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ABSTRACT

This paper builds on previous work on

recognition of speech in noise to incorpo-

rate a model of the constraints imposed

by rules governing auditory induction,

implemented as a refinement of the dis-

tance metric used in a Kohonen network.

We show that use of this constraint im-

proves recognition accuracy, and points

to a new understanding of some aspects

of speech perception.

INTRODUCTION

It is a matter of everyday experience

that speech perception is possible in “ad-

’ verse" conditions. Bregman [1] has

coined the term auditory scene analysis to

refer to listeners' ability to separate out

individual sound sources in a mixture by
grouping together those components of a
signal which share characteristics in com-
mon (e.g. harmonicity). Recent evidence
[2] has suggested, however, that in noisy

environments it is not possible for the au-
ditory system to fully recover all the evi-
dence for, say, a speech signal. It is often
the case that an intrusive noise source will
completely dominate a particular time-
frequency region: in these regions there
are no components which can reliably be
ascribed to the speech signal, so its repre-
sentation will necessarily be incomplete.
Few theories of speech perception, how-
ever, consider the effects that extraneous

~ signals have on the auditory representa—
tion of speech signals, or account for lis-
teners’ abilities to induce the percept of
the continuity of a speech signal through
noise.

Those parts of the spectrum which
cannot be attributed to the speech signal

are nevertheless information-bearing.

They place an upper bound on the amount

of energy that the speech signal could

have had. If, for example. evidence is

only available for low frequencies (in the

Fl region) and this suggests initially that

an /i/ might be present, we would mini-

mally expect also to find concentrations

of spectral energy in the 2200-3300Hz re-

gion, corresponding to F{2,3,4} of the

vowel. If this is not observed. it consti-

tutes evidence counter to the initial /i/ hy-

pothesis. This area has been formally

investigated in studies of auditory induc-

tion: Warren and his colleagues [3] have

found that the auditory system is indeed

subject to such constraints. In their exper-

iments, part of a stimulus signal is excised

and replaced with a noise burst. If and

only if the noise is sufficiently loud that it

would have masked the original sound,

had it been present, the auditory system

induces the percept of the original. lead-

ing to continuity.

We now show how the auditory induc—

tion constraint can be incorporated into a

recognition architecture adapted to han-

dle missing data in a bottom-up fashion.

RECOGNITION FROM PARTIAL

DATA

We have developed [4] a model of

speech recognition, based on a modified

Kohonen self-organising network [5].
whose performance degrades gracefully
as an increasing proportion of the input
representation of speech is deleted (simu-

lating the effect of increasing noise intru-
sions) during training and recognition.
During the recognition phase, an input

vector is compared with the weight vector

lCPhS 95 Stockholm

0003
'

l .a

’.
‘.
)
Q

.
.
<

/
<

>
.

output layer

data present
0—

in
p
u
ts

x
(
2
.
0
.
0

'

N

::
i
U)..
.C

2’
Q
3

data missing

Normal distance 2 (W. ._ “2

metric [5] ieprewv

Distance metric 2 (”it -102
for incomplete leprrstnl

vectors [6]

Distance meme 2 (Wu _ 102 +

With auditory ispresenl

induction 2 mm, Wu —x‘)2
constraint ”rim"

Figure I. The input vector is compared
with net weight vectors: the winning unit
is chosen as that whose weight vector
most closely matches the input vector, as
determined by a distance metric.

associated with every node in the net. In
. the general case, all components of the in-
put vector contribute to the distance mea-
sure. In the version modified for
incomplete input [6] only those compo-
nents present in the input vector contrib-
ute to the score.

As. discussed previously, studies of
perceived auditory continuity suggest
that the full spectral profile places addi-
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Figure 2. Illustration of the auditory in-
duction constraint: the “best match "
panel shows a correct match between the
input vector (light grey) and the net
weight vector (dark grey). The distance
measure is determined primarily by stan-
dard metric. The “incorrect match " pan-
el shows a match between the same input
vector and a net weight vector which “ex-
pects ” more energy than is present in the
signal.

tional top-down constraints on the recog-

nition process. Specifically, “auditory

induction" operates only if sufficient en-

ergy exists in the occluded regions to ac-

count for the induced pattern. This is

expressed computationally by the addi-

tion of a second factor in the distance

metric which adds a penalty for any “ab—

sent” components whose level is below

that in the net vector. This is illustrated in

figures 1 and 2.

EXPERIMENTS

A net of dimensions 19x13 was used.

The input representation was produced by

a 64-channel gammatone filterbank, with

channel centre~frequencies equally

spaced on an ERB-rate scale between 200

and 5500 Hz, and the output of each filter
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processed by a model of inner hair cell

transduction, smoothed over a 10 ms win-

dow.

Training and test data were generated

from utterances produced by a single

male Japanese speaker from the ATR

large-scale speech database [7]. The nets

were trained and calibrated (i.e. one of 27

phone labels was attached to each output

node) using a training set, and recognition

performance measured in terms of recog-

nition accuracy —— the percentage of la—
bels in the test set correctly identified.

Recognition performance was investi-
gated in two series each of 10 different
conditions, in which during recognition
input vector components were deleted at
random with a probability which varied in
from 0.0 (no deletion) to 0.9 (90% dele-

tion). In the first series the distance metric
for incomplete vectors was used, in the

’ second the metric (AIC) with auditory in-

duction constraint was employed.

Results of these experiments are
shown in figure 3. They show a clear ben-
efit of using the AIC metric as the proba-
bility of deletion increases (using a model
of auditory scene analysis the probability
of deletion is likely to be around 85%).
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Figure 3. Recognition accuracy vs.
probability of deletion for 2 recognition
algorithms. The “withoutAlC” curve em~
plays the distance measure for incom-
plete vectors, whilst "with AIC” includes
modifications suggested by the continuity
efi’ect as described in the text.
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IMPLICATIONS FOR MODELS OF
SPEECH PERCEPTION AND

FUTURE RESEARCH

These results point to a model of
speech perception in which information
grouped by auditory scene analysis trig-
gers matches against stored speech sche-
mas, which may then be verified through

application of the auditory induction con-
straint.

This further suggests that the represen-
tations the auditory system uses to “cate-
gorise", and indeed learn about, speech
sounds may be rather different to those
with which the traditional phonetician or
linguist familiar. If we restrict ourselves
to consideration of spectrum-like repre—
sentations (there is no reason why other

representations such as onset, offset and
frequency-transition maps should not
play a part in the coding of speech), this is
especially true in low-frequency regions
of speech, where the first formant, and in
some cases the second, and even third for-
mants, are resolved into harmonics.
When this has been addressed (cf. [8]), it
has generally posed a problem for theo-
ries of speech perception, as well as auto-
matic speech recognition systems.

A representation which includes har-
monics will clearly be (even) more vari-

able than one in which the formants are
coherent, due to natural changes in funda—
mental frequency during the course of
phonation. A model of perception based
on partial matching suggests that we
should regard grouped auditory primi-
tives as indicating those frequencies at
which the spectrum should be sampled,
rather than as defining a pattem to be
matched. This side-steps the problems as-
sociated with smoothing reconstructed
spectral profiles on the basis of extracted
peaks using a process of interpolation.
Furthermore, a partial matching scheme
might account for the centre of gravity ef-
fect, or large-scale spectral integration
(Cf. [8]). It gives a plausible mechanism
by which the auditory system would take
into account gross Spectral shapes rather
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than individual formant frequencies.

Consider for example the weights in nets

trained (cf. [4]) using complete data vec-

tors and data vectors with 85% of the
components randomly deleted, shown in
figure 4. It can be clearly seen that the de-
letions have little effect on the representa-

tion of the vowel spectra.

staff?
1», :.£{

Figure 4. Spectrogram-like plots of net
Weight vectors (1 frame = I node) sorted
by label (within-label order is insignifi-
cant) for nets trained using (top) com-
plete data vectors and (bottom) data
vectors with 85% of the components ran-
domly deleted.

The model presented here may also
explain aspects of the Lombard effect (cf.
[9]): since harmonicity is a powerful
grouping cue, and in noisy conditions
likely to be more robust than common
amplitude modulation, a goal of the ele-
vation of pitch may be to make the voice
more readily separated. Furthermore,
studies of auditory induction [3] also
show that when one sound is heard in the
presence of another, the perceived loud-
ness of the first sound is less than it would
be were it heard in isolation. In other
words the auditory system employs some
sort of disjoint allocation of energy be-
tween the two sounds. The purpose of
changes in spectral tilt observed in Lom-
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bard speech may be to raise the perceived
level of high frequency regions of the
spectrum to counteract the fact that other-
wise, after disjoint allocation, the per-
ceived levels would be below those
expected for a particular speech sound.

Finally, the model suggests a novel
methodology for investigating phonetic
cues, and cue trading: it makes it possible
to investigate computationally the ques-
tion “can recognition be achieved without
information in this region".
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