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Abstract. Feature projection by non-linear discriminant analysis (NLDA) can
substantially increase classification performance. In automatic speech recogni-
tion (ASR) the projection provided by the pre-squashed outputs from a one
hidden layer multi-layer perceptron (MLP) trained to recognise speech sub-
units (phonemes) has previously been shown to significantly increase ASR per-
formance. An analogous approach cannot be applied directly to speaker recog-
nition because there is no recognised set of "speaker sub-units" to provide a fi-
nite set of MLP target classes, and it for many applications it is not practical to
train an MLP with one output for each target speaker. In this paper we show
that the output from the second hidden layer of an MLP with three hidden lay-
ers, trained to identify a subset of 100 speakers selected at random from the full
set of 630 speakers in Timit, can provide a 77% relative error reduction for
common Gaussian mixture model (GMM) based speaker identification.

1 Introduction

NLDA based data enhancement by MLP has proved to be very effective for improv-
ing performance in automatic speech recognition [6, 13]. This has been achieved by
training an MLP with one output per phoneme to estimate phoneme posterior prob-
abilities, and then using this MLP to project each data frame onto an internal repre-
sentation of the data which the MLP has learnt (see Figure 1). This representation
may be the input to or output from one of its hidden layers or the input to its output
layer, i.e. the “pre-squashed MLP outputs” (see Figure 2).

The success of this simple data-driven approach to data enhancement in ASR has
led to analogous procedures being attempted for speaker recognition. Despite some
positive results with LDA based feature enhancement for speaker recognition [8],
application of the more powerful NLDA based enhancement technique has had lim-
ited success, except when used in combination with other techniques [9].

There are both practical and theoretical reasons for the lack of success of NLDA
based enhancement for speaker recognition. From the practical point of view, if the
MLP has one output for each speaker in the closed speaker set then it would require
retraining every time a new speaker is added, while from the theoretical point of
view, when the number of speakers is large the number of free parameters in the MLP



would become so great that it could not learn to generalise well from the limited
training data available. Furthermore, while phoneme data is well clustered and rela-
tively easy to classify, data for each speaker is clustered around every phoneme centre
and is therefore harder to separate so that the MLP classification error remains high,
in which case the features it generates may reduce, rather than enhance, speaker rec-
ognition performance [9]. Reasoning that

the internal representation which the MLP learns to enhance separation be-
tween a small number of speakers (covering the required range of speaker
types) should also be of some use in separating other speakers,

in this paper we train an MLP to recognise (i.e. estimate posterior probabilities
for) a limited number of speakers selected at random from the population. By
limiting the number of speakers on which the MLP is trained, both the practical
and theoretical problems mentioned above are avoided.

Before training the speaker model for each new speaker to be enrolled into
the GMM or HMM based speaker recognition system, and also before process-
ing the data for a speaker to be recognised, each frame of speech data is now
projected through the first few layers of this MLP onto its discriminative internal
representation (see Fig.1).
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Fig. 1. Data enhancement procedure. A small random set of basis speakers, B, is selected. This
is used to train an MLP with several hidden layers to estimate a-posteriori probabilities (P)
only for speakers in B. All data Sy from speakers in the full closed set of speakers to be recog-
nised is then passed through the first 2 layers of the trained MLP to produce new data features
Sy, with enhanced speaker discrimination.



Other approaches to harness the discriminative power of MLPs for speaker recog-
nition, such as [7], tend to be rather complex compared to the conceptually simple
direct application of MLPs for data enhancement.

In Section 2 we present the baseline GMM based speaker identification model
whose performance we are aiming to improve [10]. In Section 3 we give the proce-
dure used for the design and training of the MLP which we use for data enhancement.
Section 4 describes the data features and procedures used for system testing, and in
Section 5 we present experimental results. These results show that the data enhance-
ment procedure described can give significantly improved speaker recognition per-
formance. This is followed by a discussion and conclusion.

2 Speaker Identification Baseline

In GMM based speaker identification a GMM data pdf p(x|S) (1) is trained for each
speaker for some fixed number M of Gaussians. This models the pdf for a single data
frame, x, taking no account of the time order of the data frames in the full speech
sample, X.
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When the speaker needs to be identified from speech data X, the speaker S; is chosen
as the most probable (2).
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The GMM design, feature data and database used here (32 Gaussians, MFCC fea-
tures, Timit) are taken from [12]. This simple model gives state-of-the-art speaker
recognition performance. With Timit (though not with other databases, such as the
CSLU speaker recognition database) no gain is found in training speaker models by
adaptation from a global model.

As in [12], GMMs were trained by k-means clustering, followed by EM iteration.
This was performed by the Torch machine learning API [3]. We used a variance
threshold factor of 0.01 and minimum Gaussian weight of 0.05 (performance falling
sharply if either was halved or doubled).

3  MLP Design and Training

The four MLP types tested are shown in Figure 2. Types a,b,c have previously been
used successfully for data enhancement in ASR [6,13]. These are all feedforward
MLPs in which each layer is fully connected to the next. The “neurons” in each layer
comprise the usual linear net-input function followed by a non-linear squashing func-



tion, which is the sigmoid function for all layers except the output layer, which uses
the softmax function to ensure that all outputs are positive and sum to 1 [1].

Also using Torch [3], each MLP is trained, by gradient descent, to maximise the
cross entropy objective (i.e. the mutual information between the actual and target
outputs). We trained in batch mode, with a fixed learning rate of 0.01. The data in
each utterance was first normalised to have zero mean and unit variance. The esti-
mated probabilities are often close to 0 or 1 and data with such a peaked distribution
is not well suited as feature data. The enhanced features taken from the trained MLP
of types a and b are therefore usually taken as the net input values in the output layer,
prior to squashing. For type c they are normally taken as the squashed output from the
last hidden layer (these values having less peaked distributions than the outputs from
the output layer), but here we have taken the enhanced features from MLPs ¢ and d
both as the net input to the second hidden layer.

(a) (b) (©) (d)

Fig. 2. Four MLP types (a-d) tested for data enhancement. Each active layer is shown as a (net-
input function / non-linear activation function) sandwich. Only the dark sections of each MLP
were used in data projection. The light parts were used only in training.

In ASR the MLP is trained to output a probability for each phoneme. In the model
used here we select a random subset of the Timit speakers available for training
(which we will refer to as the speaker basis set) and train the MLP to output a prob-
ability for each of these speakers. Although none of the MLPs a-d gave a high basis
speaker classification score, the test results in Section 5 show that the speaker dis-
criminative internal data representation which some of them learn can be very benefi-
cial for GMM based speaker modelling



4  Test Procedure

Our baseline system is taken from the state of the art GMM based speaker identifica-
tion system in [12], using the Timit speech database [5], GMMs with just 32 Gaus-
sians, and 19 MFCC features.

4.1 Baseline Feature Processing

As in [12], all of the Timit signal data was first downsampled to 8 kHz, to simulate
telephone line transmission (without down-sampling, GMMs already achieve above
99.7% correct speaker identification). No further low- or high-pass filters were ap-
plied. Also as in [12], MFCC features, obtained using HTK [14], were used, with
20ms windows and 10ms shift, a pre-emphasis factor of 0.97, a Hamming window
and 20 Mel scaled feature bands. All 20 MFCC coefficients were used except c0. On
this database neither silence removal, cepstral mean subtraction, nor time difference
features increased performance, so these were not used.

4.2 Test Protocol

Timit does not have a standard division into training, development and test sets which
is suitable for work with speaker recognition. For this we first divided the 630 speak-
ers in Timit into disjoint training, development and test speaker sets of 300, 162 and
168 speakers respectively.

Data enhancement MLPs a-d (Figure 2) were trained using a speaker basis set of
between 30 and 100 speakers selected at random from the training set. In each case
the number of units in hidden layer 1, and also in hidden layer 3 in MLP d, was fixed
at 500. The number of units in hidden layer 2 in MLPs ¢ and d was fixed at 20 (a
reasonable size for a feature vector for use with GMMSs). Performance could have
been improved by stopping MLP training when identification error on the develop-
ment test set (using GMMs trained on data preprocessed by the MLP in its current
state) stopped increasing. However, in the tests reported here, each MLP was simply
trained for a fixed number (35) of batch iterations, after which mean squared error on
the training basis stopped significantly decreasing.

Each MLP type was tested just once with each number of basis speakers. For the
best performing MLP (MLP d), test-set tests were made with multiple different
speaker basis subsets obtained by dividing the training data into as many equal parts
as each speaker basis size would permit.

Timit data is divided into 3 sentence types, SX;.s, SI;.; and SA;,. The text inde-
pendent GMM for each speaker to be tested was trained on MLP projected sentences
of type (SXi,, SA.,, SIi,) and tested on MLP projected sentences of type (SX4, SX5s).
Baseline GMMs were trained on MFCC features. The speaker identification proce-
dure was as described in Section 2. Both training and testing used Torch [3].



5. Test Results

Test set speaker identification scores, for MLP type a-d against speaker basis size, are
shown in Table 1 and Figure 3. The baseline test set identification error was 3.87%.
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Fig. 3. Speaker identification error rate for the 168 speakers in the test set, for data enhance-
ment using MLPs a,b,c,d, with varying numbers of basis speakers

Table 1. Test set speaker identification error for MLPs a-d in Fig.2 against speaker basis size

S | s | s | as | o | Bt
MLP a 10.10 7.74 6.25 6.55 -61.5
MLP b 9.52 5.06 5.36 5.65 -30.7
MLP ¢ 6.55 5.36 3.27 3.87 15.5
MLP d 3.27 2.38 1.79 2.38 53.8

The best scoring MLP (MLP d) was then tested many times, for each number of basis
speakers, also on the test set (Table 2). While results for different repetitions for each
speaker basis size varied considerably, in 28 out of 30 tests the speaker identification
error was lower than the baseline error. The optimal size of the speaker basis set used
for training was 100, giving a relative error reduction of up to 77.0 %.



Table 2. MLP d speaker identification test-set % error against speaker basis size. For each
number of basis speakers, test-set tests were repeated, using disjoint speaker basis sets, as many
times as were permitted by the number of available speakers (Baseline error 3.87%)

Repetition \ Basis size 30 50 60 75 100 150
1 3.57 2.68 2.68 2.37 1.49 2.08
2 2.98 2.68 1.79 2.08 0.89 1.79
3 3.87 2.08 2.68 3.57 1.49
4 2.08 2.08 1.79 2.08
5 3.27 1.79 1.79
6 4.76 1.49
7 2.68
8 3.27
9 1.49
10 3.57
Mean % error 3.15 2.13 2.15 2.53 1.29 1.93
Max % rel. err. reduction 61.5 61.5 53.7 46.3 77.0 53.7

6. Discussion

Results reported show up to 2.98% absolute (77.0% relative) performance improve-
ment over the state of the art baseline on the Timit database. This was achieved with
minimal fine-tuning and confirms our working hypothesis that the transformation
learnt by the MLP to separate a random subset of speakers also substantially enhances
separability between any speakers from the same population. An increase in identifi-
cation accuracy has been found before with LDA when one output was trained for
each speaker to be recognised [8]. By contrast, our MLP (a), which performs a linear
separation equivalent to LDA [4], performs on average very badly. However, this
could be because in our case none of the test speakers are used in training, so that the
MLP is required to generalise to new speakers.

It appears that the ability of the features provided by the MLP to enhance speaker
discrimination increases with the number of hidden layers. However, from the appli-
cation viewpoint it would be advantageous to keep the MLP size and data transforma-
tion complexity to a minimum. It would be interesting to know whether the quality of
data enhancement can be increased by dividing a given number of neurons into a
greater number of layers, allowing for a more highly non-linear transformation.

Because of the large search space of possible MLP configurations, our search is
still far from being optimised. Our decision to alternate large with small hidden layers



is based on the intuition that the benefits of non-linear vector space expansion and
data compression should possibly be balanced. Our choice of MLP types a-c for test-
ing was also guided by what has been used successfully before in ASR [6, 13], while
MLP d was used in [9] for speaker recognition data enhancement, although the fea-
tures it produced were of use only in combination with other features. In future we
could try varying layer sizes, and also test the discriminatory power of features from
every compressive hidden layer, not just the second. So far we have seen performance
always increasing with the number of hidden layers used in MLP training (while
always using just three layers for data enhancement). We have yet to find the point
where this benefit stops increasing.

To reduce the amount of experimentation required the number of MLP batch
training iterations was fixed at 35, although it is well known that MLPs tend to over
fit to training data after the learning curve begins to flatten out. In future we should
use cross validation testing to permit training to stop when MLP preprocessing
maximises speaker identification performance on the development set.

Results are only reported here for multiple random selections of each given num-
ber of basis speakers. While the number of speakers selected was always large
enough to guarantee a fairly representative sample from the full speaker population,
the somewhat erratic variation in identification performance resulting from different
random speaker bases of the same size suggests that it would be instructive to see
whether more principled methods could be used for basis speaker set selection.

7. Conclusion

Test results reported show that the negative results which others have found when
trying to use MLP based data enhancement directly for speaker identification [9] can
be overcome. The number of target speakers which the MLP is trained to recognise
must be small enough to avoid the classification problem becoming too difficult to
train, but large enough to provide a feature basis sufficient to separate all speakers
within a large population. The internal representation learnt by this MLP in separating
the small set of basis speakers provides an enhanced feature vector which can im-
prove GMM based speaker recognition performance. This form of data enhancement
can be applied to speaker verification as well as to speaker identification. It can be
used with growing speaker sets, of unlimited size, with no need for further training as
new speakers are added.

Timit data is clean read speech. It needs to be checked whether these kind of
benefits are also achievable on other more challenging databases, such as BANCA [2]
and NIST [11]. It is expected that this will be the case because in ASR this method of
data enhancement was particularly effective when both the training and test data
exhibit a wide and varied range of noise conditions [13].
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