automatic identification of accentual- Rhythmicai STRUCTURE OF SPOKEN WORDS

B. Lobanov, T. Levkovskaya, E. Karnevskaya

Inst. of Egin. Cybernetics Ac. of Sc., Minsk, Belarus

ABSTRACT

A model of automatic identification of accentualrhythmical structure (ARS) for isolated words is described. The identification of ARS is based on measuring of the duration, intensity and $F 1$ value for each vowel of the word and their comparison with the set of patterns for all possible types of word ARS.

INTRODUCTION

The word ARS is generally defined as the distribution of force and distinctness of the articulation of the vowel sounds in the word. The acoustic correlate of the vowel articulation force is energy of speech signal. i.e. the intensity (amplitude) and duration, and the correlate of distinctness is rrelate of distinctnessis
stability of the vowel specstability of the vowe
tral characteristics.
tral characteristics.
Int follows from the definition that words with a different position of the stressed vowel in a word display differences in ARS. The stressed vowel has the greatest force and distinctness in a word. If we assume that the stressed vowel articulation force and distinctness equal to 3 points. then the other positions of vowels in Russian words will be characteristics by the following values:
$\begin{array}{llllllllll}V & v & \ldots & V & V & V & V & \ldots & V & V \\ 2 & 1 & 1 & 1 & 2 & 3 & 1 & 1 & 1 & 2\end{array}$
It can be seen from the above scheme that the 2 points force is characteristic of the prestressed, initial and final vowels. while the
force rest of the vowels is indicated with 1 point.

Information about ARS is a very important component of both the overall and phonemic recognition of a word [1,2]. In the overall recognition the knowledge of the word ARS makes it possible to considerably narrow the range of pretenders for the final decision about the word and thus increase the recognltion reliability and speed. which is especially important in working with large vocabulary lists. In phonemic word recognition thenemic word recognition of reduction of each vowel in the word or each vowe result of the obained as result of the latter's ARS recognition allows to define more precisely the range of probable vowel allophones for each concrete position in a word and thus increase the probability of their correct choice.

EXPERIMENTAL STUDY

In essence ARS recognition is reduced to the identification of the stressed vowel position in a word. It is commonly known, that the stressed vowel possesses on average the maximal energy (product of duration and mean amplitude). However in real speech conditions this rule is not observed in all cases. As bas been shown by previous investigations, the previous investigations, the
energy value of a vowel is energy value of a vowel is
generally influenced by the generally influenced by the
following factors: following factors:

- the position of the vowel in relation to stress: prestressed, stressed. poststressed:
the position in relation to word boundaries: initial.

Fig. 1. Experimental distributions of the corrected relative energyof vowels (solid lines - energy, dotted - duration).
word-medial, final:

- whether the 1-st vowel in the word is covered or uncovered by a consonant;
wether the last vowel in the word is open or closed by a consonant;
- wether the vowel belng analyzed pertains to the narrow (u, i, \ldots) or broad ($a, 0, \ldots$) articulatory group.

The aim of the present experimental study was to assess quantitatively the impact of the above factors duration The intensity and corpus included experimental words included Russian syllables conting from 1 to 7 positables with a different position of word stress and different vowels in stressed and unstressed syllables. The selected words were recorded twice by two native speakers of the language and then digitized with the discretization at 16 kHz and 12 bits. The next step was marking the boundaries between phonemes by hand Measurings of the vowel duration and intensity as well as the collecting of statis tical data were carristatis automatically. Besides, Fi frequency vowel so was found for each vowel so that a decision group be taken as to what yow (narrow or broad) the of the belongs. On the basis of the data obtained vowel
duration and intensity dis tributions were recelved nomalized with relation to the maximal value. These distributions covered words with aifferent rhythmic structures and with different combinations of narrow and broad vowels. $n-N-n$ $0-B-b$ no $n-N-n$, prestressed stressed, and prestressed, stressed and poststressed syllables. These data were then used for bullaing up the common normalized distributions of the vowels duration, intensity and energy, corrected against the $F i$ meaning (f1g. 1).

In fig. i. the lines refer to the following ARS:
(1-8) - one uncovered prestressed syllable;
(1.- $)$ - one covered prestressed syllable;
(0-1) - one open poststressed syllable;
($\theta-1$) - one closed poststressed syllable;
(2-g) - two prestressed syllables with an uncovered initial syilabie:
(2:-0) - two prestressed syllables with a covered initial syilable;
initial syllable;
(0-2) - two poststressed syllables with an open final syllable;
($\theta-2^{\circ}$) - two poststressed syllables with a closed final syllable.
(3-6) - three prestressed syllables with an uncovered
initial syllable
(3'- 0) - three prestressed syllables with a covered initial syllable;
(0-3) - three poststressed syllables with an open final syllable:
(6-3')
yllables three poststressed final syllable.

If a word contains more than 3 prestressed or postpossible to continue using lines $3\left(3^{\prime}\right)-g-3\left(3^{\prime}\right)$, and in that case the energy, and lue for the 2 -nd prestressed vowel (or poststressed) is shifted to the 3 -ra syllable if the total number of syllables is 4, or to the 3-rd and 4-th if the number of syllables is 5 or more, etc.

IDENTIFICATION PROCEDURE

The procedure of taking a decision about the ARS of the word being analysed is described in the following sequence of pretenders for the vowel phonemes in for word is identified in the nemes are analyzed The photheir belonging row or broad types the nar to whether the F ficcording exceeds a defeniti frequency exceeds a defenite limit in this case the limit was dethe energy value for Next vowel is cat value for each * Ai. This is culated: Ei = Ti * Al. This is then specified for broad vowels by multiplying by the coefficient $k n=$ by, the $k n$ for narrow vowels [E] the $k n=1$ Among the maximal thus obtained is the to which ming, in relation to which the normalization of all energy values in the set is carried out. The are then energies obtained are then compared with the set of pattern characterisin fienji, similar to those in fig. 1. The comparison is carrled out with the following sample sequences. If the number of syllables is 2, an aternative comparison with one of the following pairs
of sequences is made:
$\left[\begin{array}{ll}(1-\theta) & (\theta-1) ; \\ (1-\theta) ; & (\theta-1) ; \\ (1-\theta) & (\theta-1) ;\end{array}\right.$

The meaning (1^{\prime}) here is taken in the cases when the first vowel is preceded and the second vowel is followed not by a pause, but by one more consonants. For a three syllable word omparison is arawn with one f the three-unit sequences:
$\left(\begin{array}{ll}(1-1), & (2-\theta),(\theta-2) ; \\ (1-1), & (\theta-1),\left(\begin{array}{ll}\theta & -2)\end{array}\right]\end{array}\right.$
$(1,-1),(\theta-1),(\theta-2) ;$
$(1,-1, j,(2,-\theta),(\theta-2) ;$

Similar sample sequences are composed for the number of syllables >3. To take a decision about the type of the word ARS the energy similarity degree is calculated between each vowel in the word being analyzed and the set of energies pattern in the corresponding sequences (1), (2).
Next the similarity sum is calculated for each of the possible sequences, shown in the brackets. Among the summed measures of similarity there is the one displaying the maximal degree. This sequence is assumed to be the most likely rhythmic structure of the analyzed word.

RESULT AND DISCUSSION

To check the effectivity of the suggested procedure a Software model of the ARS automatic identification was worked out. The speech signal is analyzed with the help of a set of 5 octave filters in the range up to 8 KHZ in the time-window of 16 ms with a step of 8 ms . Out of 5 spectral parameters 3 segmenting parameters - $P 1$, P2, P3 - are formed, displaying the maximal value of Pi ylig the maximal value of Pi

- for the vowels, P2 - for the consonants and P3-for the pauses. The segment bo-
undarles are defined by analyzing the segmenting functions Sk obtained from PK according to the formula
$\operatorname{Skn}=\underset{\substack{\text { SUM } \\ i=1}}{\operatorname{LS}, 2}, n+1-S k, n-1) / L$.
where $n-i s$ current timing, -analysis window.

Within the boundaries determined in this way the vowels duration and intensity were defined, as well as the occurrence of a conso nant or a pause before the first or after the last volaentify the voweis order to high or low - estimatione Fi was carried vowel segments by on the counting the number means of crossing the number of zero the i-st filter output of mation obtatned The infor was then used in in this way ware of ARS in the sosttification automatic idenwith the procedure accordance In the the procedure described ARS automatic section. The algorithmatic recognition algorithm was evaluated for its efficiency first on the speech material corpus descon a new section 2, and then set new additional testing set of material. The results of the tests were summed up by fixing two types of
\qquad Ms-the general percentage of erroneous identification Mr- word ARS
Mr-the percentage of erthe in the recognition of the ARs in the cases where in thet number of vowels cula word and their artiand about besides, the decision afout the presence / absence of a consonant at the beginning or at the end of the word was correct.

The results of both tests $\mathrm{Ms}=78 \%$ mated on average as: Ms $=78 \%, \quad \mathrm{Mr}=94 \%$. As is shown by the results of test procedure the suggested procedure of the ARS auto matic ldentification can be
> assessed as effective, on prelimin, however, that the preliminary phoneme segmenafficiend marking have been surficiently correct.
> in for certain cases, analyses for the degree of similarity (nearness) between the ARS being considered and the sample one, can help reveal the defects of phoneme segmentation and marking in the word. If some of the ARS have close similarity measures, they must be subject to further analysis with a view to making clear whether or not there is a vowel cluster or some mistake in segmentation.

REFERENCES

[1] Zue V. (1985), "The use of speech knowledge in automatic speech recognivol. 73, N11, pp. 75-90.
[2] Carlson R. (1991), "Duration models in use". Proc. of the XII-th ICPhs, Vol 1. pp. 243-246.

