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Abstract

In this paper, we show how the vari‘

ational method can be used in or—

der to compute the formants and the

sensitivity functions related to a vo-

cal tract when the velum is open.

The stationary modes of vibration ob-

tain by this method (whithout the

need to compute the transfer func-
tion) lead to a physical description of

anti—formants.

1 Introduction

The variational formulation of the
acoustico-articulatory link has al-
ready been successfully applied to
a single vocal tract(disregarding the
nasal tract)[1]. It provides us with
a quick numerical algorithm allowing
us to compute stationary vibration
frequencies(the foriuants) for a given
vocal tract whose geometry is repre-
sented by an area function.

This method may be extended to
the case where the nasal tract is cori-
nected by imposing both flow conser.
vation and pressure continuity at the
velum.

2 Acoustic model

2.1 The Sondhi Model

We have adopted the acoustic mod—

eling of the vocal tract proposed by

Sondhi[‘2]. This model is character-
ized by a parietal admittance propor—

tional to the area function, a constant

shape factor, and a sound propagation

in quasi planar wave fronts.
Let us consider the velocity poten-

tial (Nat) where I is the distance
from the glottis and t is the time.

The volume velocity 1/ and the aver-

age pressure p are given by:

”(Iii):_q),ri P(Ivt):/’¢.t (ll

llenceforth,we will note either (Try or

9.: for the partial derivative f; of

function g. For a normal mode at fre-

quency f = to/27r7 the velocity poten.

tial may be written:

(ML!) 2 \l/(LI‘)€-M(‘OS(w‘t), (2)

where W is the spatially distributed

mode amplitude and 0' represents the

damping of the ll(‘ld caused by wall

elasticity. In such a case. it can eas-

ily be demonstrated that \l!(.r) verifies
the following \‘Vcbster equation:

(MW?) 38,(A(I)8,\P(1))+ —(7—P—A(IWII)=0 ( l
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where top is the resonance frequency
of walls (~ 200 x 27rs"), and c,
the sound velocity (c = 3‘1000cm/s).
For homogenous boundary condi-
lions7 this equation has solutions only
for discrete values of to.

2.2 Tract ends conditions

In this paper, we will consider the case
where the glottis is closed and assume
an infinite glottis impedance. Hence,
we have:

6911(0) = 0. (4)

Considering that the lip radiation can
be approached by that of a vibrat—
ing piston set in a spherical baffle(the
head) [1] leads us to :

Ann/AL) + qt/A(L)\IJ(L) = 0 (5)

with L being the total tract length(i.e
the distance between the glottis and
the lips), and q a factor depending on
the degree of aperture of the lips. As a.
first empirical estimation, we propose:

q=a A(L)+b (6)

with a = —3.5cm“ and b = 35.0

2.3 Three tracts
together

linked

In this case, we will need three ve~
loc1ty potential functions in order to
describe the wave behavior in a three
tracts system. Let \Ilphfiltb and ‘11,.
be those functions for respectively
pharyngal, bucal and nasal tracts.

For the sake of simplicity we change
the variable 1‘ into z such as:

20 = Tor/La (7)
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with (1 taken as ph, 12 or n. We have
thus, for each tube the related \‘Veb‘
ster equation (1) which is now writ—
ten:

2
azlAunzWa)+((w2—w;'a):%)AQWO:0 (8)

We emphasize in eq (8) that w doesn’t
take an symbol a (ph, 12 or n),it
represents the angular resonance fre-
quency of the whole three tubes sys~
tern.These are coupled together by
imposing both pressure continuity:

\Ilph(1)= \llb(0) : \Iln(0) (9)

and flow conservation:

fizzj+’a.wpi(n — fififlawbw)
431962140) = 0. (10)

The glottis condition (4) is

8.41pm) 2 0, (11)

and the lip and nostril conditions (5)
become (by 7):

AbibiiazwbiumLit/Abibwo (12-1)
Ab(Ln)axVI'v-(Ln)+qLny/An(Ln)=0 (12.2)

3 Variational method
Let

I=f,;‘ aawns’eiidzmomma» (13)

The extremals of I (here, minimal) for
which 61 = 0 V611 << \I/ verify the
systein:[3]

8£ :1 BC
56 ' me = (”-1)

BC 06'
WIzl + 0701—) = 0 (14.2)

‘95 ac = o (14.3)
077'“ ‘ ail/(20)

We will new build three
functionals(1m a = ph,b,n) whose
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extremals are solutions of Webster

equations (8) with respect to the

junction conditions (9) and (10) and
the boundaries conditions (11) and
(12).

Let

septum):fiAoomaNatzW

—§§(w’-w;,a)wae)’i (15)

oz taken as ph, 17 or n and

app—2111,).(1)[5{136,Wb(0)+%928fln(0)l

(16)
ab=2wb(o)[fi{flla.wph(1)—“—2316,m

Ph "

+wb(0)[2w.h(1)—m10)i+«(Minimum

(Gn = G), transposing b and n) be the

C and G functions for the three func—

tionals. The extremals of those func—

tionals 10 are solutions of the follow-

ing variational system:

(SIG/(NI), = 0, (a = ph,b,n) (l7)

and thus verify the system (14).

Now,it is easy to show that the
equation (14.l)-—)(14.3) applied to

(15) & (16) gives us the wanted Web-
ster equations (8), pressure continu-
ity (9), flow conservation (10) and the
glottis, lip and nostril conditions (11)
and (12).

4 Resonance mode

computation

The extension of the Rayleigh-Ritz[4]
method in the case where three func-
tionals have to be minimized together
will lead to a fast and precise algo-
rithm allowing us to compute reso-
nance modes frequencies and the as—
sociated wave functions .

Let n; be a set of n linearly indepen-
dent functions(we have chosen here
Tchebychev polynoms). Suppose that
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three functions \Ilph,\llb and ‘11,. ver~
ify (17) and so are solutions of equa-
tions (8)—i(12).These functions may
be written as an approximation such
as

‘1’phl = $.21 0117(2);

‘I’b(2) = 32"“ CNN—AZ) (18)

@713) = 23?:a Gilli—271(2)

where,here for the sake of simplicity,
we have taken the same number of ap-

proximation functions for each of the

three tubes. . .
Injecting (18) into (16) we can write

Ia = [0(0), ...,Ca,,,m,...,q,.,n;, ...,1,'") (19)

for a as ph,b or 11.
Looking for the extremals of these

three functionals,we will impose:

)5” ’~ :0 Vi e (1,...,n)
‘ =0 Vi€(n+1,...,2n) (20)
I

. =0 Vi E (2n+1,...,3n)
i

Q) 0
E

8
L2

Q: 0

after having replaced the We, by their

developments (18).
Thus we obtain three systems of n

equations and 3n unknowns coupled

together thanks to the junction terms

and giving one system of 3n equations

and 3n unknowns of the form

3n

2w.) — sipCj = 0 (21)
i=1

fori E (1, ..,3n) which can be written
in matrix form.

Multiplying on the left by WlMe

obtain

(W‘lv — (.221)? = 6 (22)

11 being the unitary matrix R31» R3".

(22) has non trivial solutions if and

only if a)? is eigen value of the operator
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W"‘V. So the firsts (w1,...,w,)eigen—
values(associated to the formants)
and corresponding eigen vectors (the

a, giving the solutions (18)) can be
computed easily by classical numeri-
cal methods.

Given the stationarity of the func«
tional for the 1‘“ mode \lla'l, the sensi—
tivity functions can be obtained from
the conditions:

[01((41 +6w1,/1(1‘)+ 6A(I), WoJaBI‘I/aJ)
: Ia(wlvA(I)’ lymlyarqlml) (23)

where 5A(I)is an area function per-
turbation localised at I. These condi-
tions are correct at the first order of
perturbations

4.1 Results

We will briefly discuss our results us-
ing a simple geometrical configura-
tion. Considering a system of three
uniform tracts, such as:
LP), = Lb 2 8.50m, Ln = 96m,
Aph(0) = 0,Aph(r) 2 Born2 and
145(1) = An(1') = 25c fig 1 shows
two stationary modes extracted from
the set obtained.

a) f = 1482113

b)f=1939 Hz (pl, «

M
0 k —-~ \

\J/Wn ‘1

0 5 10 15 1 (cm)
fig lzwave function amplitude for

two stationary modes

For a given resonance frequency,
the pressure as function of time must
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be seen as the the projection of wave
function ‘I/ rotating at angular fre-
quency w = 27rf around the 1‘ axis.
The first ( fig La) shows a passing res-
onance,the acoustic impulsion(A81\I/)
outgoing from pharynx being shared
between the nasal and bucal tracts.

In fig l.b , both potential(+\ll2) and
kinetic(+8r\llz) energy are low at the
end of the pharynx. No significant
signal will cross the junction if the
source is at the glottis. we think
that such a normal mode will lead
to an anti-formant and we intend to
test our predictions on an experimen-
tal device. We can already say that,
for some realistic geometrical config-
urations, we observe both a lowering
of the first formant F1 and the oc—
curance of a nasal formant between
F1 and F2 which are characteristics
of nasalised vowels described in the
literature[5].
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