
Vol. 4 Page 140 Session 73.2 ICPhS 95 Stockholm

PHONETIC INTERPRETATION OF ACOUSTIC

SPEECH SEGMENTS

Knut Kvale

Telenor Research,

N-2007 Kjeller, Norway

E-mail: knut.kvale@tf.telenor.no

ABSTRACT

A crucial problem in automatic speech

recognition is the transformation from

the continuously varying speech signal to

a set of discrete and abstract phono-

logical symbols. The key question is how

much phonetic information can be

extracted from the speech signal alone

without using prosodic, syntactic,

semantic or pragmatic knowledge. To

address this issue we have analyzed the

phonetic content in spectrally

homogenous acoustic segments which are

selected automatically. Although the

segmentation algorithm is language
independent and needs no training
session, we found that the obtained

acoustic segments could be given
phonetic interpretations.

1. INTRODUCTION

In the last few years impressive progress
has been made in spoken language
systems (SLS) which make it possible for
people to interact with computers using
speech. The SLS technology integrates
techniques of automatic speech
recognition (ASR), natural language
processing and human interface facilities.
A crucial problem for ASR is the
transformation from the continuously
varying speech signal to a set of discrete
and abstract phonological symbols.

Although listeners tend to perceive
speech as discrete sounds following each
other in temporal order, the mapping
between acoustic events and a linguistic
representation is complex, non-linear,
irreversible and only partly understood.

Thus, the discreteness is not signalled by

the stimulus but is imposed on that

stimulus by a listener.

The design philosophy of many

automatic speech recognition systems has

therefore been based on the belief that

the acoustic signal does not provide

sufficient information to identify the

linguistic content of an utterance. Thus,

prosodic, syntactic, semantic and

pragmatic knowledge has to be utilized

to recognize an utterance.

By contrast, experiments in speech

spectrogram reading, e.g. [1],[2], have

demonstrated that phonemes are

accompanied by acoustic features that are

recognizable directly from the speech

signal without additional knowledge

sources. This paper pursues this issue

further by analyzing automatically

derived stable portions of the speech

signal.

2. ACOUSTIC SEGMENTATION

A segment is a linear unit anchored in a

short stretch of speech by a set of

relatively unchanging phonetic feature-

values [3]. Thus, segmentation can be

defined as dividing the speech signal into

directly succeeding, non-overlapping

stable pans.

Algorithms for automatic acoustic

segmentation rely on the acoustics only,

i.e. they do not assume any phonological

information. There are many advantages

of acoustic segmentation compared to

phonemically based segmentation.

Firstly, the speech segments are
characterized by acoustic, language

ICPhS 95 Stockholm

independent properties, which can be

derived automatically. That is, the

calculations are entirely based on signal

processing and hence there is no need for

explicit modelling or any prior

phonological knowledge of the language.

Secondly, the automatic subword

generation is detemtinistic in that

identical waveforms will be segmented

into the same acoustic subword. Thirdly,

the acoustic segments often contain

highly correlated frames and can hence

be quantised, i.e. represented by less

data, without losing essential

information.

In this paper we analyze the acoustic

segmentation calculated by the

Constrained Clustering Vector

Quantization (CCVQ) algorithm [4],[5].

This algorithm recursively computes all

possible segment combinations and

represents each segment by its centroid,

(i.e. its mean spectrum with the present

distortion measure). The optimal segment

sequence minimises the differences

between the spectral frame vectors and

the centroid within each segment. That

is, the consecutive acoustic segments

which yield minimal overall intra-

segmental distortions are found. The

obtained segments thus exhibit the

maximal acoustic homogeneity within

their boundaries and the frames within a

segment are highly correlated, i.e. steady

segments are located.

Phonemically defined units may

contain many spectrally homogenous or

quasi-stable areas. Thus, acoustic

segmentation algorithms may often

provide an oversegmentation (o.s), i.e.

more segments than phonemic labels. As

an example, figure 1 displays a speech

waveform and the corresponding broad-

band spectrogram which is automatically

segmented with the CCVQ—algorithm

with 100% 0.5., i.e. the number of

acoustic segments is forced to be twice

the number of phonemes in the utterance.

The speech signal in figure 1 is manually

segmented and labelled with SAMPA-
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symbols [6] according to the conventions

described in [4],[7].

3. QUALITATIVE EVALUATION

The qualitative analyses of the CCVQ<

algorithm were carried out on the

Norwegian EUROMO recording [4],[7].

With 100% oversegmentation typical

general trends were (see [4] for details):

0 Plosives were most often segmented

into a closure pan and a burst part, such

as /k/ in /O:kek/ in figure 1. However,

when voiceless plosives succeeded an /s/,

as /sp/ and /sk/ in figure 1, the plosive

release was weakened and was not

marked as a separate segment. If the

closure contained some voicing, this was

also separated as one segment. Often

some alternatives for the beginning of

the closure and the end of the burst were

given. If the plosive release contained

both a burst and an aspiration part, these

were marked as two separate segments.

- Vowels realised with an amplitude that

increased evenly to a maximum value

and then decreased towards the next

phoneme often contained formant-

transitions which were detected by the

acoustic segmentation and an acoustic

segment boundary was placed near the

amplitude top as in the first /i/ in figure

1. (Marking the "centre" of the phonemes

is useful for eg. consistent diphone

segmentation for text-to-speech synthesis

[8])-
. In the transition from vowel to silence

the acoustic segmentation algorithm

calculated two or three boundaries as for

/O:k/ and lek/ in figure 1. The first one

was placed where the intensity reduction

began in the higher frequencies, the

second (optional) one was placed where

almost no intensity was registered in the

spectrogram, and the third one was

placed where no intensity at all was

detected in the spectrogram.

- Segments containing extralinguistics

(e.g. creaky voice, epenthetic silence,

epenthetic sound and lipsmack) were
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The sentence "i sprdket kan vi skrive ue(ndelig)” (=in language we can
write inflinitely» is manually segmented and labelled with SAMPA symbols [6] shown
under the waveform in the top row of the figure. In the waveform below and in the
broad band spectrogram the acoustic segmentation boundaries with 100% over-
segmentatian are shown. After [4].

marked off separately. In figure 1 we
notice that the creaky voice area between
/e/ and /}/ is one acoustic segment.
- When the apico alveolar tap realisation

of /r/ showed up in the spectrogram with
an extra voiced sound with formant
structure [9], is. an epenthetic schwa as
in /sprO:/ and lskrizv/ in figure 1, the
schwa and [r]-closure were segmented
into separate acoustic segments.

4. OVERSEGMENTATION

Obviously it is preferable to keep the
oversegmentation factor (us-factor) as
low as possible while still achieving high
corncidence with manual segmentation.
This section summarizes the performance
of CCVQ-segmentation as a function of
oversegmentation:
° Boundaries computed with a lower

o.s.-factor remained fixed when

increasing the 0.s.—factor. That is, the
effect of increasing the o.s.-factor was to
split the segment(s) with highest intra—
segmenta] distortion. Actually, spectrally
stable segments were not divided even
with 200% oversegmentation.
' The CCVQ-algorithm searched for

stable segments, and the boundaries were
placed in transient areas because vectors
from these areas increase the intra-
segmental distortion. As the o.s.-factor
increased, transition areas could be
segmented into several short acoustic
segments, providing several alternative
boundaries. This reflects the
segmentation problem of placing a
boundary between two sounds at one.
single, "correct" time instant.
' With more than 75% 0.5., the acoustic

segmentation obtained high coincidence

With the corresponding manually placed
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boundaries. The few deviations from

manual segmentation were mainly due

to:

i) Some half-way, mid—point, or

symmetric conventions used in the

manual segmentation, e. g. the convention

in [4] of placing the boundary in the

middle of the creaky voice area between

two vowels (instead of at the end of the

segment where abrupt changes often

occur). If this area was spectrally stable,

the acoustic segmentation assigned

boundaries at the ends of it.

ii) "Impossible cases", where no

boundary cue was seen in the waveform

or spectrogram, and the human labeller

has placed the boundary rather arbitrarily

or based the decision on listening only.

iii) "Squeezed in segments", Le. a

phoneme which is perceived when

listening to it in context but which is

without any corresponding visible

acoustic cues in the waveform or

spectrogram, was often squeezed in as a

very short segment between the

phonemes with clear acoustic cues, e.g.

as /v/ in /nvi:/ in figure 1.

5. CONCLUSIONS

The CCVQ—algorithm isolated spectrally

stable portions of the speech signal. The

stable segments were not divided even

with a high degree of oversegmentation.

When the number of acoustic

segments was forced to be twice the

number of phonemes in an utterance,

most of the acoustic segments obtained

by the CCVQ-algorithm could be given

a phonetic interpretation. In addition,

quantitative analyses in [4] have showed

that the acoustic segment boundaries

coincided equally well with the

corresponding manual segmentation for

English, Danish, Norwegian and Italian

(manually annotated by native

phoneticians).

Since the acoustic segmentation

algorithm is capable of isolating

identifiable sub—phonemic segments

consistently, it can be useful for speech
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analysis and automatic speech

recognition based on acoustic subwords.

The CCVQ-algorithm may also be used

as a language independent pre-segmenter

tool for manual segmentation of e.g.

diphones for text-to—speech synthesis.

When this tool is accompanied by

conventions for which boundaries to

select for the various phoneme

transitions, it will reduce the randomness

in manual segmentation.
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