is no company (and therefore, no researchers who work for a
company), then the first reading is true, and the second is false.

A human listener who is not a trained logician, on the other hand, feels distinctly
uneasy if forced to accept that the first reading is true if there are no compa-
nies; indeed, there is some psycholinguistic evidence that human listeners routinely
conclude statements of the form “some R S” from the information “every R S”
(Geurts 2003b). This is because universal noun phrases like “every R” and “all R”
are strong noun phrases (Milsark 1977), and strong noun phrases are commonly
accepted to carry a presupposition that the restriction R is not empty (Lasersohn
1993; Lappin and Reinhart 1988; Geurts 2003a; de Jong and Verkuyl 1984).

Presuppositions (Beaver 1997) are conditions that must be satisfied for an utterance
to be interpretable. The classical example is that of definite noun phrases. Compare
the following examples:

156CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

(8.7) The president of the United States is bald.

(8.8) The king of France is bald.

At the time of writing, (8.7) is false. However, (8.8) is neither true nor false, be-
cause there is no king of France. The definite noun phrase “the king of France”
presupposes, roughly, that there is exactly one king of France; because this presup-
position is violated, the sentence can’t be interpreted, i.e. assigned a truth value.
There are many other lexical expressions and syntactic constructions beyond def-
inite noun phrases that trigger presuppositions; strong noun phrases are one of
them.

Presuppositions behave differently than the ordinary assertional content of a sen-
tence that we have tried to capture by its truth conditions in Chapter 3. For
example, the negation of a sentence usually has the same presuppositions as the
original sentence (“The king of France is not bald”), and the same is true for ques-
tions (“Is the king of France bald?”). When human listeners are confronted with an
utterance that triggers a presupposition, they try to reconcile the presupposition
with their world knowledge. If they didn’t know that the presupposition is true,
they will typically try to accommodate it, i.e. integrate it into their world knowl-
edge. Presuppositions can be cancelled (or filtered): For instance, the sentence “If
France has a king, then the king of France is bald” doesn’t presuppose that France
has a king. The problem of determining those presuppositions that are triggered
but not cancelled is called the projection problem of presuppositions.

For the present chapter, we are interested in the presuppositions of strong noun
phrases, and whether they can help us understand why the rules (b) and (c) ap-
pear to weaken readings. Unfortunately, while it seems to be widely accepted in
the literature that strong noun phrases trigger existential presuppositions, it ap-
pears that the only time these presuppositions have been worked out in detail was
(Bergmann 1981). Bergmann defines a four-valued variant of first-order logic in
which a sentence is on the one hand true or false, and on the other hand, either
secure or insecure; roughly, a formula is secure in a model if its presuppositions are
satisfied by the model. However, multi-valued accounts of presuppositions seem to
have fundamental difficulties with the projection problem. In addition, Bergmann
only defines the truth conditions of the existential presuppositions as part of the
semantics of her four-valued logic. We would like to have access to the presuppo-
sitions as formulas that we can then flexibly combine with the assertional content
of a sentence.

So we have to rely on our linguistic intuitions, especially with respect to the ex-
ample sentences above, to define the precise presuppositions of a universal noun
phrase. This is easy in the case of (b): The noun phrase “every researcher of a com-

8.3. EXISTENTIAL PRESUPPOSITIONS 157

pany” presupposes that there is a researcher of a company, i.e. (∀x : R(x))[S(x)]
presupposes ∃x.R(x). But the situation is less clear if multiple universal noun
phrases are nested within each other, as happens for the example sentence for (c).
This sentence has the following two readings.2

(8.9) (∀x : company(x))[(∀y : researcher(y) ∧ workfor(y, x))[paidwell(y)]]

(8.10) (∀y : researcher(y) ∧ (∀x : company(x))[workfor(y, x)])[paidwell(y)]

Both readings have the obvious presuppositions that there is a researcher, and
that there is a company. Beyond this, our intuition is that the second reading
presupposes that there is a researcher who works for every company, and the first
reading presupposes that every company (that we are talking about) employs some
researcher, although the latter presupposition in particular is debatable.

Armed with these intuitions, we will now spend the rest of the chapter in the pursuit
of a satisfactory definition of the existential presuppositions. Each definition of the
existential presupposition will give rise to an alternative notion of “entailment”
(technically, a relation E as we used above for the rewriting-based unsatisfiability
criteria). Our main goal will be to find a plausible notion of presupposition and
entailment such that all three rules (a, b, and c) weaken with respect to E and
become a rewriting-based unsatisfiability criterion. We won’t be able to reach
this goal completely. But the different alternatives we consider should provide a
starting point for future investigations that we hope will eventually lead to an
unsatisfiability criterion that reflects the intuitions about the relative strength of
readings, and gives rise to much smaller test sets than the criterion we developed
earlier.

8.3.2 Presuppositions as separate formulas

As a first approximation, let’s say that every universal quantifier (representing a
universally quantified noun phrase) in a formula A triggers a separate presupposi-
tion formula π(A), and that we add π(A) to A conjunctively in order to strengthen
the reading with its presuppositional content. We have seen in the discussion of
(8.9) that it can be necessary to carry along quantifiers in whose scope the trigger-
ing universal quantifier is, so all free variables can be bound. This gives rise to the
following definition.

2There is at least a third, cumulative, reading of the sentence that only expresses that every
researcher of some company is paid well, and presupposes that there is at least one researcher-
company pair, but this reading can’t be represented using the scope mechanisms we use here,
and thus we don’t go into it any further.

158CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

π(A) =
∧

πl(A)

πl((∀x : R)[S]) = πl(R) ∪ (∀x : R)[πl(S)] ∪ {∃x.R}
πl((∃x : R)[S]) = πl(R) ∪ (∃x : R)[πl(S)]

πl(A(x, y)) = ∅

The cases for the two quantifiers are similar in that they pass the presuppositions of
their restrictions along unchanged, and that they pass the presuppositions of their
scopes along in the original context of the scope. (The notation (∀x : R)[πl(S)] is
shorthand for {(∀x : R)[S ′] | S ′ ∈ πl(S)}). The universal quantifier adds to this
the statement that its restriction is not empty. If A ∈ F , π(A) has at most one
free variable; this can be shown along the lines of the proof that any subformula
of A has at most two free variables (Proposition 8.4). In particular, if A is closed,
then π(A) is also closed.

Two natural candidates for a rewriting-based unsatisfiability criterion based on π
are the following:

C4 = (U4, R4, P4): separate presuppositions, with rule e
U4 = {A ∈ F | Γ ∪ {A, π(A)} is unsatisfiable}
P4 = {B ∈ F | Γ ∪ {π(B) ⇒B} is unsatisfiable}
R4 = {a, b, c, e}↔

E4 = {(A,B) | A ∧ π(A) ∧ π(B) |= B}

C ′
4 = (U4, R

′
4, P4): separate presuppositions, with rule f

U4 = {A ∈ F | Γ ∪ {A, π(A)} is unsatisfiable}
P4 = {B ∈ F | Γ ∪ {π(B) ⇒B} is unsatisfiable}
R′

4 = {a, b, c, f}↔

E4 = {(A,B) | A ∧ π(A) ∧ π(B) |= B}

All rules in R4 and R′
4 weaken readings with respect to E4. This is possible because

E4 is a proper subset of the ordinary entailment relation. It doesn’t require that A
entails B, but only that A together with the presuppositions of A and of B entails
B. This is plausible because if we were asked to decide whether the sentence
“If A, then B” (a kind of natural-language deduction theorem) is true, we would
accommodate the presuppositions of both A and B if we didn’t know them already.

In addition, it is clear that P4(B) and E4(A,B) do imply U4(A). Unfortunately,
C4 and C ′

4 are still not unsatisfiability criteria, as we can see when we check the
remaining application conditions of Lemma 8.9. The culprit is Condition 3 in
Lemma 8.9 (insertion into contexts): This condition fails for the rules (b) and (c),

8.3. EXISTENTIAL PRESUPPOSITIONS 159

both in the context (∃x : R(x))[•] and in the context (∀x : •)[S(x)]. To see this
more clearly, let’s consider the case for the rule (b) and the existential context,
C∃ = (∃x : R(x))[•]; let Lb be the left-hand side and Rb the right-hand side of
the rule (b). Condition 3 requires us to prove the following claim; we omit the
additional precondition C∃[Lb], which makes no difference to the argument.

(∃x : R(x))[(∃z : A(x, z))[∃y.B(z, y)]] (π(∃[Rb]))
(∃x : R(x))[(∀y : (∃z : A(x, z))[B(z, y)])[C(y)]] (∃[Lb])

∴ (∃x : R(x))[(∃z : A(x, z))[(∀y : B(z, y))[C(y)]]] (∃[Rb])

If a theorem prover (say, based on a tableau calculus) attempted to prove this
entailment, it would start with the first two formulas as they are and the negation
of the third, and it would then try to derive a contradiction. Eliminating the
quantifier ∃x on the first two lines would give us formulas like R(c) ∧ π(Rb)[c/x]
and R(d) ∧ Lb[d/x], where c and d are different constants. The third line would
be expanded to a formula of the form ∀x.R(x) ⇒¬ In order to proceed with
the proof, the variable x in this formula must be instantiated either with c or with
d. But the c instance can only be combined with the c instance of the first line
afterwards, and the d instance can only be combined with the d instance of the
second line, and this is not enough to derive a contradiction.

The key problem here is that when we computed π(C∃[Rb]), we copied the existen-
tial quantifier that occurs in C∃, and when the calculus started expanding these
formulas, it was forced to choose a different witness for each copy. This made it
impossible to combine information from different lines after a certain point in the
proof. This is essentially the same problem that Heim (1983b) criticised in Kart-
tunen and Peters’s (1979) account of presuppositions, which performed a similar
separation of the assertional content of a sentence and its presupposition into two
different formulas. It is most clearly visible in examples like the following:

(8.11) A student managed to become a professor.

This sentence presupposes that the same (and not just an arbitrary) student tried
to become a professor.

8.3.3 Presuppositions in place

So let’s now investigate a different definition, which never copies quantifiers from
the original formula, but instead “folds” presuppositions into the original formula
at the location where they are triggered.

160CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

If A is a formula, we’ll define A+ as the result of enriching A with its presuppositions
in such a way that if A+ occurs positively, a calculus will unpack the presuppositions
to a positive polarity as well. A− is A, enriched in such a way that if it occurs
negatively, the presuppositions will be unpacked to a positive polarity. The idea
is similar to A ∧ π(A) and π(B) ⇒ B above, but with the difference that the
presuppositions are now folded into the original formula, reusing its quantifiers
rather than copying them.

A+ and A− are defined as follows:

((∀x : R)[S])+ = (∃x.R) ∧ ((∀x : R−)[S+])

((∀x : R)[S])− = (∃x.R) ⇒ ((∀x : R+)[S−])
((∃x : R)[S])ε = (∃x : Rε)[Sε]

A(x, y)ε = A(x, y),

where ε ∈ {+,−}. Indeed, A+ is stronger than A, and A− is weaker than A, and
hence its negation is stronger than the negation of A, as the following lemma shows.

Lemma 8.11. For any formula A ∈ F ,

A+ |= A |= A−.

Proof. Structural induction over A. The induction steps for (∀x : R)[S] and (∃x :
R)[S] each require a half-page tableau proof.

The obvious candidates for an unsatisfiability criterion based on this definition are
the following.

C5 = (U5, R5, P5): presuppositions in place, with rule e
U5 = {A ∈ F | Γ ∪ {A+} is unsatisfiable}
P5 = {B ∈ F | Γ ∪ {B−} is unsatisfiable}
R5 = {a, b, c, e}↔

E5 = {(A,B) | A+ |= B−}

C ′
5 = (U5, R

′
5, P5): presuppositions in place, with rule f

U5 = {A ∈ F | Γ ∪ {A+} is unsatisfiable}
P5 = {B ∈ F | Γ ∪ {B−} is unsatisfiable}
R5 = {a, b, c, f}↔

E5 = {(A,B) | A+ |= B−}

Indeed, both C5 and C ′
5 satisfy the “insertion into context” condition that failed

for the separate presuppositions; this can be proved by structural induction over

8.3. EXISTENTIAL PRESUPPOSITIONS 161

the context around the redex. In addition, E5 still makes all three rewrite rules (a,
b, and c) weakening.

However, the two systems are still not unsatisfiability criteria because they violate
the transitivity condition. This is not surprising, as transitivity would mean that
A+ |= B− and B+ |= C− would have to imply A+ |= C−, for any sequence A →
B → C of rewrite steps. Roughly, B together with the presuppositions of A would
have to be strong enough to derive the presuppositions ofB, which is not necessarily
true. The following sequence of rewrite steps is a counterexample:

(8.12)

∀

∃

∃

A ∀

B C

D

E
b
−→

∀

∃

∀

∃

A B

C

D

E
b
−→

∃

∀

∃

A B

C

∀

D E

Because (b) weakens formulas with respect to E5, each adjacent pair of formulas in
this sequence is in the relation E5, but the first and third formula are not.

One possible way of repairing the transitivity condition is to replace E5 by relations
such as A+ |= B+ or A− |= B−, along with their associated test and unsatisfiability
conditions. These relations are clearly transitive, but now the first relation doesn’t
make the rule (c) weakening, and the second relation doesn’t make (b) weakening,
and more importantly, neither supports insertion into contexts. Again, this is not
surprising: Each relation requires us to prove the presuppositions of a formula on
the right-hand side of a rule using the left-hand side and its presuppositions. This is
not given in our rules, and it also contradicts the intuition that the presuppositions
of both sides should be available as axioms in a proof.

8.3.4 A binding-theory account

We can obtain one more candidate for a presupposition-based unsatisfiability crite-
rion by looking at binding theories of presupposition (van der Sandt 1999; Geurts
1999). These theories assume that a presupposition is triggered at some location in
the semantic representation of the sentence, and then it can float upwards within
the formula, until it is cancelled or accommodated. The positions in the formula
at which the presupposition can be placed is subject to a number of constraints,
the most central of which is that all variables in the presupposition must still be
bound (hence the name “binding theories”).

162CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

Our final candidate for an unsatisfiability criterion attempts to place the presup-
position at the highest position in the formula such that (a) this position dom-
inates the presupposition trigger, and (b) all variables in the presupposition are
still bound as they would be if the presupposition had been placed at the trigger.
We define formulas Ap,+ and Ap,−, with the intention that the former represents
the formula A ∈ F together with its presuppositions, and the latter represents A
conditioned upon its presuppositions, in the same spirit as above. These formulas
will be inductively built up from intermediate results Aass,ε. We carry along the
set of presuppositions that have been triggered but not yet accommodated in the
expressions Apre, and write Apre

x for the set of those formulas in Apre that have x
as a free variable.

Ap,+ = (
∧

Apre) ∧ Aass,+

Ap,− = (
∧

Apre) ⇒Aass,−

((∀x : R)[S])ass,+ = ∀x.((
∧

Rpre
x) ⇒Rass,−) ⇒ ((

∧

Spre
x) ∧ Sass,+)

((∀x : R)[S])ass,− = ∀x.((
∧

Rpre
x) ∧ Rass,+) ⇒ ((

∧

Spre
x) ⇒ Sass,−)

((∀x : R)[S])pre = {∃x.R} ∪ (Rpre − Rpre
x) ∪ (Spre − Spre

x)

((∃x : R)[S])ass,+ = ∃x.(
∧

Rpre
x ∪ Spre

x) ∧ (Rass,+ ∧ Sass,+)
((∃x : R)[S])ass,− = ∃x.(

∧

Rpre
x ∪ Spre

x) ⇒ (Rass,− ∧ Sass,−)
((∃x : R)[S])pre = (Rpre − Rpre

x) ∪ (Spre − Spre
x)

A(x, y)ass,ε = A(x, y)
A(x, y)pre = ∅

Presuppositions are triggered in the rule for universal quantifiers, on the fifth line.
Then the rules for a quantifier for variable x extract all of the presuppositions accu-
mulated so far that have x as a free variable, and adds these presuppositions to the
formula; at the same time, they are removed from the set of open presuppositions.
This is done in a way that guarantees that all occurrences of presuppositions in
a formula Ap,+ will be positive, and all occurrences in the formula Ap,− will be
negative.

The definition gives rise to two final candidates for unsatisfiability criteria.

C6 = (U6, R6, P6): binding-theoretic presuppositions, with rule e
U6 = {A ∈ F | Γ ∪ {Ap,+} is unsatisfiable}
P6 = {B ∈ F | Γ ∪ {Bp,−} is unsatisfiable}
R6 = {a, b, c, e}↔

E6 = {(A,B) | Ap,+ |= Bp,−}

8.4. SUMMARY 163

C ′
6 = (U6, R

′
6, P6): binding-theoretic presuppositions, with rule f

U6 = {A ∈ F | Γ ∪ {Ap,+} is unsatisfiable}
P6 = {B ∈ F | Γ ∪ {Bp,−} is unsatisfiable}
R6 = {a, b, c, f}↔

E6 = {(A,B) | Ap,+ |= Bp,−}

We conjecture that C6 and C ′
6 might indeed be unsatisfiability criteria, but this

is hard to prove because the definition of Ap,ε is somewhat unwieldy: Because the
location in which a presupposition is accommodated depends on where its free
variables are bound, the structure of Ap,ε is difficult to predict from the structure
of A, which makes structural induction difficult to apply.

One more technical conjecture that would help with the proof is that for all formulas
A ∈ F , we have Ap,+ |= A+ and A− |= Ap,−. This conjecture is motivated by the
fact that presuppositions are generally accommodated higher up in Ap,ε than in
Aε, which makes them depend on fewer conditions. If the conjecture were true, we
could conclude easily that for any rewrite step A → B we have Ap,+ |= Bp,−. It
would remain to verify transitivity and insertion into contexts. So far, we have not
found any counterexamples; for instance, the first and third formula in the earlier
transitivity counterexample (8.12) are in the relation E6.

8.4 Summary

In this chapter, we set out to solve the problem of strengthening a dominance
constraint in order to eliminate constructive solutions that are unsatisfiable or in-
consistent with world knowledge. To this end, we investigated the problem of
recognising whether all N constructive solutions of an alternating chain are unsat-
isfiable, while using less than N theorem prover calls. We defined unsatisfiability
criteria as a general framework for approaching this problem, and we proposed to
use rewrite systems to specify unsatisfiability criteria conveniently. Based on this,
we presented a rewrite system whose (fewer than N) normal forms can serve as a
test set for ordinary unsatisfiability, and thus solved our original problem.

However, we realised at this point that ordinary entailment is more cautious in
declaring one reading of a sentence stronger or weaker than another than our in-
tuitive judgments; this has the consequence that test sets for ordinary unsatisfia-
bility are generally much larger than they should intuitively be. The discrepancy
is caused by the fact that universally quantified noun phrases trigger existential
presuppositions. We investigated various linguistically plausible definitions of these
presuppositions. While we didn’t arrive at a completely satisfactory solution, we

164CHAPTER 8. RESOLVING SCOPE AMBIGUITIES USING WORLD KNOWLEDGE

made some progress in understanding the problems, and thus prepared the issue
for future research.

There are a number of further directions along which the work in this chapter could
be extended. Most obviously, the fragment of dominance constraints to which we
can apply rewriting-based unsatisfiability criteria needs to be expanded. On the one
hand, alternating chains can’t describe the semantic representations of sentences
with transitive verbs. On the other hand, we intend to use unsatisfiability criteria
in the context of the enumeration algorithm from Section 5.6, but alternating
chains are not invariant under the Choice rule applied there. Linguistically, all
proposed definition candidates remain a bit naive because none of them addresses
the projection problem. There are also a number of technical annoyances, such as
the fact that we can’t use the equivalence rules (e) and (f) in the same rewrite
system. This problem could perhaps be solved by considering rewriting modulo
ef -equivalence.

The problem of eliminating unsatisfiable readings from an underspecified descrip-
tion has been considered before (Schiehlen 1999), but (as far as we are aware) only
for specific rules of object-language inference, and not with the ambition of cap-
turing interactions with arbitrary world knowledge. It differs from the literature
on direct deduction (van Deemter 1996; König and Reyle 1996; Monz and de Ri-
jke 1998; Jaspars and Koller 1999) in that these approaches try to derive from an
underspecified description ϕ another underspecified description ϕ′ whose readings
follow logically from the readings of ϕ. All such approaches suffer from the problem
that it is very difficult to come up with a satisfactory definition of “underspecified
entailment”, i.e. the relation between underspecified descriptions that direct deduc-
tion should model. Perhaps most closely related to the work reported here in its
perspective on using the meaning of the readings to disambiguate the description is
(Chaves 2003), who aims at eliminating readings that are equivalent to some other
reading.

Chapter 9

Conclusion

This chapter summarises the thesis and presents ideas for future work.

9.1 Summary

In this thesis, we have shown how constraint programming and graph algorithms
can be used to resolve natural language ambiguities. The larger part of the thesis
was concerned with the investigation of dominance constraints; then we applied
them to the problem of resolving scope ambiguities.

The thesis was roughly split in three parts. Its first part (Chapters 2–4) was an in-
troduction to scope underspecification with dominance constraints. We motivated
and defined dominance constraints as a language of tree descriptions in Chapter 2,
and extended them with an account of object-language variable binding based on
explicit binding functions. Then we showed how dominance and binding constraints
could be systematically computed as underspecified semantic representations of En-
glish sentences (Chapter 3). It turned out that underspecification allows us to keep
the syntax-semantics interface simple, and that this is especially true for dominance
constraints because we can introduce all variable binding rule-locally. Third, we re-
viewed basic algorithms for solving dominance constraints (Chapter 4). We defined
a saturation algorithm for the dominance constraint language SN and proved its
correctness. Then we explored a generic extension of the saturation algorithm to
binding constraints, and finally presented a different kind of dominance constraint
solver based on finite set constraints.

In the second part of the thesis (Chapters 5 and 6), we applied graph-based methods
to various problems related to dominance constraints. Chapter 5 showed that nor-

165

166 CHAPTER 9. CONCLUSION

mal dominance constraints could be translated into dominance graphs, in such a
way that their solved forms correspond. By characterising solvability of dominance
graphs as the absence of simple hypernormal cycles, and reducing the detection
of hypernormal cycles to a matching problem, we were able to give a polynomial
algorithm for solvability of dominance graphs, and hence of normal dominance con-
straints. Because we are specifically interested in constructive solutions of a domi-
nance constraint in underspecification, and not all solved forms have constructive
solutions, we explored hypernormally connected dominance constraints in Chap-
ter 6, and proved that all their solved forms are simple and thus have constructive
solutions. Hypernormally connected constraints were again defined in terms of
dominance graphs, and carried over to constraints by way of the constraint/graph
correspondence from Chapter 5. We also proved that hypernormally connected
dominance constraints and hypernormally connected underspecified descriptions
from Hole Semantics are equivalent, thus building a bridge between two previously
unrelated underspecification formalisms. These results are practically relevant be-
cause all constraints that can be generated by the grammar from Chapter 3 are
hypernormally connected, and we conjecture more generally that all constraints
that are needed in underspecification are.

In the third and final part of the thesis (Chapters 7 and 8), we applied the meth-
ods from the first two parts to the problem of ambiguity resolution. We showed
in Chapter 7 how the effect of anaphoric references on the resolution of scope am-
biguities can be modelled, by recasting the anaphoric accessibility conditions of
Dynamic Predicate Logic as a binding specification. Going back to the purely
constraint-based view, we then extended the saturation algorithm from Chapter 4
to solve dominance and binding constraints for this new binding specification, and
illustrated that this algorithm is indeed able to strengthen constraints so as to elim-
inate readings that violated the accessibility conditions. In Chapter 8, on the other
hand, we defined an inference procedure that could recognise that all constructive
solutions of an alternating chain contradicted given world knowledge. Such a pro-
cedure can be used to strengthen a constraint by making a local case distinction
and committing to one choice if all constructive solutions of the other one are un-
satisfiable. We also explored how presuppositions of strong noun phrases made the
human intuition about the strength of readings different from ordinary first-order
entailment, and analysed various candidates for a definition of such presupposi-
tions.

From a perspective of efficient processing, the first two parts of the thesis represent
a movement from a general formalism (dominance constraints) to increasingly spe-
cific fragments. It was on the one hand essential to define dominance constraints
as a declarative, logic-based formalism with a well-understood semantics. On the
other hand, the discovery that normal dominance constraints can be read as graphs

9.2. OUTLOOK 167

enabled us to bring the power of graph algorithms to bear on the problem of solving
dominance constraints – thus the restriction of dominance constraints to normal
dominance constraints reduced the complexity of the satisfiability problem from
NP-complete to O(n2) (and with cleverer algorithms, O(n)). At the same time,
we took great pains to ensure that the normal and the hypernormally connected
fragments of dominance constraints contained all the constraints that we needed in
underspecification. We believe that there is a general lesson in this. It is important
that a formalism is expressive enough to allow a linguist the convenient modelling
of natural language phenomena. But often the full expressivity isn’t used in reason-
able models, and we can look for fragments that are unrestrictive for the purpose
of modelling, and can still be processed efficiently.

This thesis has also exhibited a number of advantages that dominance constraints
have over other underspecification formalisms. The most obvious one is of course
that solvers for dominance constraints are unparalleled in their efficiency; Fuchss
et al. (2004) report an improvement of several orders of magnitude over the LKB
solver for Minimal Recursion Semantics (Copestake and Flickinger 2000), which is
itself quite efficient. The efficiency of our solvers is fueled by the availability of a
clear definition and well-understood formal properties of the formalism. It is this
formal clarity that made it possible to use logic-based and graph-based methods
and e.g. establish the correspondence between dominance constraints and Hole
Semantics. In addition, as far as we are aware, the ability of dominance and binding
constraints to link specific nodes with a binding function is unique. This improves
over other underspecification formalisms in that the syntax-semantics interface can
be simpler because no variable naming mechanism is required. It also makes it
possible for the underspecification formalism to take over some of the burden that
is usually carried by dynamic logics such as DPL and DRT. These logics specify
binary node relations for anaphoric accessibility, but they must encode them into
semantic interpretation rules. We have seen in Chapter 7 that such relations can
sometimes be specified much more straightforwardly in a logical language that is
designed to talk about trees.

9.2 Outlook

There are many technical aspects of the work reported in this thesis that can
still be improved in future research. We have listed many of them in the chapter
summaries, along with other research that has already continued the work reported
here. To conclude the thesis, we present some more high-level lines of research that
spin off from our results.

168 CHAPTER 9. CONCLUSION

XDG. One of the dominance constraint solvers in Chapter 4 was based on finite
set constraints. This algorithm was more efficient than the saturation algorithm,
and it already exhibited the “miracle of the green nodes” that was an indicator
that dominance constraints have a useful polynomial fragment. But it was later
superseded by the graph-based solver, which was again much more efficient.

Almost the same system of finite set constraints (with many extensions) is also at
the heart of the current parser for Extensible Dependency Grammar (XDG, Duchier
2003; Debusmann 2003). XDG is a dependency grammar formalism that allows us
to analyse the syntactic structure of a sentence, and supports e.g. the description
of languages with free word order in a particularly elegant way. It is an interesting
question whether the ideas behind the graph-based solvers we developed here can
also be applied to the efficient parsing of XDG.

In addition, XDG can be used to describe the syntax and semantics of a sentence
at the same time. This allows the grammar writer to specify a relational syntax-
semantics interface, in which neither syntax nor semantics is more primitive than
the other (Debusmann et al. 2004). The XDG framework supports the simul-
taneous representation of partial syntactic and semantic information, and in this
way, it can be seen as a natural continuation of semantic underspecification. It
will be interesting to see whether this elegant setup can also buy us computational
efficiency, or whether it makes sense to keep the levels of linguistic representation
apart.

Graph Configuration Problems. The reason why the finite set solvers for
dominance constraints and XDG are so similar is that the processing problems
are closely related: Both require us to configure a known set of nodes into a tree,
while respecting various structural constraints (such as dominance or, in the case
of XDG, valency).

It is interesting to investigate whether XDG solving and dominance constraint
solving can be seen as instances of a more general graph configuration problem. We
could follow the same approach as in this thesis, namely to develop a logic-based
modelling language for graph configuration problems, and then to investigate its
formal and computational properties, with the aim of eventually defining efficient
graph algorithms to process them.

Preferences. We have argued in the introduction that safe inferences as pre-
sented in the Chapters 7 and 8 are only one of a number of mechanisms that
human language users apply to deal with ambiguity. A second mechanism that
warrants further research is to draw default inferences based on preferences – sta-

9.2. OUTLOOK 169

tistical information about how some ambiguity is typically resolved. In principle,
preferences can be integrated into an architecture based on constraints and search
as we have developed it here, by feeding into a search strategy that specifies how to
traverse the search tree. An interface between constraint solving and preferences
has been specified (but not yet evaluated) for XDG (Dienes et al. 2003), but not
yet for dominance constraints.

Expressivity. In Chapter 6, we have put up the claim that all dominance con-
straints that are used in underspecification are hypernormally connected. This
conjecture is corroborated by empirical evidence (Fuchss et al. 2004), but it still
needs to be verified more carefully in practice. If it is true, it is a claim about
the expressivity that is really needed in an underspecification formalism. Simi-
lar investigations about the logical primitives that a satisfactory formalism needs
can be useful too: For instance, Fuchss et al. (2004) also show that the differ-
ence between the qeq relation in MRS and the dominance relation in dominance
constraints doesn’t matter in practice.

Presuppositions. One conclusion that we draw from the modelling of anaphoric
accessibility as a binding specification in Chapter 7 is that one core function of a
dynamic logic is to define structural relations between positions in a formula –
and this is of course something that dominance constraints excel at. This aim
comes out most clearly in the binding-theory approaches to presupposition, as
e.g. presented by van der Sandt (1999). It is an interesting question whether the
possible accommodation sites of a presupposition can be modelled and processed
based on dominance and binding constraints. This would also make it possible
to model the interaction of scope and presupposition in the spirit of Blackburn
et al. (2001). But rather than using the presuppositions to filter the fully resolved
scope readings as they do, we could again try to use propagation techniques as in
Chapters 7 and 8 to eliminate undesired readings without enumeration.

170 CHAPTER 9. CONCLUSION

Bibliography

Alshawi, H. (ed.) (1992). The Core Language Engine. Cambridge/London: MIT
Press.

Alshawi, H. and R. Crouch (1992). Monotonic semantic interpretation. In Proc.
30th ACL, 32–39.

Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel (2001).
An efficient algorithm for the configuration problem of dominance graphs. In
Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, 815–
824.

Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel
(2003). An efficient graph algorithm for dominance constraints. Journal of
Algorithms 48 (1), 194–219.

Apt, K. R. (2003). Principles of Constraint Programming. Cambridge University
Press.

Barwise, J. and R. Cooper (1981). Generalized quantifiers and natural language.
Linguistics and Philosophy 4, 159–219.

Beaver, D. (1997). Presupposition. In J. van Benthem and A. ter Meulen (eds),
Handbook of Logic and Language, 939–1008. Elsevier.

Bergmann, M. (1981). Presupposition and two-dimensional logic. Journal of
Philosophical Logic 10, 27–54.

Blackburn, P., J. Bos, M. Kohlhase, and H. de Nivelle (2001). Inference and
computational semantics. In H. Bunt, R. Muskens, and E. Thijsse (eds),
Computing Meaning, Volume 2, 11–28. Kluwer Academic Publishers.

Bodirsky, M., D. Duchier, J. Niehren, and S. Miele (2004). A new algorithm for
normal dominance constraints. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA).

Bodirsky, M., K. Erk, A. Koller, and J. Niehren (2001a). Beta reduction con-
straints. In Proceedings of the 12th International Conference on Rewriting
Techniques and Applications, Utrecht.

171

172 BIBLIOGRAPHY

Bodirsky, M., K. Erk, A. Koller, and J. Niehren (2001b). Underspecified beta
reduction. In Proceedings of the 39th ACL, Toulouse.

Bos, J. (1996). Predicate logic unplugged. In Proc. 10th Amsterdam Colloquium,
133–143.

Bos, J. (2002). Underspecification and resolution in discourse semantics. Ph. D.
thesis, Saarland University.

Brants, S., S. Dipper, S. Hansen, W. Lezius, and G. Smith (2002). The TIGER
Treebank. In Proceedings of the Workshop on Treebanks and Linguistic The-
ories, Sozopol.

Butt, M., H. Dyvik, T. H. King, H. Masuichi, and C. Rohrer (2002). The parallel
grammar project. In Proceedings of COLING-2002 Workshop on Grammar
Engineering and Evaluation, 1–7.

Chaves, R. P. (2003). Non-redundant scope disambiguation in underspecified
semantics. In B. ten Cate (ed.), Proceedings of the Eighth ESSLLI Student
Session, Vienna, 47–58.

Comon, H. (1992). Completion of rewrite systems with membership constraints.
In Coll. on Automata, Languages, and Programming, Volume 623 of LNCS.
Springer.

Cooper, R. (1983). Quantification and Syntactic Theory. Dordrecht: Reidel.

Copestake, A. and D. Flickinger (2000). An open-source grammar development
environment and broad-coverage english grammar using HPSG. In Confer-
ence on Language Resources and Evaluation.

Copestake, A., D. Flickinger, and I. Sag (1999). Minimal Recursion Semantics.
An Introduction. Unpublished manuscript, available at http://www.cl.cam.
ac.uk/~aac10/papers/newmrs.pdf.

Debusmann, R. (2003). Dependency grammar as graph description. In
D. Duchier (ed.), Prospects and Advances in the Syntax/Semantics Interface,
Lorraine-Saarland Workshop Series, Nancy/FRA, 79–84. LORIA.

Debusmann, R., D. Duchier, A. Koller, M. Kuhlmann, G. Smolka, and S. Thater
(2004). A relational syntax-semantics interface based on dependency gram-
mar. In Proceedings of the 20th COLING, Geneva.

van Deemter, K. (1996). Towards a logic of ambiguous expressions. In (van
Deemter and Peters 1996). Stanford: CSLI Publications.

van Deemter, K. and S. Peters (1996). Semantic Ambiguity and Underspecifica-
tion. Stanford: CSLI.

BIBLIOGRAPHY 173

Dienes, P., A. Koller, and M. Kuhlmann (2003). Statistical A∗ dependency
parsing. In D. Duchier and G.-J. Kruijff (eds), Proceedings of the Lorraine-
Saarland Workshop on Prospects and Advances in the Syntax-Semantics In-
terface, Nancy.

Duchier, D. (2000). A model-eliminative treatment of quantifier-free tree de-
scriptions. In D. Heylen, A. Nijholt, and G. Scollo (eds), Algebraic Methods
in Language Processing, AMILP 2000, TWLT 16, Twente Workshop on Lan-
guage Technology (2nd AMAST Workshop on Language Processing), Iowa
City, USA, 55–66. Universiteit Twente, Faculteit Informatica.

Duchier, D. (2003). Configuration of labeled trees under lexicalized constraints
and principles. Research on Language and Computation. To appear.

Duchier, D. and C. Gardent (1999). A constraint-based treatment of descrip-
tions. In H. Bunt and E. Thijsse (eds), Third International Workshop on
Computational Semantics (IWCS-3), Tilburg, NL, 71–85.

Duchier, D. and J. Niehren (2000). Dominance constraints with set operators. In
Proceedings of the First International Conference on Computational Logic,
Number 1861 in Lecture Notes in Computer Science, 326–341. Springer-
Verlag.

Duchier, D. and S. Thater (1999). Parsing with tree descriptions: a constraint-
based approach. In Sixth International Workshop on Natural Language Un-
derstanding and Logic Programming, 17–32.

Ebert, C. (2003). On the expressive completeness of underspecified representa-
tions. In Proceedings of the 14th Amsterdam Colloquium, Amsterdam.

Egg, M. (2003). Beginning novels and finishing hamburgers – remarks on the
semantics of to begin. Journal of Semantics 20, 163–191.

Egg, M., A. Koller, and J. Niehren (2001). The constraint language for lambda
structures. Journal of Logic, Language, and Information 10, 457–485.

Egg, M., J. Niehren, P. Ruhrberg, and F. Xu (1998). Constraints over lambda-
structures in semantic underspecification. In Proceedings of the Joint 17th
COLING and 36th ACL, 353–359.

Erk, K. and A. Koller (2001). VP ellipsis by tree surgery. In Proceedings of the
13th Amsterdam Colloquium, Amsterdam.

Erk, K., A. Koller, and J. Niehren (2003). Processing underspecified semantic
representations in the constraint language for lambda structures. Research
on Language and Computation 1, 127–169.

Erk, K. and J. Niehren (2003). Well-nested parallelism constraints for ellipsis
resolution. In 11th Conference of the European Chapter of the Association of
Computational Linguistics, 115–122.

174 BIBLIOGRAPHY

Fuchss, R., A. Koller, J. Niehren, and S. Thater (2004). Minimal recursion se-
mantics as dominance constraints: Translation, evaluation, and analysis. In
Proceedings of the 42nd ACL, Barcelona.

Gabow, H., H. Kaplan, and R. Tarjan (2001). Unique maximum matching algo-
rithms. Journal of Algorithms 40, 159–183.

Gabsdil, M. and K. Striegnitz (2000). Classifying scope ambiguities. Journal of
Language and Computation 1 (2), 307–313.

Gardent, C. and B. Webber (1998). Describing discourse semantics. In Proceed-
ings of the 4th TAG+ Workshop, Philadelphia.

Gervet, C. (1994). Conjunto: Constraint logic programming with finite set do-
mains. In Proceedings of the International Logic Programming Symposium
(ILPS ’94), 339–358.

Geurts, B. (1999). Presuppositions and Pronouns. Oxford: Elsevier.

Geurts, B. (2003a). Existential import. In E. Comorovski and K. von Heusinger
(eds), Existence: Syntax and Semantics. Kluwer. To appear.

Geurts, B. (2003b). Reasoning with quantifiers. Cognition 86, 223–251.

Goralcikova, A. and V. Koubek (1979). A reduct-and-closure algorithm for
graphs. In Proceedings of the 8th Symposium on Mathematical Foundations
of Computer Science, Volume 74 of LNCS, 301–307. Springer.

Groenendijk, J. and M. Stokhof (1991). Dynamic predicate logic. Linguistics &
Philosophy 14, 39–100.

Heim, I. (1983a). File change semantics and the familarity theory of definiteness.
In R. Bauerle, C. Schwarze, and A. von Stechow (eds), Meaning, use, and
interpretation of language. De Gruyter.

Heim, I. (1983b). On the projection problem for presuppositions. In M. Barlow,
D. Flickinger, and M. Westcoat (eds), Second Annual West Coast Conference
on Formal Linguistics, Stanford, 114–126.

Hobbs, J. R. and S. M. Shieber (1987). An algorithm for generating quantifier
scopings. Computational Linguistics 13, 47–63.

Jaspars, J. and A. Koller (1999). A calculus for direct deduction with dominance
constraints. In Proceedings of the Twelfth Amsterdam Colloquium, Amster-
dam.

de Jong, F. and H. Verkuyl (1984). Generalized quantifiers: The properness
of their strength. In J. van Benthem and A. ter Meulen (eds), Generalized
Quantifiers in Natural Language, 21–43. Dordrecht: Foris Publications.

BIBLIOGRAPHY 175

Kallmeyer, L. and A. K. Joshi (2003). Factoring predicate argument and scope
semantics: Underspecified semantics with LTAG. Research on Language and
Computation 1 (1–2), 3–58.

Kamp, H. and U. Reyle (1993). From Discourse to Logic. Dordrecht: Kluwer.

Karttunen, L. and S. Peters (1979). Conventional implicature. In C.-K. Oh and
D. A. Dinneen (eds), Syntax and Semantics, Volume 11: Presupposition,
1–56. New York: Academic Press.

Keller, W. R. (1988). Nested Cooper Storage: The proper treatment of quantifi-
cation in ordinary noun phrases. In U. Reyle and C. Rohrer (eds), Natural
Language and Linguistic Theories, Volume 35 of Studies in Linguistics and
Philosophy, 432–447. Reidel.

Koller, A. (1998). Evaluating context unification for semantic underspecifica-
tion. In I. Kruijff-Korbayová (ed.), Proceedings of the Third ESSLLI Student
Session, Saarbrücken, Germany, 188–199.

Koller, A. (1999). Constraint languages for semantic underspecification. Diplom
thesis, Universität des Saarlandes, Saarbrücken, Germany. http://www.

coli.uni-sb.de/~koller/papers/da.html.

Koller, A., K. Mehlhorn, and J. Niehren (2000). A polynomial-time fragment
of dominance constraints. In Proceedings of the 38th Annual Meeting of the
Association of Computational Linguistics, 368–375.

Koller, A. and J. Niehren (2000). On underspecified processing of dynamic se-
mantics. In Proceedings of COLING-2000, Saarbrücken.

Koller, A., J. Niehren, and K. Striegnitz (1999). Relaxing underspecified seman-
tic representations for reinterpretation. In Proceedings of the Sixth Meeting
on Mathematics of Language (MOL6), Orlando, Florida.

Koller, A., J. Niehren, and K. Striegnitz (2000). Relaxing underspecified seman-
tic representations for reinterpretation. Grammars 3 (2-3).

Koller, A., J. Niehren, and S. Thater (2003). Bridging the gap between under-
specification formalisms: Hole semantics as dominance constraints. In Pro-
ceedings of the 11th EACL, Budapest.

Koller, A., J. Niehren, and R. Treinen (2001). Dominance constraints: Algo-
rithms and complexity. In Proceedings of the Third International Conference
on Logical Aspects of Computational Linguistics (Dec. 1998), Volume 2014
of Lecture Note in Artificial Intelligence, 106–125. Springer-Verlag.

Koller, A. and K. Striegnitz (2002). Generation as dependency parsing. In Pro-
ceedings of the 40th ACL, Philadelphia.

176 BIBLIOGRAPHY

König, E. and U. Reyle (1996). A general reasoning scheme for underspecified
representations. In H. J. Ohlbach and U. Reyle (eds), Logic and its applica-
tions. Festschrift for Dov Gabbay. Part I. Kluwer.

Lappin, S. and T. Reinhart (1988). Presuppositional effects of strong determin-
ers: a processing account. Linguistics 26, 1021–1037.

Lasersohn, P. (1993). Existence presuppositions and background knowledge.
Journal of Semantics 10, 113–122.

Lévy, J. (1996). Linear second order unification. In International Conference on
Rewriting Techniques and Applications. Springer-Verlag.

Marcus, M. P., D. Hindle, and M. M. Fleck (1983). D-theory: Talking about talk-
ing about trees. In Proceedings of the 21st annual meeting of the Association
of Computational Linguistics, 129–136.

May, R. (1985). Logical Form. Its structure and derivation. Cambridge: MIT
Press.

Milsark, G. (1977). Towards an explanation of certain peculiarities in the exis-
tential construction in English. Linguistic Analysis 3, 1–30.

Montague, R. (1974). The proper treatment of quantification in ordinary En-
glish. In R. Thomason (ed.), Formal Philosophy. Selected Papers of Richard
Montague. New Haven: Yale University Press.

Monz, C. and M. de Rijke (1998). A tableaux calculus for ambiguous quantifi-
cation. In H. de Swart (ed.), Proceedings of TABLEAUX 98, Number 1397
in LNAI, 232–246. Springer Verlag.

Müller, T. and M. Müller (1997). Finite set constraints in Oz. In F. Bry, B. Fre-
itag, and D. Seipel (eds), 13. Workshop Logische Programmierung, Technis-
che Universität München, 104–115.

Muskens, R. (1995). Order-independence and underspecification. In J. Groe-
nendijk (ed.), Ellipsis, Underspecification, Events and More in Dynamic Se-
mantics. DYANA Deliverable R.2.2.C.

Niehren, J. and A. Koller (2001). Dominance Constraints in Context Unification.
In M. Moortgat (ed.), Proceedings of the Third Conference on Logical Aspects
of Computational Linguistics (Dec. 1998), Volume 2014 of Lecture Note in
Artificial Intelligence, Grenoble. Springer-Verlag.

Niehren, J., M. Pinkal, and P. Ruhrberg (1997a). On equality up-to constraints
over finite trees, context unification, and one-step rewriting. In Proceedings
14th CADE. Townsville: Springer-Verlag.

Niehren, J., M. Pinkal, and P. Ruhrberg (1997b). A uniform approach to under-
specification and parallelism. In Proceedings ACL’97, Madrid, 410–417.

BIBLIOGRAPHY 177

Niehren, J. and S. Thater (2003). Bridging the gap between underspecification
formalisms: Minimal recursion semantics as dominance constraints. In 41st
Meeting of the Association of Computational Linguistics, 367–374.

Niehren, J. and M. Villaret (2003). Describing lambda-terms in context unifica-
tion. In P. Blackburn and J. Bos (eds), Proceedings of the Fourth International
Workshop on Inference in Computational Semantics (ICOS-4), Nancy.

Oepen, S., K. Toutanova, S. Shieber, C. Manning, D. Flickinger, and T. Brants
(2002). The LinGO Redwoods treebank: Motivation and preliminary applica-
tions. In Proceedings of the 19th International Conference on Computational
Linguistics (COLING’02), 1253–1257.

Oz Development Team (1999). The Mozart Programming System web pages.
http://www.mozart-oz.org/.

Perrier, G. (2000). From intuitionistic proof nets to interaction grammars. In
Proceedings of the 5th TAG+ Workshop, Paris.

Pinkal, M. (1996). Radical underspecification. In Proceedings of the 10th Ams-
terdam Colloquium, 587–606.

Pollard, C. and I. Sag (1994). Head-driven Phrase Structure Grammar. CSLI
and University of Chicago Press.

Rambow, O., K. Vijay-Shanker, and D. Weir (1995). D-Tree grammars. In Pro-
ceedings of the 33rd annual meeting of the Association of Computational Lin-
guistics, 151–158.

Reyle, U. (1993). Dealing with ambiguities by underspecification: construction,
representation, and deduction. Journal of Semantics 10, 123–179.

van der Sandt, R. (1999). Presupposition projection as anaphora resolution.
Journal of Semantics 9, 333–377.

Saraswat, V. A., M. Rinard, and P. Panangaden (1991). Semantic foundations
of concurrent constraint programming. In ACM Symposium on Principles of
Programming Languages, 333–352. ACM Press, New York.

Schiehlen, M. (1997). Disambiguation of underspecified discourse repesentation
structures under anaphoric constraints. In Proceedings of IWCS-2, Tilburg.

Schiehlen, M. (1999). Semantikkonstruktion. Ph. D. thesis, Universität Stuttgart.

Schmidt-Schauß M. and K. Schulz (1998). On the exponent of periodicity of
minimal solutions of context equations. In T. Nipkow (ed.), International
Conference on Rewriting Techniques and Applications, LNCS.

Simon, K. (1988). An improved algorithm for transitive closure on acyclic di-
graphs. Theoretical Computer Science 58 (1–3), 325–346.

178 BIBLIOGRAPHY

Skut, W., T. Brants, B. Krenn, and H. Uszkoreit (1998). A linguistically in-
terpreted corpus of German newspaper text. In Proceedings of LREC-98,
Granada, 705–711.

Smolka, G. (1995). The Oz Programming Model. In J. van Leeuwen (ed.), Com-
puter Science Today, 324–343. Springer-Verlag, Berlin.

Thiel, S. (2004). Efficient Algorithms for Constraint Propagation and for Pro-
cessing Tree Descriptions. Ph. D. thesis, Department of Computer Science,
Saarland University.

Vijay-Shanker, K. (1992). Using descriptions of trees in a tree adjoining gram-
mar. Computational Linguistics 18, 481–518.

Index

accessibility, 133
as binding specification, 134

ambiguity, 2
de dicto/de re, 4
scope, 2

ambiguity resolution, 3
based on anaphora, 129
based on world knowledge, 141

atom
binding, 24
dominance, 22
labelling, 22
non-intervention, 22
set operators, 22

axiomatisation, 56
equality insensitive, 56
guarded, 56
proper, 56
restrictive, 56

bend, 93
binding function, 17, 24

admissible, 24
binding specification, 24
branching point, 21

chain, 118
alternating, 146
pure, 67, 119

child, 74
Choice, 88
choice tree, 88
CLLS, 26
compactification, 82

compositionality, 30
constraints, 6

dominance, see dominance con-
straint

finite domain, 7
finite set, 61

constraint programming, 6
constraint solving

binding, 55
dominance, 48
finite set, 61
normal dominance constraints, 87

context unification, 26, 113
Cooper Storage, 35
cycle, see path

disjointness, 21
with sets, 21

disjunctive propagator, 63
distribution, 7
dominance, 21

strict, 21
dominance and binding constraints,

24
Λ-satisfiable, 24
elaborated, 101
normal, 101

dominance constraint, 22
compact, 82
constructive solution, 22, 110
entailment, 22
hypernormally connected, 107
model, 22
normal, 75

179

180 INDEX

satisfaction, 22
solution, 22

dominance constraint language, 22
B, 22
D, 22
I, 22
N , 22
S, 22

dominance edge, 71
dominance graph, 70

hypernormally connected, 107
of a constraint, 84
undirected, 93

Dynamic Predicate Logic (DPL), 131

English Resource Grammar, 113
equality, 21
extension by labelling, 54
externally dynamic/static, 132

fragment
in a dominance constraint, 74
in a dominance graph, 71
lower, 119
maximal, 74
upper, 119

graph configuration problem, 10, 168

head, 74
hole

in a dominance constraint, 74
in a dominance graph, 71
open, 109

Hole Semantics, 26, 114

insertion into contexts, 151
internally dynamic/static, 132
inverse relation, 21

Keller Storage, 36

labelling, 21

lambda structure, 24
admissible, 24

leaf, 74

matching, 98
miracle of the green nodes, 66
model enumeration problem, 47
Montague, 31
MRS, 26, 126

nodes
as addresses, 20

non-intervention, 21

object language, 13, 18
overlap, 75

parallelism constraints, 26
path

alternating, 98
hypernormal, 93
simple, 93

plugging, 116
preferences, 3, 168
presupposition, 155

binding theory, 161, 169
multi-valued theories, 156
of strong noun phrases, 156

propagation, 7

QLF, 26
quantifying-in, 33

reachability, 71
in a dominance constraint, 74
labelling, 74

redundancy elimination, 87
reinterpretation, 105
rewrite system, 124

with polarities, 149
antisymmetric, 150

root
in a dominance constraint, 74

INDEX 181

in a dominance graph, 71
rotation, 124

for F , 152
runtimes

finite set solver, 68
graph solver, 103
saturation solver, 68

satisfiability problem
of dominance constraints, 47
of normal dominance constraints,

101
saturation algorithm, 48, 55
scope-bearing elements, 4
search algorithm, 7, 87, 169
semantic representation

truth conditions, 30
solution, see dominance constraint
solvable, 72, 77
solved form

extension, 72, 77
minimal, 72, 77
of a dominance constraint, 49
of a dominance graph, 72
of a normal dominance constraint,

77
simple

of a dominance constraint, 51
of a dominance graph, 107

syntax-semantics interface, 29
relational, 168

trace, 33
tree

as ground term, 20
binary, 121
finite constructor, 20

tree edge, 71
tree structure, 21

UDRT, 26
underspecification, 5, 36

underspecified semantic description, 5
in Hole Semantics, 115

unsatisfiability criterion, 143
rewriting-based, 149

unsolvability procedure, 88

variable
assignment, 22
assignment in DPL, 131
in a dominance constraint, 22
in the object language, 16
labelled, 51
of a binding specification, 24
root, 51

weaken formulas, 150

XDG, 168

