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ABSTRACT

A computationally efficient approach to

the automatic segmentation (labeling)

of noise disturbed speech is presented.

The segmentation algorithm employs

short term spectrum based feature vec-

tors and a subspace representation of

the sound classes. The two sound

classes of vowels and unvoiced frica-

tives are trained with the TIMIT acous-

tic phonetic continuous speech corpus.

The sound class detector is applied in

a speech enhancement system and for

the automatic segment duration mea—

surement.

INTRODUCTION

Originally this automatic sound class

detection algorithm was developed as

an improved replacement for the speech
pause detector of a speech enhance-
ment system [Wokurek 94]. Clearly
this application requires noise robust—
ness. Furthermore, a solution with low
computational effort was sought to al-
low real time implementation. Repre—
senting the sound classes by subspaces
meets both goals.

The speech signal is transformed into
a. sequence of feature vectors. This
transformation controls which proper-
ties of the speech signal are represented
by the length and by the direction of

the feature vectors. In order to distin-

guish between different speech sounds
the transformation will control the di

rection of the feature vectors by the

shape of the spectrum. On the other

hand, the feature vectors do not con-

tain any pitch frequency information.

Unfortunately, no transformation is

known that converts each phoneme or

even each speech sound to a uniquely

defined direction within the feature

space [Furui 92]. Context, allophonic

variations and noise ensure that the

feature vector of every speech sound
moves around quite a lot in the feature

vector space. For automatic speech

sound recognition it is necessary to de-

scribe the directions of the feature vec-

tor that are possible for each speech

sound. A standard approach is to col-

lect a number of representative feature

vectors for each speech sound. Either

the collection of feature vectors or a

statistical description of them may be

used as a representative of each speech
sound. If the collection of feature vec-

tors is used, their number is likely to

exceed 1000. That number is met if

e.g. every of 50 speech sounds is repre'

sented by only 20 vectors.

Is this large number of representative

elements inevitably? A vector TPPrf‘

sents a single direction, in this sense It

is a ‘small’ object in a vector space. A

plane is a ‘larger’ object in that sense
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—— it contains infinitly many directions.

Furthermore it only needs two (orthog-
onal) vectors to be defined. If even
a plane is ‘too small’, D—dimensional

subspaces could be used‘.

Is there any problem to represent

speech sounds by planes instead of vec-

tors? The problem might be that

the plane is likely not only to con-

tain the directions of the speech sound,
but many other directions as well. So

planes — or D—dimensional subspaces

— should be used with care, and not

without further evidence. In the case
of this study it is observed experimen«
tally that the feature vectors of the
vowels [ieaou] lie in the vicinity of a
plane. This motivates the notion of
representing sets of speech sounds —
sound classes — by subspaces.

Further experiments demonstrate
the noise—robustness of a soundiclass
detector based on that subspace rep-
resentation. These experiments indi-
cate that the noiscobustness results
from broadening the scope of discrim—
ination from sounds to sound~classes.
It should be noted however, that the
sound~classes may not be defined arbi-
trarily. Only sounds with similar spec-
tra are efficiently represented by a (low
dimensional) subspace.

Finally it is important that the ‘on-
line’ operation of this subspace~based
sound—class detector is computation-
ally efficient. Only the ‘offline’ train-
ing of the subspace representation of
the sound~classes is computationally
expensrve.

FEATURE VECTORS

The disturbed speech signal is con-
verted to feature vectors employing the

1 . . .A vector is a 1-d1mensronal subspace and
a‘plane Is a 2—dimensional subspace of the N-
dimensional vector space.
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short time energies of the output sig-
nals of a band—pass filter bank. Let
each coordinate of the feature vector
represent the short term energy within
the bandwidth of a single channel of
the filter bank. Then e.g. a formant
produces a signal of high amplitude at
the output of a certain filter bank chan-
nel and pulls the feature vector into
it’s direction. By this mechanism, the
short term spectrum of the speech sig-
nal determines the direction of the fea—
ture vector. Each change in the for—
mant structure changes the short term
spectrum and turns the feature vector.

The short term spectrum of the
speech signal is one ingredient to the
feature vector direction — the band-
width design of the filter bank is the
second. Only those spectral changes
turn the feature vector, that change
it’s coordinates; i.e. a formant move
ment turns the feature vector if and

only if the formant moves into a differ—

ent Channel of the filter bank. There—

fore different bandwidth dcsig‘ns of the

filter bank are used.

The basis is the constant bandwidth

of each channel. Here ‘20 channels with

a bandwidth of 400 Hz are used to cover

the frequency band from 0 to 8 kllz.

A linear mapping occurs between the

number of each channel and its center

frequency, therefore it is addressed as

‘linear filter bank (lesign’.

In contrast to that, a ‘bark filter

bank design’ is employed to represent

the psychoacoustic scale of critical fre-

quency bands. Again, 20 channels

cover the frequency band from 0 to S

kllz, but the bandwidth starts with

100 Hz at low center frequency and in<

creases to more than 1 kllz. Both filter

bank designs are implemented using a

computationally efficient algorithm —

the ‘Lerner filter bank’ [Doblinger 91]

[Lerner 64].
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The dimension of the feature vector

space is defined by the number of filter

bank channels. Hence the dimension is

N = 20 for both, the linear and the

bark filter bank design.

Given the noisy speech samples 1(n),

the filter bank and the short term en-

ergy measurement of each channel re-

sults in the sequence of feature vectors

z(m)
3(n) —r z(m)

The short term energies are computed

with a time window duration of 20 ms.

Therefore the feature vectors are low

pass signals that do not require the

sampling rate of the speech signal (20

kHz). The feature vectors are calcu-

lated at a sampling rate of 100 Hz,

that is significantly lower. Hence the

speech class detector operates at the

lower sampling rate, what helps to limit

the computational load.

SUBSPACE

EXTRACTION

For the purpose of subspace extraction

the feature vectors of all speech sounds

that will train the considered sound

class are collected within the observa-

tion Matrix

A=(...,z(m),...)

Now a subspace is required, that repre—

sents all these feature vectors in some

sense. Here, the least square minimiza-

tion of all vector components ‘outside’

(i.e. orthogonal to) the subspace is used

as optimization criterion. A solution

to that problem is found by the eigen—

decomposition of the correlation matrix

of all feature vectors

C = AA‘ = UAU‘ ,

where U is the orthogonal matrix of

eigenvectors and A is the diagonal ma-

trix of eigenvalues [Golub 89].
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Once the eigenvectors and eigenval-

ues of C are computed, the D di-

mensional subspace is spanned by the

eigenvectors that correspond to the D

largest eigenvalues. A threshold of 1%

of the largest eigenvalue is used for au-

tomatic subspace dimension determi—

nation.

This algorithm represents each sound

class and the noise signal by a single

subspace. The automatic sound class

detection is performed by comparing

the actual feature vector to all sub-

spaces. ‘Winner’ is the class that con»

tains the largest component of the ac-

tual feature vector. Finally, a three

point median filter improves the deci-

sion by removing isolated deviations.

SOUND CLASSES

Initially the two sound classes of vow-

els [izezazozuz] and unvoiced fricatives

[fscxf] are trained with the TIMIT

acoustic—phonetic continuous speech

corpus. The subspace extraction re»

sults in a 1—dimensional noise sub-

space, a 2-dimensional subspace for

the vowels and a 3—dimensional sub-

space for the fricatives. The resulting

sound-class detector correctly detects

the vowels, but confusions between the

noise and the fricatives occur.

Due to larger spectral differences

within the sound class of fricatives, the

subspace of that class tends to ‘catch'

some of the feature vectors of noise seg-

ments. To minimize these errors, a fur-

ther optimization of the sound classes

is applied.

Now the sounds are exchanged be-

tween the classes until the smalleft

angle between every two subspaces IS

maximized. In addition, a smaller

number of sound classes is preferred-

The full search over all possible souIld

class partitions results in three sound
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Figure 1: Detection of optimized sound
classes: SNR=10dB, white noise

classes. Due to better separation of the

subspaces, the detection error rate de-

creases.

RESULTS

Figure 1 shows the segmentation of a

noisy signal. The German utterance

‘Deutscher Ubersetzung’ is analyzed. It
is disturbed with white noise at a sig-

nal to noise ratio of 10 dB. The sound
class detector employs the three opti-
mized sound classes as well as the noise
class.

Class #0 corresponds to the noise
signal and is visible by ‘missing’ marks
in Figure 1. Sound class #1 contains
the voiced speech sounds. Sound class
#2 is evoked by the f, d and t sounds.
Finally, the 3 sound is detected as a
member of sound class #3.

. The sound class detector is applied
111 a speech enhancement system to re—
place the speech pause detector. There,
the speech spectrum estimation that is
required for the enhancement, is con-
trolled by the speech class decision.
During noise segments an additional
suppression is applied.

A. second application of the auto
matic sound class detection algorithm
Is the automatic measurement of seg-
ment durations. The segment duration
Is used to normalize the time axis of
fundamental frequency contours.
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CONCLUSION

Classes of speech sounds are repre-
sented by low dimensional subspaces.
The discrimination between sound
classes instead of sounds is one source
of the noise robustness of the algo—
rithm; the restriction of sound class
definition to sounds of similar spectral
shape is the second. Finally, the sub-
space representation results in compu-

tational efficiency.

Even a small number of speech sound

examples leads to reasonable results of

the sound~class detector. This is due

to the fact that a deterministic (non-
statistic) model is used. However, an
increased number of different training

sound examples improves the speaker

independency of the segmentation re-

sults.
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