SPEECH UNDERSTANDING DRIVEN BY CONCEPTUAL PROCESSING

Masao YOKOTA, Mariko ODA ${ }^{\dagger}$ and Seio ODA
Fukuoka Institute of Technology, Fukuoka, Japan
\dagger K'urume Institute of Technology, Kurume, Japan

Abstract

\section*{ABSTRACT}

The authors have been constructing a speech understanding system IMAGES-S that can infer the conceptual information which the speaker would transmit. The processing for this purpose belongs no longer to wave signal processing but to natural langnage understanding, especially to conceptual processing with background knowledge such as commonsense, world-specific knowledge, etc. And moreover, understanding incompletely perceived speech is nearly equal to estimating the con-

 cepts of the words omitted in texts.
MODEL OF SPEECH UNDERSTANDING

Assume that one person " M_{1} " transmits his conceptual information " c " to the other person " M_{2} " acoustically in a language. The acoustic expression " r " of " e " which M_{1} selects among the various paraphrases that he/she could generate is probably perceived by M_{2} as a set of acoustic expressions " R_{2} " because of M_{1} 's misstating or M_{2} 's mishearing, or the noises during its propagation. Futhermore, each element of R_{2} is interpreted as a set of conceptual information which in turn is merged into the total set " C_{2} ", that is , the interpretation of R_{2}. These can be formalized as (1)-(3) below:
$r \in \Phi_{1}(c)=R_{1}=\left\{r_{11}, \ldots ., r_{11}\right\}$

$$
\begin{gather*}
R_{2}=\triangle_{12}(r)=\left\{r_{21}, \ldots ., r_{2 m}\right\} \\
C_{2}=U_{i=1} \Phi_{2}^{-1}\left(r_{2 i}\right)=\left\{c_{21}, \ldots ., c_{2 n}\right\} \tag{3}
\end{gather*}
$$

where
$\Phi_{i}: M_{i}$'s acoustic verbalization process of conceptual information,
$\Phi_{i}^{-1}: M I_{i}$'s interpretation process of acoustic expression,
and
$\Delta_{i j}$: the deformation process of acoustic expression in the enviromment of M_{i} and $M I_{j}$.

The ideal specch recognition in M_{2} will easily find " r " in R_{2} because even the case $R_{2}=\{r\}$ may happen. However, this is very difficult or almost impossible when the environment of the speaker M_{1} and the hearer M_{2} is not perfect, where "perfect" means "free from either mistakes or noises". Therefore, actually, M_{2} is to select some " c " among C_{2} as would be " c " using background knowledge.

IMAGES-S simulates this process instead of the hearer M_{2}. That is, if the conceptual content " c " resulting from understanding is reasonable, or not inconsistent with background knowledge, the system deems it as what the speaker would nean, and moreover, " r ", one of its verbalization " $\Phi_{2}\left(c^{\prime}\right)$ ", as what he would speak, where of course " r " is not always equal to " r ".

For an extreme example, IMAGES-S may transform such a dialogue between two persons as \{"Where?"" Bath."\} into a more sophisticated one \{"Where are you going ?" "I'm going to the public bath." $\}$.
IMAGES-S consits of three modules: 1) Speech recognition (SRM), 2) Language understauding (LUM), and 3) Task realization (TRM). SRM transforms acoustic signal waves into wordlattices. LUM analyzes them syntactically and semantically and generates meaning representations, employing background knowledge. Finally, TRM realizes the tasks required by the speaker. Here is assumed that the task is limited to dictation.

CONCEPTUAL PROCESSING

LLM, utilizing the background knowledge K_{B}, estimates the concepts of the words unrecognized in SRM and such au inference process can be formalized as (4).

$$
\begin{equation*}
I\left(P\left[r_{1}, \ldots, x_{n}\right] \wedge K_{B} \vdash I\left(P\left[p_{1}, \ldots, p_{n}\right]\right)\right. \tag{4}
\end{equation*}
$$

where
$P[]:$. incompletely recognized sperch,
x_{i} : word-sequence not recognized or recognized with a very low likelihood,
and
p_{i} : estimated word-sequence.
The inference process succeeds when $I(P[]$.$) is unified with background$ kuowledge K_{B}, which superficially, results in substitutions θ_{s} in (5).

$$
\begin{equation*}
I(p) \wedge K_{B}^{-} \vdash I(P \theta), \theta=\left\{x_{1} / p_{1}, \ldots, r_{n} / p_{n}\right\} \tag{5}
\end{equation*}
$$

The total process is fommalized as (G)-(8) below:

$$
\begin{equation*}
h\left(P, K_{B}\right)=H \tag{6}
\end{equation*}
$$

$$
\begin{gather*}
\left.H=\left\{\begin{array}{l}
\\
\\
\text { restored word-sequence }\} \\
= \\
\left\{H_{1}, \ldots, H_{m}\right\} \\
e(H)=H^{\prime}
\end{array}\right\} \theta \right\rvert\, \text { hypothrtical }
\end{gather*}
$$

where

h : hypothsis generating function,
H : a set of hypotheses,
e : adequacy evaluating function,
and
H^{\prime} : ordered H according to a certain preference.

At present, the prefernce order is determined according to the hypothesis as follows : "What is most easily understandable is the best understanding result.". This determination is realized by calculating the complexity of understanding. The representation of knowledge or speech contents in our system is based on the first-order predicate logic and the complexity is deemed as the total cost (C_{1}) of translation from a surface structure(i.e. sentence) into a conceptual structure(i.e. logical formula). The authors have found C_{1} given nearly by the equation (9) which approximates the total times of variable unification, predicate insertion, etc. occurring through the translation process.

$$
\begin{equation*}
C_{1}=2 N_{0}+W+E \tag{9}
\end{equation*}
$$

where

N_{0} : the number of the words recogninzed in SRM,
W : the total number of the words inferred in LUM,
and
E : the number of the words representing objects or events inferred in LUM.

The understanding result with the least C_{t} is determined as the best．
Assume that EX－ 7 below is one of the word－sequences generated from the word－lattice put out by SRM．LUM，us－ ing the background knowledge in Table 1 ，understands it and TRM generates such sentences（S1．1）－（S2．5）．The ur－ derlined parts are the inferred and in－ serted words．
The preference order among the sen－ tences is shown by P in Table 2，which implies that $S 1.1$ is the best and that S2．3 and S2．4 are the worst．

EX－7 父親 $\cdot X_{1} \cdot$ 自動車 $\cdot \mathrm{X}_{2} \cdot$ 学校 $\cdot \mathrm{I}_{3}$ •通勤。
 $\left(=\quad\right.$ Father $\cdot X_{1} \cdot$ antomobile $\cdot X_{2}$.

 school X_{3} commute）
S1．1 父親が自動車学校に通勤．

（ $=$ Father commutes to the auto－ mobile school．）

S1．2 父親 が経営する 自動車学校 に誰かが通勤。

（＝Someone commutes to the au－ tomobile school owned by Father．）

S2．1父親が自動車で学校に通勤．

（＝Father commutes to the school by automobile．）

S2．2 父親の所有する自動車で学校 に誰かが通勤。

（＝Someone commutes to the school by the automobile owned by Father．）

S2．3 父親の経営する自動車につい て教育する学校に誰かが通勤。
（ $=$ Someone commutes to the school for automobile education which is owned by Father．）

S2．4 父親の所有する自動車のある学校に誰かが通勤。

（ $=$ Someone commutes to the school where the automobile owned by Father is．）

S2．5 父親が自動車について教育する

学校に通勤（ $=$ Father conmmetes to the school for automobile education．）

CONCLUSION

The modules LUM and TRM are al－ most equal to IMAGES－II［ 1,2 ］，that is， aluost completed．The simulation of these modules has proved the validity of IMAGES－S．In near future，C_{1} will be improved in order to reflect coherence and cohesion in context．The prohlem left unsolved is the comection of SRA and LUM．The module SRM will be realized by employing Hidden Markov Models（HMMs）

References

［1］Yokota，M．et al（1984），Language－ picture question－answering through common semantic representation and its application to the world of weather report，in（Bolc．L． ed．）Natural Language Communi－ cation．．．，Springer－Verlag
［2］Yokota，M．et al（1991），＂On Natu－ ral language underst anding system， IMAGES－II＂，IEICE Japan
［3］Flanagan，J．L．（1994），Technologies for multimedia commumications， Proc．of IEEE，82－4

Table 1：A part of backgromnd Kinowledge（word－meanings）＊

word	word－meaning $=$［ concept ：mifying operations ：］
通勤	通勤 $(x) \Leftrightarrow L\left(:, y_{0}, y_{0}, y_{1}, A_{p}\right) \wedge \ldots \wedge$ 通勤 $(. x) \wedge$ 人間 $\left(y_{0}\right) \wedge$ 施設 $\left(y_{1}\right) \wedge$
学校	学校 $(x) \Leftrightarrow$ 施設 (x) 入教育 ${ }^{++}(y, x, \ldots) \wedge \ldots$ ；
父親	父親 $(x) \Leftrightarrow$ 男 $(x) \wedge$ 親 $(r): ~: ~$
自動車	自動車 $(x) \Leftrightarrow L\left(\phi, x, p, q . A_{p}\right) \cap L\left(x, y, p, q, A_{p}\right) \wedge p \neq q \wedge$ 自動車 ${ }^{+}(x) \wedge$物 $(y) \wedge$ 所有 $\left(\tau_{1}\right) \wedge$ 教育 ${ }^{++}\left(\tau_{2}, \ldots, x, \ldots\right) \wedge \ldots$ ；
教育	教育 $(x) \Leftrightarrow$ 教育 ${ }^{+}(x) \wedge^{\text {教育 }}+\mathrm{+}(x, y, z, \ldots) \wedge$ 施設 $(y) \wedge^{\text {事物 }(:) ; ~}$ $\mathrm{ARG}(\operatorname{dep})($ が $), y), \mathrm{ARG}(\mathrm{dep}($ について）.$\approx) \ldots$ ：

 ϕ ：＂don＇t carc＂，男：＂male＂，親：＂parent＂，施設：＂institution＂，
物：＂object＂，事物：＂object or ewent＂， $\operatorname{ARG}(X, Y):$＂unify X with $I "$

Table 2：Evaluation of unclerstanding results＊

I．D．	θ	λ_{0}	II	E	C_{T}	P
S1．1	$\left\{X_{1} /\right.$ が，$\chi_{2} / \epsilon, \mathrm{X}_{3} /$ に $\}$	3	2	0	8	1
S1．2		3	5	2	13	3
S2．1	$\left\{\mathrm{X}_{1} /\right.$ が， $\mathrm{X}_{2} /$ で， $\mathrm{X}_{3} /$ に $\}$	4	3	0	11	2
S2．2	$\left\{\mathrm{X}_{1} /\right.$ の所有する， $\mathrm{N}_{2} /$ で， $\mathrm{X}_{3} /$ に誰かが $\}$	4	6	2	16	5
S2．3	$\left\{\mathrm{X}_{1} /\right.$ の経営する， $\mathrm{K}_{2} /$ について教育する， $\mathrm{X}_{3} /$ に誰かが $\}$	4	7	3	18	6
S2．4	$\left\{X_{1} /\right.$ の所有する， $\mathrm{X}_{2} /$ のある， $\mathrm{X}_{3} /$ に誰かが $\}$	4	7	3	18	6
S2．5	\｛ $\mathrm{X}_{1} /$ が， $\mathrm{X}_{2} /$ について教育する． $\mathrm{X}_{3} /$ に $\}$	4	4	1	13	3

${ }^{*}$ f means cmpty．

