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ABSTRACT
In this paper an iterative

normalisation procedure to automatically
derive phonetic rules from a labelled
speech corpus is described. It is assumed
that the acoustic influence of
coarticulatory constraints can be
superimposed to model natural spectral
variation. The algorithm proves to be
promising when used to analyse the
effect of phonetic context, stress and
duration of Swedish front vowels on F1
and F2.

INTRODUCTION
Phonetic spectral variability in the

realisation of a phoneme is due to
numerous factors such as context, stress,
speaker, speaking style, etc. Analyses in
studies of coarticulation have
traditionally dealt with syllables or
words in a strictly controlled context.
However the interaction between
different factors in connected speech
which influence segmental quality is
very complex. ln an attempt to describe
essential coaniculatory phenomena we
propose a data—driven method applied to
a labelled speech corpus. The description
is given in terms of a set of allophones or
phonetic rules adjusting the spectral
pfifizriieters of the phone to be modelled

In this paper we describe a step by
step normalisation procedure to
automatically derive phonetic rules. The
rules are easily interpreted and can be
applied directly in the KTH text-to-
speech system [3]. Thus, we combine the
strengths of data driven and knowledge
based techniques. The aim is to both
produce more natural-sounding synthetic
speech and also to gain deeper
knowledge about speech production and
perception.

In the current experiment we address
the problem of modelling how F1 and F2
of Swedish front vowels are influenced
by phonemic context, lexical stress and

position. The variations along the
speaker and style dimensions have been
reduced by analysing read speech of one
speaker.

METHOD

The speech material
The speech material consists of ll

short stories read by one male speaker.
Formant frequencies of 2944 Swedish
front vowels were manually measured.
See Table l for the vowel distribution.
This material has been used in several
other investigations, e.g. [1][4]. Carlson
& Nord [2] have also used the corpus to
study context dependencies for the short
vowel /e/.

Table I. Number ofanalysedphonemes.
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Derivation of rules
A data sample in the analysis consists

of a prediction vector, X, and a response
vector Y. The aim is to correctly predict
Y=[F1, F2], of a front vowel given X
which contains information about the
vowel’s duration, lexical stress and
phonemic context.

The phonemic context is defined by
the identity of the target phoneme itself,
the three preceding and the three
following phones. Each sample 315.0
includes information about whether it rs
word final or word initial.

The algorithm is based on the
assumption that the acoustic realisation
of a phoneme can be modelled by

SUperimposing the influence of the most
important predictor variables.
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A superpositional model has proven to
be reasonably reliable despite
statistically significant predictor variable
interaction [5]. Context normalisation
techniques have also been applied with
success in automatic speech recognition,
e.g. [6]. . _

The samples are subjected to binary
questions to find the group of samples
that minimises the acoustic spread of the
entire data set when those samples have
been normalised and replaced. The
amount of spread is evaluated by means
of the function S,

N

Sty)= ‘2 %Z(y._,-i)2
r-l j-I

where yU and y, are sample numberj and
the mean of the izth formant frequency
respectively. N is the total number of
samples. All frequencies are calculated
on the technical mel-scale. Hence, S is

basically the sum of the formant
frequency variances in mel.

A significant advantage of the
replacement procedure is that all data are
available for analysis in every iteration.

A categorical variable is a variable
taking on unordered values, A question

on such a variable can be of the type "Is
the phone immediately following the
target a nasal?" That is, phonetically
meaningful features are used to form
questions as well as single phoneme
identities. Ideally, all phoneme
combinations should be used to form
questions. However, this task becomes
unfeasible as the number of
combinations, n, is given by n=2"', where

m is the number of phonemes. Currently
42 features are used apart from the single
phoneme identities. A typical question
on a continuous variable is "Is the
duration of the target phoneme < 100
ms?" Questions are made on all unique
target phoneme durations occurring in
the speech corpus.

Samples responding positively to the
question are normalised on the mel-scale
towards the grand mean. The
normalisation term that is added to the
sample is the difference between the
mean frequency of all samples and the
mean frequency of the selected samples.
One normalisation term is used for each
formant frequency. The question which
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minimises the variance of the entire data
set, in combination with the
corresponding normalisation terms, is
chosen to specify a rule.

A cross validation procedure is used
to determine how many rules can be
used without loss of predictive power for
unseen data. Thus, for V-fold cross
validation, (N/V)’(V-1) parts of the
material is used for training and the
remaining part is used for testing. The
material is permuted so that each sample
is used both for training and testing. The
test score is calculated using the function
S. The value of S, when applied in
testing, is expected to decrease wim
increasing training until a critical point
where the effect of overtraining will
become noticeable and the variance will
increase again. In the last step all data
are used to generate rules. The cross
validation result indicates the maximum
appropriate number of rules that can be
used without loss of generality.

In the experiments described below
five-fold cross validation was used and
no rule applying to less than ten samples
was accepted. Moreover, all standard
deviations are calculated on the mel-
scale.

RESULTS
The overlap is considerable in the F1-

F2 vowel space. In the first experiment,
we employ the phonetic label of the
target phoneme as a feature. Thus the
predictive power of the phonetic labels
can be compared to that of other
features. All front vowels were analysed
simultaneously and normalised towards
a single front vowel prototype. Fl and
F2 of this vowel, the grand mean, equal
514 and 1599 Hz respectively. The
algorithm was iterated to generate 200
rules.

The normalised value of S as a
function of the number of rules is plotted
in Figure l. The solid line indicates the
mean cross validation score and the
dashed line represents the result of the
training on the entire data set.

The cross validation score indicates
that no further improvement will be
gained using more than about 50 rules.
At this point 50% of the standard
deviation for F1 and 52% for F2 is
explained. As expected, the most
significant rules concern the target
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phoneme itself in terms of features. In
fact, one third of the first fifty rules are

of this type. The second most important
factor influencing F1 and F2 is velar
context. Rules number five and Six
concern front vowels in the immediate
context of velar phones.

The distribution of rules based on the
right and left context is quite symmetric.
The exception is the far context, three

phones away, in which the right context
seems to be somewhat more important
than the left context.

Only one rule among the first fifty,
concerns duration or stress. This is qUite
natural since these aspects influence the
target samples differently depending on
their phonemic identity. Therefore, the
question set was expanded to include
composite questions such as ‘ls the
target /a/ AND stressed?’ Apart from
simple phoneme identities, 16 additional
features were used for the targets
implying a dramatic increase in
computational load.
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Figure 1. The value ofthe spread, S, as a
fitnction of the number of rules. The
solid line indicates the mean cross
validation score. The dotted (lower) line
indicates the score from the training of
the entire material.

The standard deviation of F2 is
reduced from 162 to 72 mcl using the
first 50 composite rules. This explains
more than 55% of the standard deviation.
The standard deviation of F1 is
practically unchanged. Thus, the
introduction of composite questions
yield only a slight improvement.
However, the improvement seems to
become more important when more rules
are used. The cross validation score is
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one percent lower in the composite case
when 50 rules are used.

A separate set of rules was generated
for /a/, the most frequently occurring
front vowel, to illustrate the power of the
method more clearly and to extend the
analysis to some extent without
increasing the computational
complexity.

The cross validation score indicates
that some thirty rules suffice to model
the major contextual influence on Ia].
Degeneration occurs when more than
fifty rules are used. The most significant
factor is, again, velar context followed
by lexical stress. The following two rules
describe the coarticulatory influence of
bilabials and nasals in the close vicinity
of the target vowel. Vowel features are
also important: rule number five and six
consider /a/ coarticulated with other
front and low vowels. The first 30 rules
explain 27% and 39% of the standard
deviation for F1 and F2 of /a/
respectively. This corresponds to a
decrease from 48 to 35 mel in F1 and
from 107 to 65 me] in F2. More rules are
based on the left context than on the
right among the top thirty rules. This
means that the left context has stronger
predictive power than the right.
Moreover, the stronger explanatory
power of the left context mainly
concerns F2. It is unclear whether this
has any implications for reasoning about
carry-over vs. anticipatory coarticulation
before the phonetic distribution of the
context is analysed more thoroughly.

Since only one speaker, reading text
passages, is analysed we expect the
articulatory effort and speaking style to
be about the same throughout the speech
material. It is reasonable to believe that
the duration of the target phoneme Will
have a systematic effect on the formant
frequency values [7]. Therefore, when
the best rule has been found a duration-
dependent normalisation adjustment is
introduced to refine the analysis. The
formant frequency displacement IS
assumed to increase linearly With a
logarithmic decrease in segment
duration.
Figure 2 shows an example of the
relation between the second formant
frequency of /a/ tokens followmg
immediately afler a velar segment and
the logarithmic value of the duration.
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There was a decrease in the standard
deviation of both F1 and F2 on the
training of the entire data set. The mean
cross validation score indicates a small
improvement compared to the
normalisation independent of segment
duration.
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Figure 2. F2 of /a/ following a velar
segment plotted vs. the logarithmic value
ofthe duration. r = ~0.54.

DISCUSSION
In this paper we have proposed a

method for automatic derivation of
phonetic rules from a labelled speech
corpus. In the first experiment the
phonetic labels assigned to the target
vowel proved to be powerful formant
frequency predictors as expected.
However, all front vowel identities were
not more important than the context.
This might change if F3 is taken into
account as well.

The cross validation score plotted in
Figure I implies that the method is
robust. The curve does not turn upwards,
indicating over-fitting to test data, not
even after 200 iterations. The cross
validation of the /a/ rules displays a
slight deterioration if more than 60 rules
are used. The robustness is probably due
to the fact that the overall decrease in
variance depends on more than the
magnitude ofa coarticulatory effect. Just
as important is the number of samples
influenced. The rules were used to
predict formant frequencies given the
predictor vectors of the training material
for /a/. The result showed that there is a
systematic tendency of underestimating
high formant frequencies and
overestimating low frequencies. That is,
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the formant frequency displacement
seems to be underestimated on an
average. One plausible explanation for
this is that the normalisation terms are
based on differences in mean values that
are biased by other coarticulatory effects.
We conclude that the algorithm proposed
in this paper is robust and provides
easily interpretable results that
potentially can be used to enhance the
quality of synthetic speech.
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