PITCH RANGE AND REGISTER IN FRENCH POLITICAL SPEECH
Paul Touati
Dept. of Linguistics and Phonetics, Lund, Sweden

ABSTRACT
The aim of this paper is to present an analysis of pitch range and register of a French politician in two different political contexts. Methodological aspects will be first discussed. A contrast in pitch range and register along the hyper-hypspeech dimension is then proposed.

INTRODUCTION
Macrocontextual constraints such as general turn-taking conditions, dominance relationships between speakers, topic arrangements and rhythmic activity bear in a significant way on the use of a particular speaking style. French political speech is often characterized by a rhetoric use of acoustic-prosodic properties such as focal accent, contrasts in overall pitch and pauses (see [1] and [2]). Furthermore, prosodic correlates of a speaking style seems to be specified by the speaker in such a way that they are easily detected at a macrolevel by the listener (see [3]).

In [4], the issue of rhetorical prosody in political speaking style was addressed by analyzing contrasts in overall pitch as produced by a French politician (J. Chirac). As a result of this analysis, a two-fold categorization of overall pitch variation in French was proposed, one in terms of range and the other in terms of register. In that context, overall pitch variation of another politician (R. Barre) has been analyzed along the time dimension represented by two different contexts a pre-electoral political speech versus a post-electoral press-conference.

Following Lindblom’s H&H theory [5], we should say that this particular contextual orientation optimizes a dichotomy between one context – here the pre-electoral political speech – where output constraints dominate and hyperforms are expected and a another context – here the post-electoral press-conference – where system constraints dominate and hypoforms are selected. The results show that pitch range and pitch register obviously contrast along the hyper-hypspeech dimension as defined by Lindblom.

CONTENTS, METHODOLOGY AND RANGE & REGISTER
There is without doubt a current interest in investigating spontaneous speech. However, the term ‘spontaneous speech’ covers a considerable range of speech corpora. In this respect, it might be important to establish a difference between a corpus of spontaneous speech elicited in the context of a phonetic laboratory for experimental purposes and a corpus of spontaneous speech produced extra muros, in the context of social interaction and without any experimental purpose. Why not call the former ‘spontaneous lab speech’ and the latter ‘spontaneous speech’? (for a general discussion concerning phonetics and real speech, see [6], for the contrast between spontaneous lab’ speech and read lab’ speech see [7] and for an interesting attempt to simulate rhetoric in the lab see [8]).

We would like to suggest that this terminological adjustment seems relevant also insofar as it has impact on data collection, experimental methodology, and modeling paradigms.

Choosing contexts
In controlled laboratory experiments, the researcher’s experimental setting can create contextual frames that are not always consistent with the informant speaker’s everyday practices. This is hardly the case with extra muros conditions, where the context is de facto given by the social interaction. The choice of relevant contexts is therefore crucial when collecting spontaneous within-speaker data under extra muros conditions.

Here, the opposition pre-electoral versus post-electoral speech has been chosen because this is when persuasion (when he comments his political victory or defeat). A basic assumption underlying the choice of the broadcasted pre-electoral speech is that every achievement in the referential field directed to the listening public must in real be translated into two different prosodic achievements in the politian effort to persuade listener-voters. We can therefore assume that a pre-electoral context shaped the speaker’s speech toward ‘hyperform’ speech, as opposed to a post-electoral context which shaped the speaker’s speech toward ‘hypoform’ speech.

Methodology
Because we were working with spontaneous speech, the question of the research setting proved to be essential. It has resulted in a methodology where restricted samples of speech material – short and well time-defined discourse events – from conversations, interviews, political debates, political speeches and radio programs have been studied from different angles.

We have conducted four different kinds of analyses (see [9]): (1) analysis of the discourse structure of the speech corpus without specific reference to prosodic information (in order to avoid circularity), (2) auditory analysis (which is implemented as a selective prosodic transcription in Waves+), (3) acoustic—phonetic analysis, and (4) analysis-by-synthesis.

By focusing our attention on general discourse characteristics on a speech fragment produced in a particular context and by then following a rather classical approach in the research, we are meeting basic methodological requirements that allow us to propose a formalized prosodic transcription of successive individual utterances in their specific extra muros context.

Modelling range & register
The majority of studies dedicated to the analysis and modelling of range and register are carried out within the intra muros condition where the speaker is asked to read isolated sentences simulating different emotional states or attitudes. In [10], Bruce showed that differences in mood (detached-involved) involve pitch range variation, achieved by Fo expansion upward, the lower Fo limit being fixed. Even if Bruce noticed that not only the maxima were raised, but the minima also, he was not interpreting these raised Fo minima as changes in local register. On the other hand, Gårding’s tonal grid parameters [11] clearly proved two different types of Fo expansion between parallel lines. One denoted as ‘R’ which expressed a global range and another, ‘r’, which is the vertical distance between the grid lines which might be interpreted as change in register. Similar parameters were used by Ladd for his CSTR model [12]. The main difference is that for Ladd register makes reference to target level and not to shape as is the case for Gårding. More prosaically, Swerts & Collier [13] defined register as the mean Fo of a speech fragment (expressed in Hz) and range as the standard deviation from the mean Fo of the speech fragment (expressed in semitones).

Overall pitch variation in spontaneous French speech fragments collected under extra muros conditions was observed by Mertens [14]. In order to categorize these changes, Mertens proposed three registers for French, a middle register, a low register and a high register. The middle register is placed in the central part of the speaker’s tonal range – it constitutes the speaker’s usual register. Changes from this central tonal register toward a lower or higher tonal register implies new values for the Fo interpretation of the High and Low turning-points. However, our analysis of overall pitch within the specific setting of a pre-electoral speech [4] provided evidence that we needed a two-fold categorization of overall pitch variation in French – one in terms of range and the other in terms of register.

An important step was the auditory analysis which provided an orthographic and a prosodic transcription of what had been recorded. More specifically, prosodic features marked for the purpose of this experiment were phrasing and overall pitch i.e. range and register.

PROCEDURE
The recorded material were digitized and analyzed using the ESPS/Waves+ environment which enables transcription and labelling in multiple tiers.

An important step was the auditory analysis which provided an orthographic and a prosodic transcription of what had been recorded. More specifically, prosodic features marked for the purpose of this experiment were phrasing and overall pitch i.e. range and register.
For each transcribed prosodic phrase, a statistical program (see [15]) performs calculations on the F0 file. F0 values were collected for three pitch parameters: a local absolute F0 minimum (Fomin with its temporal location), a local absolute F0 maximum (Fomax with its temporal location), and a global parameter that is an average F0 (Fomean) over the whole phrase. These values were then directed to a new file and could be viewed for control with xtabel (ESPSS). Detected F0 points with erratic values could be assigned manually to a new temporal location.

The values obtained for successive prosodic phrases in each setting were plotted as presented in Figures 1 and 2. All the values were also pooled and presented in Table 1. In order to capture differences in F0 variation between the different contexts, frequency modulation factors (SD/mean in %) as proposed in [17] were also calculated.

OBSERVATIONS

Figures 1 and 2 show Fomax, Fomean and Fomin values (with average) for successive prosodic phrases produced in the two different contexts. For the three parameters, the F0 variation is larger in context spec that is the F0 distance between the absolute F0 maximum and the speaker's baseline (specified as the usual F0 floor), both reached across contexts, and a context specific range which is the F0 distance between the absolute F0 maximum and the speaker's baseline (specified as the F0 minimum in a specific context). A register would be defined in terms of F0 level given by absolute F0 minimum in actual prosodic phrases.

Obviously, this politician used a bi-modal overall F0 distribution, high-pitched in the pre-electoral speech and relatively low-pitched in the post-electoral conference. The pre-electoral speech, in contrast with the post-electoral speech, seemed to shape the speaker's intonation toward a more hyperform behaviour with larger and more variable F0 excursions and several changes in register.

ACKNOWLEDGEMENTS

I am especially grateful to Marcus Filipsson for his computational assistance.

REFERENCES

CONCLUDING REMARKS

To conclude, I would like to define two kinds of range: a voice's range which is the F0 distance between the absolute F0 maximum and the speaker's baseline (specified as the usual F0 floor), both reached across contexts, and a context specific range which is the F0 distance between the absolute F0 maximum and the speaker's baseline (specified as the F0 minimum in a specific context). A register would be defined in terms of F0 level given by absolute F0 minimum in actual prosodic phrases.

Of course, this politician used a bi-modal overall F0 distribution, high-pitched in the pre-electoral speech and relatively low-pitched in the post-electoral conference. The pre-electoral speech, in contrast with the post-electoral speech, seemed to shape the speaker's intonation toward a more hyperform behaviour with larger and more variable F0 excursions and several changes in register.

REFERENCES

Figure 1. Fomean, Fomin, Fomax (with average) in pre-electoral speech (values are in Hz).

Figure 2. Fomean, Fomin, Fomax (with average) in post-electoral press-conference; values are in Hz.