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ABSTRACT
This paper describes an efficient

multistage algorithm for the parsing of
stop—vowel-stop syllables into acoustic
microsegments typically used for
scientific measurement of speech data
and as well as in some ASR applications.
The methods adopted illustate one way in
which expert speech knowledge and
powerful statistical pattem-recogniton
can be usefully combined to provide
robust and intuitively satisfying solutions.

OVERVIEW
Six microsegments of interest were

established to characterize /CVk/
syllables, where the initial consonants
ranged over /p. t, k, b, d, g/ and where
the vowels ranged (in the test sets) over
the 15 Canadian English vowels and
diphthongs. The microsernents are
labeled M1 to M6 and are listed in Table
1.

Table I . Microsegment categoriesfor

vectors for each frame which consist of
six readily calculated properties. A
second stage applies a Viterbi search
method adapted from a continuously
variable duration hidden (semi-)Markov
model to bracket regions within which
cursors can be placed. A third stage uses
various heuristic measures to set the
exact locations of specific cursors within
the bracketed regions.

STAGE 1
The feature vectors for each frame

consist of mean absolute amplitudes of
10 ms sections before and after the frame
centers for l) the original signal, 2) a
high pass (l/l-z") signal and 3) a band-
pass (l/l-z'z) filtered signal. The
maximum mean absolute amplitude over
all frames for the entire syllable was also
included as a normalization measure.

Means, vectors and covarinace
matrices were calculated using these
features for the basic signal types shown
in Table 2.

segmentation algorithm. Table 2. Basic signal types defined

Microsegmen: description byfeature vectors.

M 1 initial (C) silence Signal Type Description

M2 initial voicebar D1 silence

M3 initial C release DZa voice bar onset

M4 vowel D2b voice bar cont.

M5 final C silence D3a Cl burst onset

M6 final C burst D3b C1 fric./asp.

The object of the algorithirns D4a V onset

gmybeisto predlfcfhreliable estimates D4b V continuation

M2. M3, Mflfistfs. e mmmgmems D46 V ”d
Thehgrsdt stag:eduses statistics fromda D5 (=Dl) final /-k/ silence

ffimmfimmcfi‘fignflflifi D6a (=030) final /-k/ burst
the form of a posteriori probabilities. D6b (=D3b) final /-k/ fric./as .
henceforth APP scores) for each
microsegment type and for each 20 rm
rectangular window of speech advanced
through the signal in 1 ms frames.
Statistics are calculated from feature

The numbers associated with each
distribution indicate the rrricrioscgmcm
from Table 1 associated with “Ch
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distribution. Voice bar and consonant
release are each associated with two
distributions. Those labeled a (e.g. D2a)
correspond to the onset part of the
microsegment and those labeled with b
correspond to continuation of the
microsegment type. The distribution

“vowel" is associated with three
distributions. Training samples for onset
type a segments (as well as D4c) were
centered on hand-marked cursors that
delineated clearly acoustic boundaries, so
that the features associated with the first
and second 10 ms parts of the fiarne
would be expected to differ significantly.
Those for the continuation type b
distibutions were more likely to be
homogeneous. Training data for the b
type distributions were extracted from
the centers of hand‘marked
microsegment types of at least 30 ms
duration to avoid the onset and offset of
the microsegrnents) Only distributions
D1 through D4a,b,c were explicitly
trained, since hand marked cursors did
not exist for portions of the signal
following M4. Distributions D5 and
D6a,b were effectively “tied" to the
corresponding distributions for the
variable initial stops.

APPs were calculated for distributions
Dl to D4a,b,c. Trials with a training set
of 703 syllables indicated that these types
could be identified with a reasonably high
rate from the hand-marked data.

.Running plots of the APP scores for
stimuh were examined and indicated that
the scores in question would serve as a
useful basis for parsing the signal, since
an appropriate distribution usually
showed the highest APP for most of the
duration of the target microscgments.
(Appropriate distributions include either
of the a,b pairs of microsegments
assocrated with onset and continuation
type distributions for reasons discussed
below.)

STAGEZ
A_ modified continuously variable

duration semi~HMM (CVDHMM) [l]
was. employed to group the frames of
tmmary types D1-D6. The states of
the CVDHMM are outlined in table 3
With. their associated signal type.
Possrble transitions of the CVDHMM are
shown in Figure 1.
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The modifications from the
CVDHMM of [1] consisted of three main
Simplifications involving “engineered"
rather titan optimized esteimates of
parameter values. First, distribution
parameters of Table 1 were fixed in
advcance as described above and were
not reestimated. Second, state
transitions probabilities were determined
a priori: the probability of the each exit
path was set to the reciprocal of total
number of such paths for that state.
Third, although Gaussian state-duration
distributions were originally investigated,
it was found that they had little effect on
the results and a simpler method ignoring
state-durations entirely was adopted.
This is equivalent to assuming a uniform
distribution of all feasible durations (e. g.
l to 1000 ms) for all states in a
CVDHMM framework.

Table 3. CVDHMM states.

1 Di
1 vorcebar

C
3a 1

SS

D
10
11

Preliminary observation of the results
from the CVDHMM coarse
segmentation showed that state changes
were nearly always limited to points of

large changes in the Stage 1 APP scores

and that a substantial reduction of the

search space for stage could be

accomplished by using a simple

preliminary thresholding of changes in

APP scores. A measure of change in

APP scores for each of the distribution

types was calculated as

8‘. = :abs(W(med,(m._,-_z),m6d3(mm1)))

k=|

where mu represents the six-point

median filtered APP score for category k

at time i, med3(x) indicates the median of

three arguments centered at point x and

the function W is calculated as
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__x____
1 - abs(x — 0.5)

_______)’__.
l-abs(y—0.5)

which weights the function in favor of
high APPS. The threshhold was set at
8; >0.4 where CVDHMM transitions
were allowed to occur in the Viterbi
search algorithm

Figure 1. Non null state transitions
for CVDHMM.

W(x.y) =

STAGE 3
Although the parsing provided by the

CVDHMM was found to correctly
bracket most of the events of interest, a
final heuristic post-processing stage was
used to fine-tune the placement of
selected segment boundaries. The start
ofM2 was determined as

C... = ”max ,L (2.0mm)
t R (t,l)L(t,l) + 0.1

where R(r',l) is the average absolute
value of the waveform in a 1 ms window
to the right of point i, and L(i,1) is a
Similar measure taken from the left.
R'(i,l) and L’(t',1) are the same measures
taken from the low-passed filtered
feature vector. 1 is limited to samples
bounded by $2 and the first 30 ms of S3.

M4 was then located by exactly the
same method with the values of t limited
to the samples bounded by S6 and the
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first 30 ms of .57, with the exception that
interval of averaging was 3 ms.

The following measure was then used
to fine tune the start position of M3:

(110,3) + R’(t,3) + Am... J
Cb = argm ax ————

1 L03) + L’(r,3) + A“

where the integrated absolut value of
the waveform is taken from 3 n5
windows and A... is the minimum mean
absolute amplitude of the original signal.
The search was restricted to the samples
between the estimated start of M2 and
the sample 30 ms following the start of
S7

The final position of M4 was taken as
the window at which the product of the
probability density function and the APP
score was a maximum for D4c within the
bounds of S8.

Informal evaluation of the algorithm
indicates excellent agreement with human
operator jugments in most cases. (More
formal evaluations are in preparation and
will be presented at the conference). The
procedure has potential for use in semi-
automated data collection for descriptive
linguistic and speech database
applications.
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