
Multi-dimensional Dependency Grammar as Multigraph Description

Ralph Debusmann and Gert Smolka
Programming Systems Lab
Universität des Saarlandes

Postfach 15 11 50
66041 Saarbrücken, Germany
{rade,smolka}@ps.uni-sb.de

Abstract

Extensible Dependency Grammar (XDG) is new, modular
grammar formalism for natural language. An XDG analy-
sis is a multi-dimensional dependency graph, where each di-
mension represents a different aspect of natural language, e.g.
syntactic function, predicate-argument structure, information
structure etc. Thus, XDG brings together two recent trends in
computational linguistics: the increased application of ideas
from dependency grammar and the idea of multi-layered lin-
guistic description. In this paper, we tackle one of the stum-
bling blocks of XDG so far—its incomplete formalization.
We present the first complete formalization of XDG, as a
description language for multigraphs based on simply typed
lambda calculus.

Introduction
Extensible Dependency Grammar (XDG) (Debusmann et al.
2004) brings together two recent trends from computational
linguistics:

1. dependency grammar
2. multi-layered linguistic description

Firstly, the ideas of dependency grammar, lexicaliza-
tion, the head-dependent asymmetry, valency etc., have be-
come more and more popular in computational linguistics.
Most of the popular grammar formalisms like Combinato-
rial Categorial Grammar (CCG) (Steedman 2000), Head-
driven Phrase Structure Grammar (HPSG) (Pollard & Sag
1994), Lexical Functional Grammar (LFG) (Bresnan 2001)
and Tree Adjoining Grammar (TAG) (Joshi 1987) have al-
ready adopted these ideas. Moreover, the most successful
approaches statistical parsing crucially depend on notions
from dependency grammar (Collins 1999), and new tree-
banks based on dependency grammar are being developed
for various languages, e.g. the Prague Dependency Treebank
(PDT) for Czech and the TiGer Dependency Bank for Ger-
man.

Secondly, many treebanks such as the Penn Treebank, the
TiGer Treebank and the PDT are continuously being ex-
tended with additional layers of annotation in addition to
the syntactic layer, i.e. they become more and more multi-
layered. For example, the PropBank (Kingsbury & Palmer

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2002) (Penn Treebank), the SALSA project (Erk et al. 2003)
(TiGer Treebank) and the tectogrammatical layer (PDT) add
a layer of predicate-argument structure. Other added layers
concern information structure (PDT) and discourse struc-
ture as in the Penn Discourse Treebank (Webber et al. 2005).
These additional layers of annotation are often dependency-
like, i.e. could be straightforwardly represented in a frame-
work for dependency grammar which is multi-layered.

XDG is such a framework. It has already been success-
fully applied to model a relational syntax-semantics inter-
face (Debusmann et al. 2004) and to model the relation be-
tween prosodic structure and information structure in En-
glish (Debusmann, Postolache, & Traat 2005). We hope to
soon be able to employ XDG to directly make use of the in-
formation contained in the new multi-layered treebanks, e.g.
for the automatic induction of multi-layered grammars for
parsing and generation.

To achieve this goal, XDG still needs to overcome a num-
ber of weaknesses. The first is the lack of a polynomial
parsing algorithm—so far, we only have a parser based on
constraint programming (Debusmann, Duchier, & Niehren
2004), which is fairly efficient, given that the parsing prob-
lem is NP-hard, but does not scale up to large-scale gram-
mars. The second major stumbling block of XDG so far
is the lack of a complete formalization. The latter is what
we will change in this paper: we will present a formal-
ization of XDG as a description language for multigraphs
based on simply typed lambda calculus (Church 1940;
Andrews 2002). To give a hint of the expressivity of XDG,
we additionally present a proof that the parsing problem of
(unrestricted) XDG is NP-hard. We begin the paper with
introducing the notion of multigraphs.

Multigraphs
Multigraphs are motivated by dependency grammar, and in
particular by its structures: dependency graphs.

Dependency Graphs
Dependency graphs such as the one in Figure 1 typically
represent the syntactic structure of sentences in natural lan-
guage. They have the following properties:

1. Each node (round circle) is associated with a word (today,
Peter, wants etc.), which is connected to the correspond-
ing node by a dotted vertical line called projection edge,

for these lines signify the projection of the nodes onto the
sentence.

2. Each node is additionally associated with an index (1, 2, 3
etc.) signifying its position in the sentence, and displayed
above the words.

3. The nodes are connected to each other by labeled and di-
rected edges, which express syntactic relations. In the ex-
ample, there is an edge from node 3 to node 1 labeled
adv, expressing that wants is modified by the adverb to-
day, and one from 3 to 2 labeled subj, expressing that
Peter is the subject of wants. wants also has the infinitival
verbal complement (edge label vinf) eat, which has the
particle (part) to and the object (obj) spaghetti.

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

adv sub
j vinf

objpar
t

Figure 1: Dependency Graph (syntactic analysis)

Dependency graphs are not restricted to describing syn-
tactic structures alone. As an example in point, Figure 2
shows a dependency graph which describes the semantic
structure of our example sentence, where the adverb today
is the root and has the theme (edge label th) wants, which
in turn has the agent (ag) Peter and the theme eat. eat has
the agent Peter and the patient (pat) spaghetti. Node 4 (the
particle to) has no meaning and thus remains unconnected.

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

th

ag
th

ag pat

Figure 2: Dependency Graph (semantic analysis)

Multigraphs
A multigraph is a multi-dimensional dependency graph con-
sisting of an arbitrary number of dependency graphs called
dimensions. All dimensions share the same set of nodes.
Multigraphs can significantly simplify linguistic modeling
by modularizing both the structures and their description.

We show an example multigraph in Figure 3, where we
simply draw the dimensions of syntax (upper half, from Fig-
ure 1) and semantics (lower half, from Figure 2) as indi-
vidual dependency graphs for clarity, and indicate the node
sharing by arranging shared nodes in the same columns. The
multigraph simultaneously describes the syntactic and se-
mantic structures of the sentence, and expresses e.g. that Pe-
ter (node 2), the subject of wants, syntactically realizes both
the agent of wants and of eat (node 5).

Formalization
We formalize multigraphs as tuples
(V,Dim ,Word , W,Lab, E,Attr , A) of a finite set V

syntax

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

adv sub
j vinf

objpar
t

semantics

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

th

ag
th

ag pat

Figure 3: Multigraph

of nodes, a finite set Dim of dimensions1, a finite set Word
of words, the node-word mapping W ∈ V → Word , a
finite set Lab of edge labels, a set E ⊆ V ×V ×Dim ×Lab
of edges, and in addition a finite set Attr of attributes and
the node-attributes mapping A ∈ V → Dim → Attr to
equip the nodes with extra information (not used in the
example above). The set of nodes V must be a finite interval
of the natural numbers starting from 1, i.e., given n nodes,
V = {1, . . . , n}, which induces a strict total order on V .

Relations
We associate each dimension d ∈ Dim with four relations:
1) the labeled edge relation (·

−→
d

), 2) the edge relation
(→

d
), 3) the dominance relation (→+

d
), and 4) the prece-

dence relation (≺).

Labeled Edge. Given two nodes v and v′ and a label l ∈

Lab, the labeled edge relation v
l

−→d v′ holds iff there is an
edge from v to v′ labeled l on dimension d:

·

−→
d

= {(v, v′, l) | (v, v′, d, l) ∈ E} (1)

Edge. Given two nodes v and v′, the edge relation v→
d
v′

holds iff there is an edge from v to v′ on dimension d labeled
by any label in Lab:

→
d

= {(v, v′) | ∃l ∈ Lab : v
l

−→
d
v′} (2)

Dominance. The (strict, non-reflexive) dominance rela-
tion →+

d
is the transitive closure of the edge relation →

d
.

Precedence. Given two nodes v and v′, the precedence re-
lation v ≺ v′ holds iff v < v′, where < is the total order on
the natural numbers.

1Note that here, formally, a dimension is just a name identifying
a particular dependency graph in the multigraph. Conceptually,
a dimension denotes not just the name but the dependency graph
itself.

A Description Language for Multigraphs
We proceed with formalizing Extensible Dependency Gram-
mar (XDG) as a description language for multigraphs based
based on simply typed lambda calculus.

Types
Definition. We define the types T ∈ Ty given a set At of
atoms (arbitrary symbols):

a ∈ At
T ∈ Ty ::= B boolean

| V node
| T1 → T2 function
| {a1, . . . , an} finite domain
| {a1 : T1, . . . , an : Tn} record

(3)
where n ≥ 1 and for finite domains and records, a1, . . . , an

are pairwise distinct. Following (Church 1940; Andrews
2002), we adopt the classical semantics for lambda calcu-
lus and thus forbid empty finite domain types.

Interpretation. We interpret:
• B as {0, 1}

• V as a finite interval of the natural numbers from 1

• T1 → T2 as the set of all functions from the interpretation
of T1 to the interpretation of T2

• {a1, . . . , an} as the set {a1, . . . , an}

• {a1 : T1, . . . , an : Tn} as the set of all functions f with
1. Dom f = {a1, . . . , an}

2. for all 1 ≤ i ≤ n, f ai is an element of the interpreta-
tion of Ti

Multigraph Type
Multigraphs can be distinguished according to their dimen-
sions, words, edge labels and attributes. This leads us to the
definition of a multigraph type, which we define given the
types Ty as a tuple M = (dim ,word , lab, attr), where

1. dim ∈ Ty is a finite domain of dimensions

2. word ∈ Ty is a finite domain of words

3. lab ∈ dim → Ty is a function from dimensions to label
types (finite domains), i.e. the type of the edge labels on
that dimension

4. attr ∈ dim → Ty is a function from dimensions to
attributes types (any type in Ty), i.e. the type of the at-
tributes on that dimension
Writing M T for the interpretation of type T over M, a

multigraph M = (V,Dim,Word , W,Lab, E,Attr , A) has
multigraph type M = (dim ,word , lab, attr) iff

1. The dimensions are the same:

Dim = M dim (4)

2. The words are the same:

Word = M word (5)

3. The edges in E have the right edge labels for their dimen-
sion (according to lab):

∀(v, v′, d, l) ∈ E : l ∈ M (lab d) (6)

4. The nodes have the right attributes for their dimension
(according to attr):

∀v ∈ V : ∀d ∈ Dim : (A v d) ∈ M (attr d)
(7)

Terms
The terms of XDG augment simply typed lambda calculus
with atoms, records and record selection. Given a set of
constants Con , we define:

a ∈ At
c ∈ Con
t ::= x variable

| c constant
| λx : T.t abstraction
| t1 t2 application
| a atom
| {a1 = t1, . . . , an = tn} record
| t.a record selection

(8)
where for records, a1, . . . , an are pairwise distinct.

Signature
An XDG signature is determined by a multigraph type M =
(dim ,word , lab, attr), and consists of two parts: the logical
constants and the multigraph constants.

Logical Constants. The logical constants include the type
constant B and the following term constants:

0 : B false
1 : B true
¬ : B → B negation
∨ : B → B → B disjunction

.
=T : T → T → B equality
∃T : (T → B) → B existential quantification

(9)

For convenience, we introduce the usual logical constants
∧, ⇒, ⇔, 6=, ∃1

T
and ∀T as notation.

Multigraph Constants. The multigraph constants include
the type constant V, and the following term constants:

·

−→
d

: V → V → lab d → B labeled edge
→

d
: V → V → B edge

→+

d
: V → V → B dominance

≺ : V → V → B precedence
(word ·) : V → word word

(d ·) : V → attr d attributes
(10)

where we interpret

•
·

−→d as the labeled edge relation on dimension d.

• →
d

as the edge relation on d.

• →+

d
as the dominance relation on d.

• ≺ as the precedence relation
• (word ·) as the word
• (d ·) as the attributes on d.

Grammar
An XDG grammar G = (M, P) is defined by a multigraph
type M and a set P of formulas called principles. Each prin-
ciple must be formulated according to the signature M .

Models
The models of a grammar G = (M, P) are all multigraphs
which

1. have multigraph type M

2. satisfy all principles P

Recognition Problem
We distinguish two kinds of recognition problems:

1. the universal recognition problem
2. the fixed recognition problem

Universal Recognition Problem. Given an XDG gram-
mar G with words word and a string s = w1 . . . wn in
word+, the universal recognition problem (G, s) is the prob-
lem of determining whether there is a model of G such that:

1. there are as many nodes as words:

V = {1, . . . , n} (11)

2. the concatenation of the words of the nodes yields s:

(word 1) . . . (word n) = s (12)

Fixed Recognition Problem. The fixed recognition prob-
lem (G, s) poses the same question as the universal recogni-
tion problem, but with the restriction that for all input strings
s, the grammar G must remain fixed.

Complexity
What is the complexity of the two kinds of recognition prob-
lems? In this section, we prove that the fixed recognition
problem is NP-hard. The purpose of the proof is to give the
reader a feeling for the expressivity of XDG.

Fixed Recognition Problem
Proof. To prove that the fixed string membership problem is
NP-hard, we opt for the reduction of the NP-complete prob-
lem of SAT (satisfiability), which is the problem of deciding
whether a formula in propositional logic has an assignment
that evaluates to true. We restrict ourselves to formulas f ,
which is already sufficient to cover full propositional logic:

f ::= X, Y, Z, . . . variable
| 0 false
| f1 ⇒ f2 implication

(13)

The reduction of SAT proceeds as follows:

1. In three steps, we transform the propositional formula into
a string suitable as input to the fixed string membership
problem. For example, given the formula

(X ⇒ 0) ⇒ Y (14)

the transformation goes along as follows:
(a) To avoid ambiguity, we transform the formula into pre-

fix notation:
⇒ ⇒ X 0 Y (15)

(b) A propositional formula can contain an arbitrary num-
ber of variables, yet the domain of words of an XDG
grammar must be finite. To overcome this limitation,
we adopt a unary encoding for variables, where we en-
code the first variable from the left of the formula (here:
X) as var I , the second (here: Y) var I I etc.:

⇒ ⇒ var I 0 var I I (16)

(c) To clearly distinguish the string from the original
propositional formula, we replace all implication sym-
bols with the word impl:

impl impl var I 0 var I I (17)

2. We introduce the Propositional Logic dimension (abbre-
viation: PL) to model the structure of the propositional
formula. On the PL dimension, the example formula (14)
is analyzed as in Figure 4.

1

impl

{

truth=1

bars=1

}

2

impl

{

truth=0

bars=1

}

3

var

{

truth=1

bars=2

}

4

I

{

truth=0

bars=1

}

5

0

{

truth=0

bars=1

}

6

var

{

truth=1

bars=3

}

7

I

{

truth=0

bars=2

}

8

I

{

truth=0

bars=1

}

arg1

arg1

bar

arg2

arg2

bar

bar

Figure 4: PL analysis of (X ⇒ 0) ⇒ Y

The edge labels are arg1 and arg2 for the antecedent and
the consequent of an implication, respectively, and bar
for connecting the bars (word I) of the unary variable en-
coding. Below the words of the nodes, we display their
attributes, which are of the following type:

{

truth : B
bars : V

}

(18)

where truth represents the truth value of the node and
bars the number of bars below the next node to its right
plus 1. The bars attribute will become crucial for estab-
lishing coreferences between variables. Its type is V for
two reasons:

(a) There are always less (or equally many) variables in
a formula than there are nodes, since every encoded
formula contains less (or equally many) variables than
words. Hence, V always suffices to distinguish them.

(b) We require the precedence predicate to implement in-
crementation (cf. 9. below), which is defined only on
V.

3. We require that the models on PL are trees. In XDG, we
can express this as follows:

(a) there are no cycles:

¬(v →+
PL v) (19)

(b) each node has at most one incoming edge:

v′ →PL v ∧ v′′ →PL v ⇒ v′
.
= v′′ (20)

(c) there is precisely one node with no incoming edge (the
root):

∃1v : ¬∃v′ : v′ →PL v (21)

4. We describe the structure of the PL tree by, for each
node, depending on its word, constraining 1) its incoming
edges, 2) its outgoing edges and 3) its order with respect
to its daughters and the order among the daughters:

(a) A node with word impl 1) can either be the antecedent
or the consequent of an implication (its incoming edge
must be labeled either arg1 or arg2), 2) requires pre-
cisely one outgoing edge labeled arg1 (for the an-
tecedent) and one labeled arg2 (for the consequent) and
must have no other outgoing edges, and 3) must pre-
cede its arg1-daughter, which in turn must precede the
arg2-daughter. We illustrate this below in (22), where
the question mark ? marks optional and the exclama-
tion mark ! obligatory edges:

impl

arg1!
arg2!

arg1?, arg2?

(22)

We can express these three constraints in XDG as:

(word v)
.
= impl ⇒

1) v′
l

−→PL v ⇒ l
.
= arg1 ∨ l

.
= arg2 ∧

2) ∃1v′ : v
arg1
−→PL v′ ∧ ∃1v′ : v

arg2
−→PL v′ ∧

¬∃v′ : v
bar
−→PL v′ ∧

3) v
arg1
−→PL v′ ∧ v

arg2
−→PL v′′ ⇒ v ≺ v′ ∧ v′ ≺ v′′

(23)
(b) A node with word 0 can 1) either be the antecedent or

the consequent of an implication and 2) must not have
any outgoing edges:

0

arg1?, arg2?

(24)

(c) A node with word var 1) can either be the antecedent
or the consequent of an implication, 2) requires only
precisely one outgoing edge labeled bar for the first bar
below it, and 3) precedes its bar-daughter:

bar!

var

arg1?, arg2?

(25)

(d) A node with word I 1) must have an incoming edge
labeled bar, 2) can have only at most one outgoing edge
labeled bar, and 3) precedes its potential bar-daughter:

bar?

I

bar!

(26)

5. Just ordering the nodes is not enough: to precisely cap-
ture the context-free structure of the propositional formula
and the unary variable encoding, we must ensure that the
models are projective, i.e. that no edge crosses any of the
projection edges.2 Otherwise, we are faced with wrong
analyses as in Figure 5, where the rightmost bar (node 8)
is incorrectly “taken over” by the first bar (node 4) of the
left variable (node 3).

1

impl

{

truth=1

bars=1

}

2

impl

{

truth=0

bars=1

}

3

var

{

truth=1

bars=2

}

4

I

{

truth=0

bars=2

}

5

0

{

truth=0

bars=1

}

6

var

{

truth=0

bars=1

}

7

I

{

truth=0

bars=1

}

8

I

{

truth=0

bars=1

}

arg1 arg2

arg1 arg2

bar

bar

bar

Figure 5: Non-projective PL analysis of (X ⇒ 0) ⇒ Y

We express the projectivity constraint as follows in XDG:
for each node v and each daughter v′, all nodes v′′ be-
tween v and v′ must be below v:
v→PL v′ ∧ v ≺ v′ ⇒ ∀v′′ : v ≺ v′′ ∧ v′′ ≺ v′ ⇒

v→+
PL v′′ ∧

v→PL v′ ∧ v′ ≺ v ⇒ ∀v′′ : v′ ≺ v′′ ∧ v′′ ≺ v ⇒
v→+

PL v′′

(27)
6. We must ensure that the root of PL analysis always has

truth value 1, i.e. that the propositional formula is true:

¬∃v′ : v′ →PL v ⇒ (PL v).truth
.
= 1 (28)

7. Nodes with word 0 have truth value false. Their bar count
is not relevant, hence we can pick an arbitrary value and
set it to 1:

(word v)
.
= 0 ⇒

(PL v).truth
.
= 0 ∧

(PL v).bars
.
= 1

(29)

8. The truth value of nodes with word impl equals the im-
plication of the truth value of its arg1-daughter (the an-
tecedent) and its arg2-daughter (the consequent). Again
the bar count is not relevant and we set it to 1:
(word v)

.
= impl ⇒

(v
arg1
−→PL v′ ∧ v

arg2
−→PL v′′ ⇒

(PL v).truth
.
= ((PL v′).truth ⇒ (PL v′′).truth)) ∧

(PL v).bars
.
= 1

(30)
2Note that while XDG dimensions can be constrained to be pro-

jective, they need not be.

9. The truth value of bars (word I) is not relevant, and hence
we can safely set it to 0. The bar value is either 1 for
the bars not having a daughter, or else one more than its
daughter:

(word v)
.
= I ⇒

(PL v).truth
.
= 0 ∧

¬∃v′ : v→PL v′ ⇒ (PL v).bars
.
= 1 ∧

(v
bar
−→PL v′ ⇒ (PL v′).bars ≺ (PL v).bars ∧

¬∃v′′ : (PL v′).bars ≺ v′′ ∧ v′′ ≺ (PL v).bars)

(31)

Notice that the latter constraint actually increments the bar
value, even though XDG does not provide us with any di-
rect means to do that. The trick is to emulate incrementing
using the precedence predicate.

10. The truth value of variables is only constrained by the
overall propositional formula. Their bar value is the same
as that of their bar daughter.

(word v)
.
= var ⇒

v
bar
−→PL v′ ⇒ (PL v).bars

.
= (PL v′).bars

(32)

11. We can now establish coreferences between the variables.
To this end, we stipulate that for each pair of nodes v and
v′ with word var, if they have the same bar values, then
their truth values must be the same:

(word v)
.
= var ∧ (word v′)

.
= var ⇒

(PL v).bars
.
= (PL v′).bars ⇒

(PL v).truth
.
= (PL v′).truth

(33)

The described reduction is polynomial, which concludes the
proof that the fixed string membership problem is NP-hard.

Universal Recognition Problem
Proof. Since the fixed recognition problem is a specializa-
tion of the universal recognition problem, the NP-hardness
result carries over: the universal recognition problem of
XDG is also NP-hard.

Conclusion
In this paper, we have presented the first complete formal-
ization of XDG as a description language for multigraphs
based on simply typed lambda calculus. We also showed
that the recognition problem of XDG as it stands is NP-hard.
But all is not lost: on the one hand, we already have an
implementation of XDG as a constraint satisfaction prob-
lem which is fairly efficient for handcrafted grammars at
least. Also, other grammar formalisms such as LFG (Bar-
ton, Berwick, & Ristad 1987) and HPSG (with significant
restrictions) (Trautwein 1995) are also NP-hard but still used
for parsing in practice. On the other hand, the formaliza-
tion is meant to be a starting point for future research on the
formal aspects of XDG, with the eventual goal to find more
tractable, polynomial fragments, without losing the potential
to significantly modularize and thus improve the modeling
of natural language.

Acknowledgments
We would like to thank the other members of the CHO-
RUS project (Alexander Koller, Marco Kuhlmann, Man-
fred Pinkal, Stefan Thater) for discussion, and also Denys
Duchier and Joachim Niehren. This work was funded by the
DFG (SFB 378) and the International Post-Graduate Col-
lege in Language Technology and Cognitive Systems (IGK)
in Saarbrücken.

References
Andrews, P. B. 2002. An Introduction to Mathematical
Logic and Type Theory: To Truth Through Proof. Kluwer
Academic Publishers.
Barton, G. E.; Berwick, R.; and Ristad, E. S. 1987. Com-
putational Complexity and Natural Language. MIT Press.
Bresnan, J. 2001. Lexical Functional Syntax. Blackwell.
Church, A. 1940. A Formulation of the Simple Theory of
Types. Journal of Symbolic Logic (5):56–68.
Collins, M. 1999. Head-Driven Statistical Models for Nat-
ural Language Parsing. Ph.D. Dissertation, University of
Pennsylvania.
Debusmann, R.; Duchier, D.; Koller, A.; Kuhlmann, M.;
Smolka, G.; and Thater, S. 2004. A Relational Syntax-
Semantics Interface Based on Dependency Grammar. In
Proceedings of COLING 2004.
Debusmann, R.; Duchier, D.; and Niehren, J. 2004. The
XDG Grammar Development Kit. In Proceedings of the
MOZ04 Conference, volume 3389 of Lecture Notes in
Computer Science, 190–201. Charleroi/BE: Springer.
Debusmann, R.; Postolache, O.; and Traat, M. 2005. A
Modular Account of Information Structure in Extensible
Dependency Grammar. In Proceedings of the CICLING
2005 Conference. Mexico City/MX: Springer.
Erk, K.; Kowalski, A.; Pado, S.; and Pinkal, M. 2003. To-
wards a Resource for Lexical Semantics: A Large German
Corpus with Extensive Semantic Annotation. In Proceed-
ings of ACL 2003.
Joshi, A. K. 1987. An Introduction to Tree-Adjoining
Grammars. In Manaster-Ramer, A., ed., Mathematics of
Language. Amsterdam/NL: John Benjamins. 87–115.
Kingsbury, P., and Palmer, M. 2002. From Treebank to
PropBank. In Proceedings of LREC-2002.
Pollard, C., and Sag, I. A. 1994. Head-Driven Phrase
Structure Grammar. Chicago/US: University of Chicago
Press.
Steedman, M. 2000. The Syntactic Process. Cam-
bridge/US: MIT Press.
Trautwein, M. 1995. The complexity of structure sharing in
unification-based Grammars. In Daelemans, W.; Durieux,
G.; and Gillis, S., eds., Computational Linguistics in the
Netherlands 1995, 165–179.
Webber, B.; Joshi, A.; Miltsakaki, E.; Prasad, R.; Dinesh,
N.; Lee, A.; and Forbes, K. 2005. A Short Introduction to
the Penn Discourse TreeBank. Technical report, University
of Pennsylvania.

