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Abstract: Speaker identification performance in noise is compared with that for 
clean speech. A multi-layer perceptron (MLP) is used to project standard MFCCs 
onto an internal representation which enhances speaker discrimination. The MLP-
enhanced features thus obtained have previously been shown to increase speaker 
discrimination in clean speech, are now applied to speaker identification in noisy 
speech conditions. Three different noise types are used at different signal-to-noise 
ratios. Although a mismatch between the training and test conditions is 
detrimental to speaker identification performance in noise, the effect can easily be 
counteracted by training the speaker models on clean speech data as well as data 
with artificially added noise (multi-condition training). It is shown that MLP-
enhanced features outperform standard MFCCs in matched noisy conditions as 
well as in multi-condition training. For some of the noisy test conditions, the 
Gaussian mixture speaker models trained on multiple noise conditions even 
outperform the matched training-test conditions. 

1. Introduction 

This paper addresses the issue of robust speaker recognition in noise, and in particular 
investigates the possibility of using a multi-layer perceptron (MLP) to enhance discrimination 
between speakers. Three different, realistic types of additive noise were selected and added to 
the 8kHz downsampled TIMIT (TIMIT-8k) clean-speech database [1] at different signal-to-
noise ratios (SNRs). 

State-of-the-art Gaussian mixture models (GMMs) for speaker recognition, like hidden 
Markov models (HMMs) in automatic speech recognition (ASR), can achieve very good 
performance in clean speech, but performance degrades strongly in the presence of noise [2]. 
ASR performance in noise can be increased significantly by using a feature projection 
provided by the pre-squashed outputs from a one hidden layer MLP, pre-trained to output a 
posterior probability for each phoneme [3]. It is not possible to apply an MLP in the same 
way to speaker recognition. The reason is that in speaker recognition there are no fixed target 
classes like phonemes in ASR. For the purpose of speaker recognition, the MLP is trained 
with a representative subset of speakers (speaker basis) as its target classes, comparable to 
phonemes as target classes for ASR. The transformation which the MLP learns for the speaker 
basis has been shown beneficial for any other speakers from the same population for clean 
speech [4]. 

Unlike for ASR, a one-layer MLP applied to speaker recognition in clean speech does not 
lead to an increase in the percentage correct speaker identification. This may be because 
speaker data, being clustered around every phoneme, is less easy to partition than speech data. 
But the separating power of an MLP can be increased by using more hidden layers. In [5,6] an 
MLP with three hidden layers was trained to recognise 31 speakers, and discriminative 



features were taken as the outputs from the central, linear bottleneck hidden layer. The 31 
speakers were selected because they had been recorded over multiple handsets. It was found 
that the features obtained from the MLP provide a performance enhancement, although not 
consistently across all training and test conditions [6] and sometimes only when the feature 
vector was concatenated with the original MFCC features which were used as input to the 
MLP [5]. The good results may be due to a better compensation for the different handsets that 
were used, or to a better separation of the speakers in the acoustic space, even if the speakers 
were not selected with this aim -- or by a combination of the two.  

In tests with TIMIT-8k in [4,7] the automatic selection of the speaker basis to train the MLP 
with was investigated with the specific aim of making an optimal selection of the target 
speakers for training the MLP. It was shown that the performance of the features provided by 
the MLP leads to good speaker identification even for a small number of target speakers used 
train the MLP. Clearly, the good results must be ascribed to the ability of the MLP to enhance 
discrimination between speakers, since no variable noise or channel conditions are present. 
When only a small set of speakers (speaker basis) is used to train the MLP, it is especially 
important that they are selected so as to represent the whole population. It was shown in [4] 
that even a speaker basis of 50 speakers automatically selected on the basis of the GMM 
confusion matrix for 300 training speakers can lead to improved identification of 162 
“unseen” test speakers for clean speech. 

Here the effect of different types of additive noise, and the ability of the previously applied 
MLP to enhance speaker discrimination, in matched training and test conditions is 
investigated and compared with the system performance in clean speech (training and test) 
conditions. But in many practical applications, there is a mismatch between training and test 
conditions. Enrollment may take place in fairly clean speech conditions, e.g. when a new user 
has to go to a registration/certification authority so that his identity can be confirmed on the 
basis of official documents he possesses (passport, identity card, social security card, etc.). In 
this case, there will be a mismatch between the training data obtained during enrollment and 
the test data when the user requests verification in a noisy environment. We not only 
investigate the effect of a mismatch, where the training data is clean and the test data contain 
noise, we also evaluate the effect of simply adding several additive noise types to the training 
data, attempting to deal with the presence of noise in the test data. 

In this paper the effectiveness of data enhancement is tested, using the MLP from [4,7] for 
speaker identification in different kinds of additive noise at different SNRs. Since MLPs have 
been shown to be able to deal well with noisy speech in ASR [3], we expect they may also 
enhance speaker recognition when noise is present. In Section 2 we describe the data used in 
the experiments, the MLP used for feature enhancement and the baseline GMM speaker 
recognition system. Section 3 then describes the results of the experiments for speaker 
recognition in clean speech and noise. This is followed by a discussion of the results in 
Section 4 and conclusions in Section 5. 

2. Method 

2.1. Data 

The TIMIT-8k (clean) speech database is used in all experiments [1]. The reason for choosing 
this database is that we want to focus our investigations on the separation of speakers in the 
acoustic space first, and then add noise to evaluate its effect on MLP feature enhancement. 
Since the standard TIMIT-8k division does not include a development set, we created our own 



division into speaker-disjoint training, development and evaluation data, with 300, 168 and 
162 speakers, respectively. The three sets are selected such that gender and dialect region 
have an equal proportional representation in the three sets. To make the speaker identification 
system text-independent, we used all sentences of type SA1-2, SI1-2 and SX1-2 for training, 
sentences of type SX3 and SI3 for development and sentences of type SX4 and SX5 for 
evaluation. Whereas SA1 and SA2 sentences are always the same for different speakers, SIn 
and SXn sentences can be different ones and the index n only indicates the order as indicated 
by the numbers in the TIMIT database. The strict division optimises text-independence of the 
speaker recognition system. 

2.2. Added noise 

To evaluate the robustness of discriminative features for speaker identification in various 
kinds of noise, (stationary) car as well as (non-stationary) factory-1 noise and babble from the 
NOISEX-92 database [8] were added to the TIMIT-8k database at SNRs of 20, 10 and 0 dB, 
using the ITU software [9] to determine SNRs. These noises are also used in the Aurora 
evaluations for speech recognition in noise. 

2.3. Feature extraction 

The TIMIT speech data was first downsampled from 16 kHz to 8 kHz. At 16 kHz our baseline 
system (as in [10]) obtains 100% correct speaker identification. However, the interest here is 
to work with speech data which is close to telephone quality. Using 20ms frames and a 10ms 
step size, 20 Mel-scaled filterbank log power features were extracted, using a Hamming 
window and a pre-emphasis factor of 0.97. A DCT was then applied to these to obtain MFCC 
features, from which the c0 energy coefficient was dropped. Time difference features were 
not appended, because these did not improve performance with TIMIT-8k. Neither silence 
removal, dynamic features or cepstral mean subtraction were used, since none of these led to 
any performance improvement with TIMIT-8k.  

2.4. MLP feature enhancement 

When an MLP is trained to map speech feature frames onto their phone class probabilities in 
ASR, not only are the MLP output values useful for deciding which class the speech frame 
belongs to, but the outputs from its hidden layers within the MLP are also discriminative for 
the phone classes which were the targets during training. Each unit in a standard MLP has a 
two stage function. The first stage, the net-input function, is a many-to-one linear combination 
of the neuron’s inputs. The second stage is a one-to-one non-linear sigmoid function which 
squashes the net-input to a value between zero and one. From the point of view of using the 
MLP internal feature representation to provide discriminative features, the squashed outputs 
are not very suitable because they tend to be close to zero or one, thereby not complying with 
the GMM assumption that all features have an approximately Gaussian distribution. 

Using Torch [11], discriminative preprocessing is carried out for the different noise conditions 
with the aim of feature enhancement. Each single frame of the standard MFCC features are 
preprocessed by a 5-layer MLP, as in [5,6]. This MLP was found to outperform MLPs 
consisting of fewer layers [4]. Training the MLP with single frames instead of the usual input 
vector of 9 concatenated frames gives the best results for this particular database. The MLP is 
trained, by gradient descent, to maximise the cross entropy objective (i.e. the mutual 
information between the actual and target outputs). We trained in batch mode, with a fixed 



learning rate of 0.01. The data in each utterance was first normalised to have zero mean and 
unit variance. Of the 3 hidden layers, the first and last hidden layer, which are both non-linear, 
have 100 units and the middle, linear hidden layer has 19 (compression or bottleneck layer). 
The features obtained from the compression layer were used as input to a GMM system, as in 
[4]. The assumption behind this is that this simple representation, which consists of vectors of 
the same size as the original MFCC vectors, is an internal representation of the acoustic signal 
which enhances discrimination between the target speakers and is generalisable to the 
speakers in the entire population. We used the net input to the second hidden layer as input to 
GMM modelling. The MLP and its application in GMM modelling are represented in Fig. 1. 
The MLP was trained with a fixed number of iterations (35), after which the error reduction 
on the training and development data in the MLP frame-based recognition was very small. 

 

 
 

Figure 1: Feature enhancement procedure 

Instead of using the 6 training sentences of all speakers to train the MLP, it was shown in [4,7] 
that a smaller selection of speakers, the speaker basis, is sufficient to obtain a good speaker 
discrimination. Here, a speaker basis consisting of 150 speakers was automatically selected 
from the training speakers. The automatic selection is made on the basis of the confusion 
matrix obtained from a GMM experiment. The confusion matrix is produced by classifying 
the MFCC features from the 2 evaluation sentences of the 300 training speakers with the 
speaker models for these speakers trained on the 6 training utterances (cf. next section). The 
log likelihoods in the confusion matrix are converted into likelihoods and then into posterior 
probabilities, by dividing each value by the row sum. The resulting table of posterior 
probabilities is then used to select the speaker basis. 

The speaker basis which we use to train the MLP is selected using the speaker posterior 
probabilities Pji = P(Sj|X i) for a set of development test data. These probabilities are obtained 
from the test data log likelihoods by dividing the log likelihood for each speaker by their sum 
over all speakers. 

As a distance measure between speaker pdfs we use the symmetric Kullback-Leibler distance 
KL(Sj, Sk) [12]. This cannot be evaluated in closed form when pdfs p(X|Sj) are modelled by 
GMMs, but in [7] it is shown that KL(Sj, Sk) is the expected value of K(Sj, Sk, X), where 
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KL(Sj, Sk) can therefore be estimated by averaging K(Sj, Sk, X) over the development test 
data. 
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The resulting speaker-distance matrix can be used in various ways to select a subset of 
speakers for MLP training. The method which gave the best results for clean data in [4,7] was 
to choose speakers in order of decreasing average distance from every other speaker. 

2.5. GMM modelling 

The MFCCs or, alternatively, the enhanced features obtained from the compression layer of 
the MLP (as explained in the previous section) are used as input to GMM modelling of the 
diagonal covariances using 32 Gaussians, as in [10,13]. The baseline model trained with 
MFCCs of the 6 training utterances gives state-of-the-art speaker recognition performance. 
With TIMIT-8k (though not with other databases, such as the CSLU speaker recognition 
database) no gain is found in training speaker models by adaptation from a global model for 
all 300 training speakers, so that each speaker model was trained from scratch with data for 
that speaker only. 
As in [13], GMMs are trained by k-means clustering, followed by EM iteration. This is 
performed by the Torch machine learning API [11], using a variance threshold factor of 0.01 
and minimum Gaussian weight of 0.05 (performance falling sharply if either was halved or 
doubled), determined on the basis of the development sentences of the development speakers. 
Test results are obtained for 162 test speakers (for two test sentences per speaker, cf. section 
2.1). Speaker identification for utterance feature data X is performed by selecting the speaker 
Sj with the largest posterior probability, P(Sj|X) (which corresponds here to the largest data 
likelihood p(X| Sj), as all speaker priors P(Sj) ar equal). 

3. Results 

In this section, the speaker identification results are compared for the different noises and at 
different SNRs. The MLP-enhanced features are compared with the baseline system, in which 
the MFCCs are not preprocessed by the MLP and used as input to GMM directly. Table 1 
shows the results for clean data, and for car, factory and babble noise at SNRs of 20, 10 and 
0 dB. The conditions presented in Table 1 are all “ matched”  conditions, in which the test data 
were used with a system trained on data of the same noise type and at the same SNR.  

car factory babble 

 
clean 

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean 

MFCC baseline 3.40 11.42 18.21 38.89 18.83 43.83 87.35 17.90 36.11 87.65 36.36 

MLP-enhanced 1.85 6.48 12.96 26.85 15.74 40.43 82.72 10.80 25.00 81.17 30.40 

Table 1: Speaker identification error for training on matched noise type and level 

The results show a strong increase in speaker recognition error with decreasing SNR. 
Although still well above chance level, speaker identification is particularly poor for the non-
stationary noise types (babble and factory noise) at a SNR of 0 dB. Notice that no cepstral 
mean subtraction (CMS) was performed, even for the noisy data, which may result in better 



speaker identification performance. In the clean speech condition CMS leads to poorer 
performance, probably because subtraction of the spectral mean across an utterance filters out 
part of the speaker characteristics. As expected, the best results are found for clean speech. 

Preprocessing of the MFCCs by an MLP to enhance speaker discrimination always reduces 
the speaker identification error. The absolute reduction is greatest for the stationary car noise, 
particularly at the lowest SNR. The positive effect, though present in all conditions, is greatly 
reduced for non-stationary noise types, with the exception of babble at an SNR of 10 dB. 

In many applications, the user may want to be recognised in widely varying conditions, but 
the condition in which he must be recognised is not known beforehand. Two scenarios are 
possible. In the first scenario, the speaker enrolled in the system in a quiet environment, so 
that the speaker model (and the MLP) is trained on clean speech. But the actual conditions in 
which the system is subsequently used may vary from one occasion to the next. In order to 
evaluate the performance of our system under these mismatched conditions, the test data from 
all the noise conditions in Table 1 were scored with the GMM speaker models (and MLP) 
trained with clean speech only. (The data for clean speech are the same as in Table 1 and does 
not represent a mismatch. It is only included in Table 2, because it is used to compute the 
mean percentage error for correct speaker identification across all possible test conditions in 
the right-hand column.) 

car factory babble 
 clean 

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean 

MFCC baseline 3.40 51.23 72.22 93.52 83.95 98.15 99.07 74.38 88.89 97.53 76.23 

MLP-enhanced 1.85 79.63 88.27 96.60 95.37 98.46 99.38 91.05 94.44 97.84 84.29 

Table 2: Speaker identification error for training on clean speech and testing in various conditions 

As the results in Table 2 show, the mismatch between the noisy test data and the clean 
training data causes a severe deterioration of the performance of the speaker recognition 
system. For some of the conditions, recognition is only just above chance level 
(p=100/162=0.62%, i.e. error=99.38%). The effect, which is present for the MFCC features 
(comparison of first data rows in Tables 1 and 2), is even greater after MLP enhancement, 
with only chance level speaker identification for factory noise at 0 dB SNR. 

In the case of (known) additive noise, the noises can easily be used to create “virtual”  data 
containing this noise before the speaker model is trained. By catering for a variety of testing 
conditions in the training phase, the system is expected to better cope with the variability in 
real test conditions. As the results in Table 3 show, the performance in all noisy conditions is 
substantially better than when the GMM speaker models (and the MLP) are trained on clean 
speech only.  

car factory babble 
 clean 

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean 

MFCC baseline 14.20 12.96 19.75 56.48 19.75 36.11 85.19 17.90 25.62 74.69 36.27 

MLP-enhanced 14.51 12.35 11.11 33.02 12.65 33.02 83.02 14.51 18.52 70.37 30.31 

Table 3: Speaker identification error for training across all noise conditions 



In some cases, the speaker identification error is even lower than in the matched noise 
condition in Table 1, e.g. for factory noise at 10 dB SNR and for babble at 10 and 0 dB SNR. 
In all conditions except for clean speech is the speaker identification error lower when MLP-
enhanced features are used compared to the baseline system using MFCCs. 

4. Discussion 

In comparison to the stationary car noise, the speaker identification error is very high for non-
stationary noises (factory noise and babble) with low SNRs.  

As expected, a mismatch between (clean) training and (noisy) test data always leads to a 
strong deterioriation in performance. This deterioration is even greater when an MLP-
enhancement based on clean speech is performed on the MFCC features, since it is not 
appropriate for the noisy acoustic space. 

Both for matched training and test conditions and for GMM speaker models trained across 
noise conditions (i.e. using both clean speech and the same signals with added noise to train 
the speaker models), the MLP-enhanced features always outperform standard MFCC features.  

The GMM speaker models trained across noise conditions even outperform GMMs trained on 
the same noise type as used for testing (matched condition). This is particularly the case for 
test signals with added factory noise at 10 dB SNR as well as for added babble at 10 and 0 dB 
SNR. The differences are not just caused by the different speaker basis selections for matched 
versus (Table 1) versus multi-condition models (Table 3), because the effect is found both for 
MLP-enhanced and for MFCC features. The effect is most likely due to an under-
representation of the intra-speaker variance in the limited available training data in the 
matched tests, which is compensated for by the (artificial) addition of noisy data in the multi-
condition tests. It is well-known in speaker recognition that the amount and above all the 
variety of training data from each speaker is critical. But the results do not show a systematic 
pattern across noise type and SNR, so that further investigations are needed to fully 
understand the observed effect. 

No CMS was performed in any of the conditions. It is therefore necessary to carry out the 
experiments with CMS and compare the results with those presented here. Particularly in 
stationary noise, this should be expected to enhance speaker identification performance. 

Of course, the MLP preprocessing described here must also be used for other, more realistic 
data, e.g. NIST. This was done by [5,6], but there the speaker basis was selected to contain 
speakers who used all different handset types, so that it is not clear whether the results are due 
to the MLP performing speaker discrimination or compensation for different handset types. 
The results shown here lead us to believe that the MLP can discriminate between speakers. 
The MLP feature enhancement may therefore also be helpful for databases where there is no 
subset of speakers who used all different handset types, but this remains to be verified. 

5. Conclusions 

In this paper, text-independent speaker identification was performed in clean and noisy 
conditions. The performance of GMM speaker modelling using standard MFCC features was 
compared with MLP-enhanced features, where the MLP was trained on a subset of the 
speakers which was not used in testing (hence the feature enhancement is speaker-
independent). MLP-enhanced features strongly improve speaker identification performance, 



except when the noise condition of the test data is not represented in the training data. It was 
shown that, as in ASR, speaker identification in matched and multi-condition training is 
considerably better than when there is a mismatch between training and test data, both with 
MFCC and MLP-enhanced features. In some cases, GMM speaker models trained across 
noise conditions, either with MFCCs or with MLP-enhanced features, perform better than 
speaker models trained in matched training and test conditions. An explanation is offered in 
terms of the amount and variability in the training data, but this cannot fully explain the 
observed results. 
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