
Lexicalised Configuration Grammars

Robert Grabowski, Marco Kuhlmann, and Mathias Möhl

Programming Systems Lab, Saarland University, Saarbrücken, Germany

Abstract. This paper introduces Lexicalised Configuration Grammars
(lcgs), a new declarative framework for natural language syntax. lcg is
powerful enough to encode a large number of existing grammar formalisms,
facilitating their comparison from the perspective of graph configuration.
Once a formalism has been encoded as an lcg, the framework offers
various means to increase its expressivity in a controlled manner; trading
expressive power for computational complexity, this makes it possible to
model syntactic phenomena in novel ways. Parsing algorithms for lcgs
lend themselves to a combination of chart-based and constraint-based
processing techniques, allowing both to bring in their strengths.

1 Introduction

Formal accounts of natural language syntax may differ in their understanding of
grammar. In generative frameworks, grammars are systems of derivation rules;
well-formed expressions correspond to successful derivations in these systems. In
descriptive frameworks, grammars are complex constraints on syntactic structures;
well-formed structures are those that satisfy a grammar. This paper presents
Lexicalised Configuration Grammars (lcgs), a new descriptive framework for
the syntactic analysis of natural language.

Structures and constraints lcg does not replace existing grammar formalisms;
it offers a formal landscape into which these formalisms can be embedded to
study them and their relations from a different angle: as description languages
for syntactic structures. To be expressed as an lcg, a grammar formalism needs
to be characterised by two choices: (1) What structures does it describe? and
(2) What constraints does it use to describe them? To illustrate this, we will
show how context-free grammars (cfgs) fits into lcg.

Following McCawley [1], cfgs can be seen as description languages for ordered,
labelled trees (Choice 1). More precisely, let G = (Σ, Π,R, π) be a cfg with Σ
and Π being the alphabets of terminal and non-terminal symbols, respectively,
R the set of rules, and π ∈ Π the start symbol. A node u satisfies G if either
(a) u is a leaf node and is labelled with a terminal symbol, or (b) u is an inner
node with successors u1, . . . , uk (in that order), R contains a rule α → β1 · · ·βk

(where α ∈ Π and βi ∈ Σ ∪Π), u is labelled with α, and each successor ui of u
is labelled with βi; that is, the order of the successors of u is compatible with
the order specified by the rule (Choice 2). An ordered, labelled tree satisfies G if
its root node is labelled with π, its frontier is s, and all of its nodes satisfy G.

2

Global and local constraints The choice of a class of reference structures for an
lcg grammar formalism (Choice 1) imposes a global constraint on the formalism’s
expressivity. For example, by committing itself to ordered, labelled trees, no
grammar specified in the lcg version of cfg can possibly account for syntactic
structures with discontinuous configurations, and no possible choice for the
constraint language (Choice 2) can change that. Similarly, in previous work [2],
we have identified a class of discontinuous structures that is ‘just right’ for a
descriptive view on Lexicalised Tree Adjoining Grammar (ltag) [3]. Adopting
this class commits an lcg formalism to subsets of those syntactic structures that
are obtainable by an ltag.

The choice of the class of reference structures is the only non-lexical constraint
expressible in lcg. This sets lcg formalisms apart from other formalisms em-
ploying constraints to restrict syntactic configurations, like the id/lp format of
Generalised Phrase Structure Grammar [4] or Constraint Dependency Grammar
(cdg) [5]. Both of these formalisms allow for the statement of non-lexical con-
straints at the level of individual grammars (order constraints in id/lp grammars,
all constraints in cdg). In contrast, global constraints in lcg can be imposed
only by the choice of reference structures (Choice 1), which is a choice made
at the level of the formalism. All remaining constraints are local : they apply to
a word and the words in its immediate syntactic neighbourhood. In this sense,
lcg is a lexicalised framework. The next section discusses the notion of locality
employed in lcg and the role of lexical constraints in more detail.

Valencies and lexical constraints Locality is modelled through the concept of
valency. The valency of a word w specifies the possible types of a word w (accepted
types) and the number and types of other words that w must connect with to form
a complete expression (required types). The concept of valency is universal among
lexicalised grammar formalisms; it is implemented by non-terminal symbols in
lexicalised cfg, syntactic roles in dependency grammar, and slashed categories
in categorial grammar. When we say that lexical constraints apply to words
and their immediate syntactic neighbourhoods, we mean that constraints in the
lexical entry for a word w are relations over the words permitted by the valency
of w. These words can be referred to by the accepted and required types of w.

We illustrate the idea behind lexical constraints by finalising our encoding
of cfg as an lcg formalism. Assuming that we chose ordered, labelled trees as
the reference class of structures (Choice 1), rules in a (lexicalised) cfg can be
rewritten as lcg lexical entries using a single binary constraint relation ≺ to
express linear precedence (Choice 2). For example, the rule α → β1wβ2β3 (where
α, βi ∈ Π and w ∈ Σ) would correspond to the lexical entry

〈{α}, {β1, β2, β3} ; β1 ≺ ι ∧ ι ≺ β2 ∧ β2 ≺ β3 〉 .

The first component of this entry specifies the types accepted by w, the second
component specifies the required types; thus, in a tree satisfying this entry, the
node labelled with w must have a predecessor of type α and successors of types
β1, β2, β3. The third component of the entry contains the lexical constraints on

3

the valency; for the example entry, the node labelled with w (denoted by ι here)
and its successors (referred to by their types) must be ordered as prescribed by
the right hand side of the context-free rule. Note that this semantics exactly
corresponds to McCawley’s conception of cfg.

Increasing the expressivity Given that the lcg framework is stratified with
respect to the choice of the class of reference structures and the choice of the
lexical constraint languages, there are two obvious ways how the expressivity of
an lcg formalism can be increased:

– choose a more permissive class of structures (for example, the ltag structures
mentioned above instead of the ordered, labelled trees employed for the
encoding of cfg);

– choose other constraint languages (for example, languages with structural
constraints other than precedence, like isolation or adjacency [6], or languages
allowing for non-structural constraints such as agreement).

It turns out that lcg facilitates a rather detailed analysis of the implications that
these two changes have in terms of the generative capacity and the processing
complexity of the resulting formalisms.

One of the main reasons why one might want to experiment with expressivity
alternations is that for most traditional grammar formalisms, there is a small
number of ‘killer phenomena’ for which it seems necessary to locally extend the
expressiveness of the formalisms by just the right amount. In the case of English
for example, while most syntactic configurations disallow discontinuities, a few
(such as in wh-movement) require them. It seems desireable to be able to express
context-free and non-context-free phenomena in the same formalism, investing
extra formal and computational resources only in cases where they really are
required. We claim that lcg is suitable for such endeavours.

Another reason why we think that lcg is an interesting framework for
modelling natural language is that it is able to handle linguistic phenomena that
have proven to be particularly hard for other frameworks. As an example, we
cite the permutation of nominal arguments in the German verb cluster known as
scrambling. If we accept the linguistic analysis put forward by Becker et al. [7],
the question whether a formalism can model scrambling boils down to asking
whether it can generate the indexed language

SCR = {π(n[0], . . . , n[k])v[0] · · · v[k] | k ≥ 0 and π a permutation } ,

where the indices (written as superscripts) match up verbs (vs) with their noun
arguments (ns). It has been shown [7] that no formalism in the class of Linear
Context-Free Rewriting Systems1 that produces a verb v[i] and the requirement
for its matching noun argument n[i] in the same derivation step can generate
SCR. In Section 3.3, we will present an lcg that does.

1 The class of Linear Context-Free Rewriting Systems includes, among other formalisms,
Combinatory Categorial Grammar, ltag, and local Multi-Component tags.

4

Structure We start our exposition by introducing labelled drawings as the universal
reference class of structures for lcgs (Section 2). Section 3 presents the stratified
framework for constraint languages over drawings and gives some illustrative
examples. In Section 4, we prove some limitative complexity results for lcg.
Section 5 then addresses the issue of parsing lcgs and shows how the standard
polynomial complexities for parsing can be obtained by appropriate restrictions
on the structures and constraint languages. The paper concludes with an outlook
on future work in Section 6.

2 Labelled drawings

We introduce lcgs as description languages for (labelled) drawings [2], a class of
relational structures representing two essential syntactic dimensions: derivation
structure and word order. Derivation structure captures the idea that a natural
language expression can be composed of smaller expressions; word order concerns
the possible linearisations of syntactic material. This section presents the basic
terminology for drawings and cites some previous results.

2.1 Relational structures

A relational structure consists of a non-empty, finite set V of nodes and a number
of relations on V . In this paper, we are mostly concerned with binary relations
on the nodes. We use the standard terminology and notations available for
binary relations. In particular, R+ refers to the transitive closure, R∗ to the
reflexive-transitive closure of R. The notation Ru stands for the relational image
of u under R: the set of all v such that (u, v) ∈ R. Since relational structures
with binary relations can also be seen as multigraphs, all the standard graph
terminology can be applied to them.

Two types of relational structures are particularly important for the represen-
tation of syntactic configurations: trees and total orders. A relational structure
(V ; /) is a forest iff / is acyclic and every node in V has an indegree of at most
one. Nodes with indegree zero are called roots. A tree is a forest with exactly one
root. For a node v, we call the set /∗v the yield of v. A total order is a relational
structure (V ;≺) in which ≺ is transitive and for all v1, v2 ∈ V , exactly one of
the following three conditions holds: v1 ≺ v2, v1 = v2, or v2 ≺ v1. Given a total
order, the interval between two nodes v1 and v2 is the set of all v such that
v1 � v � v2. A set is convex iff it is an interval. The cover of a set V ′, C(V ′), is
the smallest interval containing V ′. A gap in a set V ′ is a maximal, non-empty
interval in C(V ′)− V ′; the number of gaps in V ′ is the gap degree of V ′.

2.2 Drawings

Drawings are forests whose nodes are totally ordered.

Definition 1. A drawing is a relational structure (V ; /,≺) in which (V ; /) forms
a forest and (V ;≺) forms a total order. If the forest structure underlying a drawing
forms a tree, the drawing is called arborescent.

5

Note that drawings are not the same as ordered trees: in an ordered tree, only
sibling nodes are ordered; in drawings, the order is total for all of the nodes.

The notions of cover, gap and gap degree can be applied to nodes in a drawing
by identifying a node v with its yield /∗v; for example, the gap degree of a node v
is the gap degree of /∗v. The gap degree of a drawing is the maximum among
the gap degrees of its nodes. We write Dg for the class of all drawings whose gap
degree does not exceed g. The drawings in D0 are called projective. Fig. 1 shows
three drawings of the same forest structure but with different gap degrees.

a b c d fe

0

0

0 0

0

0

a b c e f d

0

0

0

1

1

0

a b e c f d

0

2

1

1

0

0

Fig. 1. Drawings in D0 (projective drawings; left), D1 −D0 (gap degree 1; middle) and
D2 −D1 (gap degree 2; right). An integer at a node states that node’s gap degree.

The notion of gap degree yields a scale along which the non-projectivity of a
drawing can be quantified. Orthogonal to that, there are linguistically relevant
qualitative restrictions on non-projectivity. One of these is well-nestedness, which
constrains the possible relations between gaps [2].

Definition 2. Let D be a drawing. Two disjoint trees T1 and T2 in D interleave
iff there are nodes l1, r1 ∈ T1 and l2, r2 ∈ T2 such that l1 ≺ l2 ≺ r1 ≺ r2. The
drawing D is called well-nested iff it does not contain any interleaving trees.

We use the notation Dwn to refer to the class of all well-nested drawings. In Fig. 1,
the first and the second drawing are well-nested; the third drawing contains two
pairs of interleaving trees, rooted at b, e and c, e, respectively.

2.3 Labelled drawings

A labelled drawing is a drawing equipped with two total functions: one from
its nodes to an alphabet Σ of node labels and a second one from its edges to
an alphabet Π of edge labels. Since it will always be clear from the context
whether we mean the node labelling or the edge labelling function, we will use
the symbol ` for both: for any node v, `(v) refers to the node label associated
to v; for any edge (u, v), `(u, v) refers to the associated edge label. We write
DΣ,Π for the class of labelled drawings obtained by decorating drawings from
class D with node labels from Σ and edge labels from Π.

In labelled drawings, labelled successor relations can be defined as follows:

/π := { (u, v) ∈ V × V | u / v and `(u, v) = π } .

6

To reduce the complexity of our presentation, we assume the existence of a special
edge label ι called ‘self’, distinct from all other labels, and define /ι := Id.

The projection of a labelled drawing D, proj (D), is the string obtained by
concatenating the node labels of the drawing in the order of their corresponding
nodes; this is in analogy to the notion of the frontier of an ordered labelled tree.

3 Lexical constraint languages

The choice of a particular class of drawings imposes a global constraint on the
syntactic structures allowed by an lcg formalism. In this section, we formalise
the mechanism of lexical (local) constraints. As we illustrated in the introduction,
the lexical entry for a given word w specifies the type of w and the types of
the words connected to w, and imposes additional structural restrictions using
constraints from a lexical constraint language. In our formal model, words will
correspond to node labels, and types of nodes will correspond to edge labels. A
lexical constraint between two types π1, π2 in the entry of a word `(u) will be
interpreted on the nodes reachable from u by the labelled successor relations
named by π1 and π2.

3.1 Syntax and semantics

Syntax The syntax of a lexical constraint language is defined relative to an
alphabet R of relation symbols and an alphabet Π of edge labels. The alphabet R,
together with a function ar that assigns every symbol R ∈ R a non-negative
arity ar(R), forms the signature of the language. We will leave the arity function
implicit, and use the letter R to refer to signatures.

Definition 3. Let R be a signature, and let Π be an alphabet of edge labels. A
lexical constraint language with signature R over Π, written LR(Π), consists of
formulae φ of the following form:

φ ::= t | R(π1, . . . , πk) | φ1 ∧ φ2 , where R ∈ R, ar(R) = k, and πi ∈ Π

We write LR for the class of all lexical constraint languages with signature R.

The literal t is read as ‘true’. We call literals of the form R(π1, . . . , πk) relational
constraints. Binary relational constraints will be written using infix notation, so
the notation π1 R π2 will stand for R(π1, π2).

Semantics The satisfaction relation associated to a lexical constraint language
LR(Π) is a ternary relation between a formula φ, a drawing D ∈ DΣ,Π and a
node u in that drawing. For formulae of the form t and φ1 ∧ φ2, the definition of
the satisfaction relation is the same for all lexical constraint languages:

D, u |= t always
D, u |= φ1 ∧ φ2 iff D, u |= φ1 and D, u |= φ2

7

Satisfiability of relational constraints must be defined individually for a specific
language. However, there are two restrictions on the possible definitions; these
restrictions define lexical constraint languages in the wider sense of the term:
a definition of the satisfiability relation D, u |= R(π1, . . . , πk) may only refer to
the labelled successor relations {/π1 , . . . , /πk

},2 and the question whether the
defining condition applies must be decidable in time polynomial in the number of
nodes in D. lcg does not impose any further restrictions; it allows for defining
arbitrary constraint languages for labelled drawings, as long as the constraints
meet the above criteria.

3.2 Theories and grammars

Within lcg, we distinguish between theories and grammars. Formally, an lcg
theory is a pair of a class of (unlabelled) drawings and a class of lexical constraint
languages. An lcg theory corresponds to a ‘grammar formalism’ in the usual
sense of the word. An lcg grammar adopts a theory and instantiates it by
choosing concrete alphabets for the node and edge labels, and a lexicon.

Definition 4. Let T = (D,LR) be a theory. A grammar of type T is a triple
GT = (Σ, Π,Lex) such that Σ is an alphabet of node labels, Π is an alphabet of
edge labels, and Lex is a lexicon of type Σ → P(LER(Π)).

An lcg lexicon is a mapping from node labels to sets of lexical entries. The
type of a lexical entry depends on the signature of its constraint language and
the alphabet of edge labels that the lexical constraints may refer to.

Definition 5. A lexical entry describes a node in a drawing. It is a triple

〈I, Ω ; φ〉 ∈ B(Π)×B(Π)× LR(Π) =: LER(Π) ,

where the bags I and Ω contain edge labels, and φ is a lexical constraint. A node u
in D ∈ DΣ,Π satisfies a lexical entry 〈I,Ω ; φ〉 ∈ LER(Π) iff

for all π ∈ Π, |(/π)−1u| = I(π) and |(/π)u| = Ω(π) , and D, u |= φ .

The satisfaction property of a node can be lifted to the whole drawing:

Definition 6. A node u ∈ D ∈ DΣ,Π satisfies a lexicon Lex ∈ Σ → P(LER(Π))
iff there is a lexical entry 〈I,Ω ; φ〉 ∈ Lex(`(u)) such that u satisfies 〈I, Ω ; φ〉. D
satisfies a grammar G of type T , written D |= G, iff every node u ∈ D satisfies
the lexicon of the grammar.

3.3 Sample languages

To provide an intuition for the formal concepts defined in the previous two
sections, we will now translate three grammar formalisms into lcg theories. We
start by adapting our previous encoding of lcfg to the new formal concepts.
2 The definition may refer to arbitrary unlabelled relations in D.

8

Lexicalised Context-Free Grammars As already mentioned in the intro-
duction, lexicalised context-free rules like α → β1wβ2β3 can be seen as local
well-formedness conditions on node-labelled, ordered trees (see Fig. 2). To express
these conditions in the formal framework defined above, we first need to choose
a class of drawings suitable as models for lcfgs. Since the yields of each non-
terminal are continuous, a proper choice is D0, the class of projective drawings.
Second, we need to choose a signature for the lexical constraint language that we
want to use. As we already mentioned in the introduction, the only structural
constraint relevant to lcfgs is linear order. Therefore, it suffices to have a single
relational constraint ≺ that imposes an order on the immediate successors of a
node; since the language is interpreted on projective drawings, this order induces
an order on the subtrees.

D, u |= π1 ≺ π2 iff /π1u× /π2u ⊆ ≺

Fig. 2 shows a node-labelled tree, the corresponding lexical entry for the word w,
and a (partial) drawing satisfying the entry. Note that (instances of) non-terminals
in the lcfg rule correspond to edge labels in lcg. If α was a start symbol of the
underlying grammar, the first component of the corresponding lcg entry would
have to be the empty set; such entries can only be satisfied at root nodes.

α

wβ₁ β₂ β₃
β₁

α

β₂

a w b c

β₃

w : 〈{α}, {β1, β2, β3} ; β1 ≺ ι ∧ ι ≺ β2 ∧ β2 ≺ β3 〉

Fig. 2. Encoding Lexicalised Context Free Grammars

Lexicalised Unordered Context-Free Grammar Since nothing forces us to
impose order constraints on all types, we can write grammars corresponding to
lcfgs with arbitrary permutations of the right hand sides of the rules. If we
abandon the order constraints completely, we get the theory (D0, ∅), which is
equivalent to the class of (lexicalised) unordered context-free grammars.

The scrambling language The following grammar derives drawings whose
projections form the scrambling language presented in the introduction. The
underlying theory uses the unrestricted class of drawings and a constraint language
with two literals ≺ (linear precedence) and on (adjacency), whose semantics are

9

specified in Fig. 3. The grammar is GSCR := ({n, v}, {n, v},Lex), where the
lexicon Lex contains the entry 〈{n}, ∅ ; t〉 for n and the following entries for v:

〈∅, {n, v} ; n ≺ ι ∧ ι ≺ v ∧ ι on v〉 , 〈{v}, {n, v} ; n ≺ ι ∧ ι ≺ v ∧ ι on v〉 ,
and 〈{v}, {n} ; n ≺ ι〉 .

The precedence constraints place each v in between its n-successor and its v-
successor. The adjacency constraint prevents material from entering between a v
and its v-successor. Therefore, all nodes labelled with n must be placed to the
left of all nodes labelled with v, and while the vs are ordered, the ns can appear
in any permutation. (Fig. 3 shows a sample drawing licensed by GSCR.)

D, u |= π1 ≺ π2 iff (/π1 ◦ /∗)u× (/π2 ◦ /∗)u ⊆ ≺
D, u |= π1 on π2 iff (/π1 ◦ /∗ ∪ /π2 ◦ /∗)u is convex

n

v
n

n

n n n n vv

n

v v

v

v

Fig. 3. Lexical constraint language and sample drawing for SCR

Linear Specification Language Suhre’s lsl formalism [6] allows to generate
languages with a free word order. It is inspired by id/lp parsing [4], but allows
for local constraints only, which makes it more suitable for translation into lcg.
The yields in lsl are generally discontinuous; therefore, a theory for lsl needs
to adopt the class of unrestricted drawings as its models. To restrict the possible
linearisations, each lsl grammar rule can be annotated with local precedence
and ‘isolation’ (zero-gap) constraints. These constraints can be translated into
constraints from the lexical constraint language LLSL shown in Fig. 4. We define
the following abbreviations:

�π := /π ◦ /∗, �ι := Id, �• := /∗ .

The last clause in the definition of the satisfiability relation in Fig. 4 corresponds
to an isolation constraint applied to the left hand side of an lsl rule.

4 Limitative complexity results

The previous section has demonstrated that the lcg framework is rather expres-
sive. This expressive power does not come without a price. It is clear that all

10

D, u |= π1 < π2 iff �π1u× �π2u ⊆ ≺
D, u |= π1 � π2 iff �π1u× �π2u ⊆ ≺ and C(�π1u) ∪ C(�π2u) is convex

D, u |= 〈π〉 iff �πu is convex

D, u |= 〈•〉 iff �•u is convex

Fig. 4. Suhre’s Linear Specification Language

string membership problems for lcg are in np: we can simply guess a labelled
drawing and check the lexical constraints in polynomial time. The main result of
the present section is the proof that the general string membership problem for
the most general lcg theory is np-complete.

4.1 The general string membership problem

Definition 7. Let G = (Σ, Π,Lex) be a grammar for the theory (D,LR), and
let s be a string over Σ. The general string membership problem for G and s,
written (G, s), is the problem to decide whether the following set is non-empty:

C(G, s) := {D ∈ DΣ,Π | D |= G and proj(D) = s }

Elements of this set are called configurations of (G, s).

Lemma 1. The general string membership problem for (D,L∅) is NP-hard.

Proof. We will present a polynomial reduction of Hamilton Path to the general
string membership problem for (D,L∅). More specifically, for each input graph
H = (V ;E) to Hamilton Path, we will construct (in time linear in the size
of the input graph) a grammar GH and a string sH such that C(GH , sH) is
non-empty iff H has a Hamilton Path. Let sH be some string over V , and define

ΣH ,ΠH := V

start(v) := { 〈∅, {v′} ; t〉 | v → v′ ∈ H }
inner(v) := { 〈{v}, {v′} ; t〉 | v → v′ ∈ H }

end(v) := { 〈{v}, ∅ ; t〉 | v → v′ ∈ H }
LexH := { v 7→ start(v) ∪ inner(v) ∪ end(v) | v ∈ V }

GH := (ΣH ,ΠH ,LexH)

Each Hamilton Path in H forms a linear tree on V . Each such tree can be
configured using GH by choosing, for each node v in H, an entry from either
start(v), end(v), or inner(v), depending on the position of v in the Hamilton
Path. Conversely, in each configuration of (GH , sH), each node has at most
one predecessor and at most one successor qua lexicon. Therefore, each such
configuration is a drawing whose successor relation forms a linear tree, and the
path from the root to the leaf identifies a Hamilton Path in H.

11

To illustrate the encoding used in the proof, we show an example for an input
graph H and a corresponding configuration in Fig. 5. The Hamilton Path in H
is marked by solid edges. The depicted drawing satisfies the following lexicon
LexH . (The lexical entry satisfied at each node is underlined.)

1 7→ {〈∅, {3} ; t〉, 〈∅, {4} ; t〉, 〈{1}, {3} ; t〉, 〈{1}, {4} ; t〉, 〈{1}, ∅ ; t〉}

2 7→ {〈∅, {1} ; t〉, 〈∅, {4} ; t〉, 〈{2}, {1} ; t〉, 〈{2}, {4} ; t〉, 〈{2}, ∅ ; t〉}

3 7→ {〈{3}, ∅ ; t〉}

4 7→ {〈∅, {3} ; t〉, 〈{4}, {3} ; t〉, 〈{4}, ∅ ; t〉}

3

1 2

4

1

3

1 2 3 4

4

Fig. 5. An input graph H for Hamilton Path and a drawing licensing LexH

4.2 The fixed string membership problem

The fixed string membership problem asks the same question as the general
problem, but the grammar is not considered part of the input. This fact invalidates
the reduction that we used in the previous section, as this reduction constructed
a new grammar for every input, while any reduction for the fixed word problem
needs to assume one fixed grammar for every input string. The proof of the
following result is omitted due to space limitations:

Lemma 2. The fixed membership problem for (D,L∅) is polynomial.

It would seem desirable to have a framework in which extending the signature
of the constraint language may only reduce the complexity of the membership
problem, but never increase it. For lcgs, however, this is not necessarily the case:
in an unpublished manuscript, Holzer et. al. show—by a reduction of Tripartite
Matching—that for the Linear Specification Language, even the fixed string
membership problem is np-complete (p.c.); consequently, by the encoding of lsl
presented in Section 3.3, the same result applies to lcgs.

5 Parsing Lexicalised Configuration Grammars

This section presents a general schema for chart-based approaches to parsing
lcgs. Parsing schemata [8] provide us with a declarative specification of concrete

12

parsing algorithms, and allow us to analyse the complexity of these algorithms
on a high level of abstraction, hiding the algorithmic details. The complexity and
even the completeness heavily depend on the class of drawings that the schema
is applied to. Hence we get a detailed picture of how parsers can benefit from the
global constraints that are implicit in a class of drawings and up to what limits
the class can be extended without losing efficiency.

5.1 A general parsing schema

Parsing schemata [8] view parsing algorithms as inference systems. The general
parsing schema for lcg derives parse items representing partial drawings licensed
by a given grammar and sentence. These parse items have the form s : 〈I,Ω〉,
where s is a span (a non-empty subset of the words in the sentence) and I and Ω
are bags of edge labels. Each parse item represents the information that the
grammar licenses a partial drawing covering the words of the input sentence
specified by s; for this drawing to be complete, one still needs to connect its
root nodes using incoming edges labelled with the labels in I and outgoing edges
labelled with the labels in Ω. A parse item in which Ω is empty is fully saturated.
An item s : 〈∅, ∅〉 in which s contains all the words in the sentence is complete.

The lookup rule The parsing schema contains three rules called lookup, group
and plug. The lookup rule creates a new parse item with a singleton span for
a word wi in the input sentence:

〈I,Ω ; φ〉 ∈ Lex (wi)
{i} : 〈I,Ω〉

lookup

The combination rules The group and plug rules derive new parse items from
existing ones. The first rule, group, combines two fully saturated items into a
new fully saturated item. The plug rule saturates a bag of valencies in a parse
item by combining it with another item accepting these valencies on incoming
edges pointing to its root nodes:

s1 : 〈I1, ∅〉 s2 : 〈I2, ∅〉
s1 ⊕ s2 : 〈I1 ∪ I2, ∅〉

group
s1 : 〈I1, Ω] I2〉 s2 : 〈I2, ∅〉

s1 ⊕ s2 : 〈I1, Ω〉
plug

The span of a parse item in the conclusion of the group or plug rule (s1⊕ s2) is
the union of the spans in the premises (s1, s2). The ⊕ relation is a subset of the
disjoint union relation. On which pairs of spans it is defined depends on the class
of drawings that the schema is applied to, e.g. for D1 it would only be defined
on pairs of spans whose union has at most one gap.

Chart-based parsing A concrete parsing algorithm using the general schema would
test whether the inferential closure of the three rules contains a complete item.
Computing the inferential closure can be done efficiently by using a chart, indexed

13

by the spans, to record parse items already derived, and by choosing a control
strategy that guarantees that no two items are combined twice.

Alternatively a grammar could be translated into a definite-clause grammar
(dcg): each instance of the lookup rule as well as the group and the plug rule
can be represented by dcg rules. A dcg parser implemented as proposed in [9]
will perform the same operations as the chart parser sketched above.

5.2 Completeness

Before we look at the complexity of parsing lcgs in more detail, we first need
to ensure that the presented parsing schema is sound and complete, i.e., that
all the inferences are valid and that every drawing can be derived with them.
While this is easy to show in the general case, chart-based parsing requires a
crucial invariant on the parsing rules: all spans derived during parsing must
have a uniform representation. More specifically, assume that each span in the
premises of a combination rule has at most g gaps and thus can be represented
using 2(g + 1) integer indices (denoting the start and end positions of the g + 1
intervals that the span consists of). Then the union of two spans must also have
at most g gaps. Under this side condition, the general parsing schema is no longer
complete: there are drawings whose gap degree is bounded by g that cannot be
derived using parse items whose gap degree is bounded by g.

Completeness for well-nested drawings We will now show that for well-nested
drawings (cf. Section 2.2), the general parsing schema is complete even in the
presence of the gap invariant. For the proof of this result, we need the concept of
the gap forest of a well-nested drawing [2].

Definition 8. Let (V ; /,≺) be a well-nested drawing and let v ∈ V be a node
with g gaps. The gap forest for v is defined as the ordered forest gf(v) = (S; A, <):

S := {{v}, G1(v), . . . , Gg(v)} ∪ { /∗w | v / w }
A := transitive reduction of { (s1, s2) ∈ S × S | C(s1) ⊃ s2 }
< := { (s1, s2) ∈ S × S | ∀v1 ∈ s1 : ∀v2 ∈ s2 : v1 ≺ v2 }

The elements of S are called spans.

(The notation Gi(v) refers to the ith gap in the yield of v.) In a gap forest, sibling
spans correspond to disjoint sets whose union has at most g gaps. Sibling spans
belonging to the same convex region are called span groups.

Lemma 3. Let G be an lcg grammar and let D be a well-nested arborescent
drawing on nodes V with gap degree at most g. Then D |= G implies the existence
of a derivation of a parse item V : 〈I, ∅〉 that only involves parse items whose
gap degree is bounded by g.

14

Proof. Let G be a grammar and let D be a well-nested arborescent drawing on V
such that D |= G. If V = {u}, then 〈∅, ∅ ; φ〉 ∈ Lex (`(u)). In this case, the parse
item {u} : 〈∅, ∅〉 can be derived by one application of the lookup rule. Now
assume that D consists of a root node u with children vi, 1 ≤ i ≤ k, where each
child vi is the root of an arborescent drawing Di. Then

〈∅, P ; φ〉 ∈ Lex (`(u)), where P = ∪1≤i≤k {πi | 〈{πi}, Ωi ; φi〉 ∈ Lex (`(vi)) } .

By induction, we may assume that each of the drawings Di was derived using parse
items with gap degree at most g only; in particular, each complete drawing Di

corresponds to such a parse item. The drawing D then can be derived using the
two combination rules, successively combining the parse items for the drawings Di

and the item for the root node u (obtainable by the lookup rule).
The interesting part of the proof is to show that the combining operations

can be linearised in such a way that the gap degree of the intermediate parse
items is bounded by g. We will now present such a linearisation, based on a
post-order traversal of the gap forest for the node u: In a horizontal phase of the
traversal, we combine all parse items corresponding to a gap group from left to
right, ignoring any gap nodes. There are at most g such nodes in the complete
gap forest; therefore, this phase of the traversal maintains the gap invariant. In a
vertical phase, we combine the parse items from the preceding horizontal phase
with the item corresponding to the parent node in the gap forest in order of their
gap degree. Since the gap degree of the final item is bounded by g, this strategy
maintains the gap invariant.

5.3 Complexity analysis

We now determine the complexity bounds of an implementation of our schema.

Space complexity To bound the number of parse items stored in the chart, we
look at the number of possible values for the variables of a parse item s : 〈I,Ω〉.
As both I and Ω may represent arbitrary multisets over the edge labels, the
number of parse items may be exponential in the size of the grammar. In the
case that the drawings under consideration are unrestricted (so that a span s
can be an arbitrary set), the number of parse items is also exponential in the
length of the input sentence. However, in cases where Lemma 3 applies, spans
can be represented by k = 2(g + 1) integers (cf. Section 5.2). Thus, there will be
at most O(nk) different parse items in the chart.

Time complexity Since the chart-based architecture guarantees that no two parse
items are combined twice, the space complexity can be used to bound the time
complexity. Of course, if the number of parse items is exponential, the runtime
of any algorithm faithfully implementing the general parsing schema will be
exponential as well. In what follows, we will ignore the size of the grammar and
focus on well-nested drawings with bounded gap degree. How many possibilities
of combinations are there for parse items? Counted over the runtime of the
complete algorithm, every parse item needs to be combined with every other
item, so the time needed for these combinations is O(nk) ·O(nk) = O(n2k).

15

A refined analysis This O(n2k) time estimate is too pessimistic still. To see this,
notice that in both of the combination rules, k indices used to represent the spans
only occur in the premises: since both the spans in the premises and the span in
the conclusion can be represented using k indices each, 2k − k cannot ‘make it’
into the conclusion. As the union operation on spans does not ‘forget’ about any
material, the value of k/2 of these indices are determined by other indices in the
premises. Thus, a better upper bound for the time complexity for the algorithm
is O(n2k−k/2). Remembering that k = 2(g + 1), we get

Lemma 4. Let D be a class of well-nested drawings whose gap degree is bounded
by g, and let LR be a lexical constraint language. Then the general string mem-
bership problem for (D,LR) has complexity O(2|G|n3g+3).

For context-free grammars (g = 0), this lemma gives the familiar O(n3) parsing
result; for tags (g = 1), we get a parser that takes time O(n6). Notice that both
of these complexities ignore the size of the grammar. For lcfgs, however, our
parsing framework can be as efficient as e.g. the Earley parser:

Lemma 5. The general string membership problem for totally ordered grammars
of type (D0,L{≺}) has complexity O(|G|2n3).

Proof. By the previous lemma, we know that O(2|G|n3) is an upper bound. The
restriction that the valency of each lexical entry are totally ordered implies that
we can represent valencies as lists instead of bags.

5.4 The size of the grammar

The previous section offered insights in how far the model class used by a certain
grammar formalism influences the completeness and the complexity with respect
to the length of the input sentence. To develop an efficient parser of practical
relevance based on our parsing schema however, a crucial point is the complexity
with respect to the size of the grammar. Grammar size is an often neglected factor
for the performance of parsing algorithms: a standard sentence of, say, 25 words,
is usually several orders of magnitude shorter than a lexicalised grammar. While
grammar size thus is significant even for frameworks in which the grammar only
contributes linearly or quadratically to the speed of the parsing algorithm (such
as context-free grammar), it is definitely an issue in a framework like lcg, where
for reasons of expressive power it cannot in general be avoided. It seems then, that
it is desirable to complement the chart-based parsing architecture by methods to
avoid the worst-case complexity in the size of the grammar whenever possible.
This is where we propose to use constraint propagation: lexical constraints can
be used to control the chart-based parser. To give a very simple example: in
the presence of order constraints, far from all of the possible combinations of
parse items need to be considered when applying the plug rule: if an item i
has open valencies π1 ≺ π2, there is no need to try to plug π2 with an item
adjacent to i—any item plugging π1 precedes any item plugging π2 in all licensing
drawings. How exactly the interaction between constraint propagation and chart
parsing it realized and how much a parser can benefit from each single constraint
are open questions that we are currently addressing.

16

6 Conclusion

This paper presented Lexicalised Configuration Grammars (lcgs), a novel frame-
work for the descriptive analysis of natural language. lcg is stratified with
respect to two parameters: the choice of a class of reference structures (a global
constraint), and the choice of a lexical (i.e., local) constraint language used to
describe those structures that should be considered grammatical. Translating
grammar formalisms into lcg makes it possible to study these formalisms and
their relations from a new perspective, and to experiment with gradual and local
alternations of their expressivity and processing complexity. lcgs are expressive
enough to generate the scrambling language, a language that cannot be gener-
ated by many traditional generative frameworks. The general string membership
problem for lcg is np-complete; however, a broad class of linguistically relevant
lcgs can be parsed in polynomial time.

Future work We plan to continue our research by investigating the potential
of the processing framework outlined in Section 5 to combine chart-based and
constraint-based processing techniques. Our immediate goal is the implementation
of a parser for lcgs that uses constraint propagation to avoid the worst-case
complexity of the chart-based parsing algorithm with respect of the size of the
grammar. One of the major technical challenges in this is the constraint-based
treatment of lexical ambiguity: handling disjunctive information is notorously
difficult for constraint propagation. In a second line of work, we will try to relate
lcgs to more and more traditional grammar formalisms by defining appropriate
lcg theories and grammars and proving the necessary equivalence results.

References

1. McCawley, J.D.: Concerning the base component of a transformational grammar.
Foundations of Language 4 (1968) 243–269

2. Bodirsky, M., Kuhlmann, M., Möhl, M.: Well-nested drawings as models of syntactic
structure. In: 10th Conference on Formal Grammar and 9th Meeting on Mathematics
of Language, Edinburgh, Scotland, UK (2005)

3. Joshi, A., Schabes, Y.: Tree Adjoining Grammars. In: Handbook of Formal Languages.
Volume 3. Springer (1997) 69–123

4. Gazdar, G., Klein, E., Pullum, G.K., Sag, I.A.: Generalized Phrase Structure
Grammar. Havard University Press, Cambrige, MA (1985)

5. Maruyama, H.: Structural disambiguation with constraint propagation. In: 28th
Annual Meeting of the Association for Computational Linguistics (ACL 1990),
Pittsburgh, Pennsylvania, USA (1990) 31–38

6. Suhre, O.: Computational aspects of a grammar formalism for languages with freer
word order. Diploma thesis, Universität Tübingen (1999)

7. Becker, T., Rambow, O., Niv, M.: The derivational generative power, or, scrambling
is beyond lcfrs. Technical Report IRCS-92-38, University of Pennsylvania (1992)

8. Sikkel, K.: Parsing Schemata: A Framework for Specification and Analysis of Parsing
Algorithms. Springer-Verlag (1997)

9. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of
deductive parsing. Journal of Logic Programming 24 (1995) 3–36

