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ABSTRACT

This paper describes initial results of
a comparison of several published
models for the inner hair cell/auditory—
nerve synapse, for the task of speech
segmentation. ln each case, the hair
cell/synapse model is combined with a
model for basilar membrane filtering,
and a segmentation algorithm is applied
to the neural firing rate in order to
emphasize the acoustic boundaries in
the speech. The models are tested using
utterances from the TlMlT acoustic—
phonetic corpus. Performance of each
model is assessed by comparing the
segmentation it produces with the
phonetic transcription provided with the
TIMIT database.

1. INTRODUCTION
Segmentation is an important step in

the mapping of an acoustic speech
signal to a lexicon of word or sub-word
units. This is useful in a number of
applications. including computer
recognition of continuous speech and
transcription of speech corpora.

Several researchers have combined
the operations of phonetic segmentation
and classification into one step. For
example, [1] describes a hidden Markov
model—based system which classifies a
set of 48 phones from the TlMlT
database. This system uses a priori
knowledge of the phonetic or
orthographic content of the utterance to
provide phone boundaries. A similar
system for phone classification is
described in [2].

Another technique which has been
used for segmentation is the extraction
ofa ‘boundary function’ from a spectral
or parametric representation of the
utterance. This function encapsulates
information about the acoustic
boundaries, and can be used either to
a55ist in classification—based
segmentation by providing additional
temporal information, or as a starting
pomt for a separate stage of
classification. For example. in [l], a

‘Spectral Variation Function‘ was
extracted from a mel-cepstral
representation of the speech to provide
additional information about acoustic
transitions. Alternatively, in [3], an
‘association strength’ provided initial
potential boundaries, which were
subsequently used to generate a multi-
level segmentation (a ‘dendrogram'),
from which final phonetic boundaries
were derived using a search procedure.

The boundary function used in [3]
was derived from a spectral
representation provided by an auditory
model [4]. This was found to give
better performance, in terms of the least
number of boundary insertion and
deletion errors, than other
representations including discrete
Fourier transform and linear predictive
coding. One of the reasons for this
better performance is the fact that the
auditory model used ([5]) included a
model for the inner hair cell/auditory—
nerve synapse, which exhibits
adaptation and recovery, i.e. it
enhances sudden onsets and offsets.

While the work described in [4]
compared an auditory representation to
non-auditory based representations.
little work has been carried out to assess
the segmentation performance of some
other published models for neural
adaptation. This issue is addressed in
this paper where several adaptation
models are combined with a
computational model for basilar
membrane (BM) mechanics, and used to

process continuous speech utterances
from the TlMlT database. The
representation produced by each model
is further processed to produce a time
function which contains markeis
corresponding to potential acoustic
boundaries. Performance evaluation IS
carried out by comparing the auditory‘
derived boundary markers with those
provided with the TlMlT database.
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2. THE AUDITORY MODELS

2.1 BM Model

The model for BM mechanics used

in this study is based on the

transmission line model described in [6]

and [7], and consists of a cascade of

128 digital filters covering the

frequency range from 70 H; to 3.4

kHz. The sampling frequency is 8 kHz.

The output of each filter in the cascade,

corresponding to BM displacement, is

used as input to each lllC/synapse

model.

2.2 Adaptation Models

The adaptation models chosen for

this study were:

- the lHC/synapse model of Seneff

- the Schroeder—Hall reservoir model,

as implemented by Cohen [9];
- the adaptation model of Meddis [8]:

— an alternative model, based on

Meddis‘s model (Jones at al. [7]).

Since an auditory model could be a

useful component of a practical
continuous speech recognition system,
special emphasis was placed on the

adaptation models‘ relative

computational complexity. To this end,
it was decided to modify the adaptation
models to operate at the same sampling

frequency as the BM model. 3 kHz.
Both Cohen‘s model and the alternative

model of [7] have particularly Simple
structures which could be a useful

advantage from the point of View of
computational load.

As the models operated at 8 kHz, the

Speech utterances from the TlMlT
database, which have a sampling

frecluency of 16 kHz were deCImated by

2. The downsampled speech was
processed by each composne
BM/adaptation model, with a single
geural firing rate vector produced every

ms.

3. SEGMENTATION ALGORITHM

The segmentation algorithmvapplied

to the sequence of neural firing rate

vectors is based on that describednn

[4L and operates on the assumption
that speech segments can be
distinguished from each other by

measuring the differences between their
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spectral representations. The algorithm
starts at the beginning of the sequence
of spectral vectors and ‘associates‘ each
frame with either its past or its future,
based on the cumulative distance
between that frame and its immediate
backward and forward neighbours, over
a certain observation range. This
observation range was set equal to 50
ms on either side of the current frame

[4]. Each frame, n, accumulates

forward and backward distances D/(t)

and D,,(n,-k), between itself and

neighbouring frames k, where D,(n,k) is

defined as follows:

It

Df(n,k) = Zd(n,j)
1:0

where d(n.j) denotes the Euclidean

distance between frame It and frame

n+j. D,,(n, -k) is defined in a Similar

manner. _

Forward and backward distance

measures are accumulated in parallel

until either the difference between them

exceeds a certain minimum distance,

DM, or the observation range is

exceeded. An ‘assouation strength,

which is the maximum difference

between 0/ and 0,, over the assoc1ation

range, is assigned to each frame. The

association strength contour Is smoothed

using a Gaussian window With a

variance of5 ms [4]: . ,

An example of the assomation

strength contour for a portion of the

TlMlT utterance “she had your dark

suit in greasy wash water all year» IS

shown in Fig. 1(a). This figure gives

the contour derived from ‘Senetfs

adaptation model (for clarity, the

contours are displayed only as far as the

word “suit"). The posnive—tofnegative

crossings of the contours indicate the

location of potential acoustic

boundaries; this information _is

converted into a series ofipulses. With

the height and Width of the pulse;

corresponding to the‘ strength an

abruptness of the acoustic change (Fig.

l(b)). A threshold is applied to te

pulse sequence, such that pulses below

this threshold are set equal to zero.

Thus, small pulses which may

correspond to false acoustic boundaries

are eliminated [4].
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The final stage of the segmentation,
process is the conversion of the pulse
sequences of Fig. 1(b) into binary
sequences where a ‘1’ indicates the
presence of an acoustic boundary at a
particular frame, and a ‘0’ indicates no
boundary. This allows a straightforward
comparison between the boundaries
produced by the adaptation models and
those obtained from the TlMlT
transcriptions. Figure 2 displays such
binary sequences for all four adaptation
models, where the boundaries provided
by the TlMlT transcription are indicated
by the pulse train in part (e) of the

figure.

4. PERFORMANCE EVALUATION

Initial segmentation parameter choice
and performance evaluation was carried
out using a subset of the TlMlT
database consisting of 40 sentences,
with over 1400 boundaries. The binary
pulse train produced by each
BM/adaptation model combination was
compared with the pulse train extracted
from the TIMIT transcription and the
number of alignments, deletions and
insertions was noted. Clearly, the
performance of the system as a whole
depends as much on the choice of
parameters for the segmentation
algorithm as it does on the
representation produced by the auditory
front—end. Since some parameters affect
the number of insertions and deletions
in different ways, an ‘equal error‘
criterion was used for choosing certain
parameters, i.e. the value which gave
equal numbers of insertions and
deletions was chosen. The numbers of
alignments and errors were then used as
a measure of relative performance.

Table 1 summarises the relative
performance of the models examined,
where a tolerance of 25 ms was used for
boundary alignment. While the equal
error criterion is useful in the current
study, the absolute performance of any
given model could be improved upon,
by considering additional strategies for
reducing the number of insertions or
deletions, e.g. in a further classification
stage it might be possible to recover
some deleted boundaries [4], therefore
at the segmentation stage a smaller
number of insertions can be achieved at
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the expense of a larger number of
deletions.

Table 1. Summary of segmentation
performance of all four adaptation
models (total errors = sum of insertions
and deletions).

Model Total Total %

alignments errors Correct

Seneff 1045 842 72.4

Cohen 1112 667 77.1

Meddis 970 962 67.2

Jones et a1. 1086 699 75.3

5. DISCUSSION AND

CONCLUSIONS

This paper has presented initial
results from a comparison between
various neural adaptation models,
applied to the task of determining
acoustic boundaries in continuous
speech. The segmentation method used
does not make use of any a priori
knowledge of the phonetic sequence, it
relies solely on the information
extracted from the speech by the
auditory front—end processor. From
experiments with a subset of sentences
from the TIMIT database, it would
appear that Cohen’s model provides
slightly better performance than the
model of [7], with the other two models
a few percent behind. It is interesting to
note that the two models which present
the lightest computational load give the
best performance. Future work will
involve validation of these results ustng
a larger database, as well more detailed
analysis of the nature of the

segmentation errors which occur.
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