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ABSTRACT
Articulatorily based acoustic-phonetic features

are derived from the speech signal via a Self-

Organising Neural Network (SONN) using

spectral and energy parameters calculated from

single windowed segments of the signal, and

dynamically constrained by a cost-minimisation

procedure enforcing continuity on the basis

of features present in the segment. Resultsof
the smoothed feature traces are compared to

a previously calculated, unconstrained feature

output.

INTRODUCTION
The identification of the phonetic structure

of an utterance in automatic speech recognition

is seen increasingly as a hybrid task of

combining pattem-recognition expertise with

speech science knowledge [1-3]. Just as word

recognition had to give way to recognition

based on sub—word segmental units (phonemes
or allophones) as the demand for ever larger

vocabularies increased, so the segmental units

have to give way to sub-segmental, parallel

properties (features) as the realisation grows
that, in normally produced (i.e. continuous)
speech, the acoustic properties of a particular
sound vary as a function of articulatory
dependencies between consecutive segments
[2,4,5]. The task of recovering the abstract
phonemic structure from the acoustic signal
is thus freed from the need to relate the overall
acoustic pattern of a stretch of signal to a
particular phoneme, and can exploit changes
in particular features.

Two aspects of acoustic change are not
usually differentiated explicitly:
(i) the fluctuation in spectral structure and

consequent feature values during
quasi-constant portions of the speech signal
(fricatives, stop closures, nasals and
laterals, and stressed-vowel centres), and

(ii) information—bearing spectral change

(sonorant glides, diphthongs, and

place-signalling CV- and VC-transitions.
Attempting to address the second area without

dealing with the first is clearly inefficient. In
addition, optimized feature extraction based
on solutions to the first problem provides a

potential basis for correcting for prosodic

variation and vowel—to—vowel coarticulation.
This paper presents a method of employing

dynamic constraints within a framework of a

SONN for smoothing feature tracesl

THE ACOUSTIC-PHONETIC FEATURE
ESTIMATOR

The architecture of the feature estimator
comprises two modules as shown in Figure

l.
The first, the preprocessing module,

calculates, for each 10 ms windowed segment

of the speech signal, a set of parameters

consisting of l2 Mel-Frequency based cepstral,

12 delta cepstral, 12 delta-delta cepstral

coefficients and the corresponding log energy.
delta log energy and delta-delta log energy.

The calculation takes place every 5 msec. From

these parameters, a vector 8 is selected

containing the 20 coefficients which maximise

the phoneme separability.

The second module converts the vectors from
the selected acoustic parameters a into acoustic-

phonetic features ¢ by means of a SONN, the

training of which is described in the next

section (see [8] for further details).

The Self-Organising Neural Network

The SONN consists of a number of neurons -

400 are used in this research - which are

arranged regularly in a 20 x 20 rectangulaf

structure. Each neuron n has assigned to it a

vector In, the size and structure of which
corresponds to the acoustic parameter vector
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Figure 1. Architecture of phonetic feature estimator

a, and all neurons are connected in parallel
to receive the same input.

The training session comprises three phases.
Firstly, an unsupervised stimulation phase in
which the SONN input is presented to speech
data from the training speech corpus. Secondly.
a supervised phoneme calibration phase and
thirdly, a supervised acoustic phonetic feature
calibration phase.

During the stimulation phase, each neuron
n(x,y) of the SONN is assigned a parameter
vector m(x,y), which is the weighted average
of the acoustic vectors a firing (see e.g [8])
neuron n(x,y).during the entire stimulation
phase.

As a result the SONN organises itself such
that: 1) speech sounds that are acoustically
close are represented in neighbouring neurons.
2) speech sounds which carry e.g. the same
manner feature tend to group together in larger
clusters, and 3) different speech sound classes.
cg. vowels vs consonants, are represented by
neurons clustering in groups of classes.

Calibrating the SONN
l) The first calibration phase operates at
phoneme level.

During the phoneme calibration phase, the
SONN is submitted to the training speech
Corpus again, and the number of firings
“((X,y)lo,) are registered for all phonemes ‘9
and all neurons n(x,y), xell ' ' N.) andye t1 ~-N,} within the SONN.

Given that n(x,y) is the neuron at position
(U). N,(x.y), se (1 ' - Q}, is a vector each
element of which. p((X.y) l¢,) =
"((XyY)l¢,)/n(¢,), represents the frequency of
occurrence that a specific phoneme is firing

neuron n(x,y). The number of times n((x,y) log,
that neuron n(x,y) is firing given that phoneme
t1)J is present at the input, is calculated during
the first calibration phase, and n(t) is simply
the total number of frames in the training
corpus representing phoneme or By employing
a clustering technique several vectors may be
assigned to each neuron, i.e. Q > 1.

II) The second calibration phase operates at
the level of phonological features.

Each phoneme ¢, is abstractly represented
by a phonologically defined distinctive feature
vector D”, je{l ' - M} where M is the
number of distinctive features taken into

account (observe that vectors D are dependent

on the language). For example for the Danish

phoneme symbol /u/, DM is given by:

DM = [ [+voi] [woe] [-fro] {—cen]

[+bac] [+rou] [*clo] [-mid] [-ope]
[-con] [Olab] [Oden] [Oalv]

[Ofri] [0plo] [Osil] ]T

where ’+' means feature present, '-’ means

absent and '0' means feature not relevant.

Based on vectors N,(x,y) and D“, je i l -

- M], a phonetic framework vector P,(x.y)

is defined for each neuron n(x,y) [8]:

P.(x,y) A [0,. 1),, - ~r)q - 'D,_1T x N,(x,y).
sen "Ql
where Q is the number of phonetic framework

vectors assigned to each neuron.

The elements P,(x.y)(k) each represent an

approximation to the probability that the k’th

acoustic-phonetic feature has been involved

in the firing of neuron n(x,y).
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SONN FEATURE ESTIMATION

Previously the above expressions were used

to estimate acoustic phonetic features directly

from the acoustic speech signal on a frame-by-

frarne basis.

We have recently investigated new principles

for estimating these features in which we

include dynamic constraints in a Viterbi based

minimisation of a chosen cost—function C(!)

over a window extending back from the cunent

speech frame I. The basic aim is to smooth

the fluctuations in the feature values from one

frame to the next.

The cost-function C(l) is chosen so as to

contain elements which ensure that spectral

changes as well as continuity of articulator

movement are taken into consideration during

the minimisation.

The first element is the summation of the

distances d,[-] between the incoming acoustic
vectors a(l-i) and the neuron weight vectors

m(x,y,l-i) as calculated over a window of fixed
length L frames. This contribution is focused
on the spectral differences within the window.

L - I

CO) = E (d,[a(l-i).m(x,y,l-i)] .
u - 0

w - d[[P‘(x,y,l-i),P'(x,y,l-i—l)] )

The second summation adds a weighted
contribution which is calculated on the basis
the distances dr[-] which represent the
differences in the approximated probabilities
given by the phonetic framework vectors
P,(x,y,l—i) and P,(x,y,l-i-1) in the window. The
factor w is a relative weighting between the
two contributions.

Based on the minimisation. the resulting
acoustic-phonetic feature vector 6) is defined
as follows:

d>(l-L+l) = P,(x,y,l—L+l).

ACOUSTIC-PHONETIC FEATURES
An example of a feature trace as estimated

by the above procedure for Q = 2 is shown
in Figure 2a on the next page.

The sentence 'polsevognen stod midt' with
the SAMPA transcription /0 p 2 l s @ v Q n
5 d0 d o D m e d0/ is transformed into phonetic
features by applying the delineated approach.

A careful examination of the features
illustrated in Figure 2a show a very close
correspondence with the traditional definition
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of the phonemes as given in [8].

The feature traces shown in Figure 2a may
be compared to the corresponding traces for
the same speech signal as shown in Figure 2b,
where the features are derived by the approach
which perfomis the calculations on a frame-by-

frame basis.

CONCLUSIONS AND OUTLOOK
The figures illustrate that aniculatorily based

features are indeed derivable. and that
articulatory and functional features can operate
together (see for example VOC and V0], V0]
capturing vocal fold activity, and VOC fairly
successfully isolating vocalic segments). Also,
as examination of Figure 2a indicates. the traces
show a) acoustic dependencies between features
that are used independently for phonological

definition (see for example BAC and ROU),

b) some clear changes in feature strenght during

the time course of segments as defined by

manual labelling (marked in figures, e.g. OPE

for /Q/ and MID, BAC, ROU for lol), and c)
some carryover of features from the segment

where a feature is relevant to where it is not
(e.g. some vowel features into Ill and /n/).

These are, at least in part, indications of

articulatory transitions and coarticulation, which

are not directly exploitable in a frame»by~frame

system. The smoothed traces thus also provide

a diagnostic base for the identification of

phonetic events and features which require

more dynamically oriented acoustic processing.

It is expected that the smoothed traces will

provide a sounder basis for the estimation of

segment boundaries and the identification of

segments. Future work includes testing on two

tasks which have been used previously to
demonstrate the usability of the approach.
namely that of automatic speech signal label
alignment and that of phoneme recognition.
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Figure 2b. Acoustic-phonetic features calculated on a frame-by-frame basis
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