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ABSTRACT

The objective of this paper is to compare

different acoustic and articulatory representa-

tions on a vowel classification task. Classifica-

tion results were obtained based on linear
discriminant analysis and decision trees algo-
rithm with cross—validation on the speakers.
The cepstrum, the formants and the articula-

tory representations achieve similar perfor-

mances with linear discriminant analysis. The

decision tree algorithm provides accurate
classification rules for the formants and the

articulatory representations. The resulting

articulatory rules are consistent with our
knowledge on vowel production and could be
efficiently used in knowledge—based systems.

INTRODUCTION

A problem of long—standing interest in
speech analysis and recognition concerns
the most appropriate representation for
acoustic-phonetic decoding. In this work
we will focus on vowels; results for plo-
sives place of articulation identification
can be found in [1]. Vowels are tradition-
ally described in term of static spectral
characteristics or articulatory configura-
tions.

From the acoustic point of view, global
spectrum descriptions in term of a small
set of coefficients (for example the LPC
coefficients) can be used. However, the
standard representation for vowels con-
sists in the first resonance frequencies of
the vocal tract (the formants frequencies).
It is well known that, even if the first for-
mants frequencies are efficient cues to
classify vowels, there exist an important
speaker variability — for example, the dif-
ferences between male and female
speakers [2]. Moreover, in fluent speech,

the target vowels are not always reached
when produced in a consonant context
[3]. Nevertheless, this phenomenon does
not introduce any degradation in the
human recognition capabilities [4]. A
large amount of work continues however

to focus on static description of vowels

(see for example [5] and [6]).

From the articulatory point of view,
one can describe a vowel by the configu-

ration of an articulatory model that pro-

duces similar spectral characteristics.
Unfortunately, the computation of the
articulatory configuration from the acous-
tic parameters (the acoustic-to-articula-
tory inversion) is not a trivial problem. In

previous work [7], we developed a tool

that realizes this inversion in the frame-

work of an articulatory model, based on

the first three formant frequencies.

Our aim in this work is to compare sev-

eral acoustic and articulatory representa-

tions on a vowel classification task.

ACOUSTIC REPRESENTATIONS

The speech signal was passed through

a 5 kHz cutoff low-pass filter, and sampled
at 10 kHz. The si 7nal was then preampha-

sized (1 - 0,95 2‘ ) before further process-
ing. Six different acoustic representations

have been chosen. Three of them are
directlycomputed from the speech signal,
and are widely used in statistical speech

recognition systems (e.g. HMM). The

three remaining ones are related to for-
mant frequencies, prevalent in knowl-
edge-based recognition systems.

0 LPC (LPCA): The LPC coefficients were

computed with the autocorrelation
method on a 25,6 ms frame multiplied
by a Hamming window. The number of

poles of the predictive filter was fixed to
12.

0 LPC cepstrum (LCPS): The LPC cepstral
coefficients were derived from the pre-
dictive coefficients obtained with an
LPC analysis [8]. As before, we used the
first 12 coefficients.

0 Cepstrum (CPST): Cepstral coefficients

were computed from a 16 ms frame mul-
tiplied by a Hamming window. The first
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12 coefficients of the cepstrum were
used in order to describe the spectral
characteristics of the signal at the mea-
surement point.

0 Formants (FORM, BARK, MEL): The

formant values were extracted semi—au-
tomatically on the basis of the different
acoustic representations. We used 3 dif-
ferent scales for the frequency axis:
Hertz (FORM), Bark [9] (BARK), and
Mel [10] (MEL).

ARTICULATORY REPRESENTATIONS

Four articulatory representations were
selected. The first one is computed from
the LPC coefficients. The other three cor-
respond to the control parameters of three
different articulatory models. These con-
trol parameters are provided by a neural
network performing the acoustic-to-artic-
ulatory inversion on the basis of the first
three formant frequencies [7].

0 LPC area (LAREA): The LPC area func-
tions are computed from the LPC reflec-
tion coefficients as suggested by [11].

0 DRM (DRM): The distinctive regions
model [12] is an 8 regions acoustic tube
with transversal control. The model is
derived from acoustic properties of the
uniform acoustic tube. The control pa-
rameters are the sections of the 8 re-
gions. The length of the tube was kept
constant (18 cm).

0 Maeda (MAEDA): Maeda’s model [13]
IS an articulatory model derived from X-
ray sagittal cuts. A set of 7 parameters
controls the shape of the sagittal cuts.

0 Lin Fant (LF): Lin and Fant’s model [14]
IS a geometrical model with longitudi-
nal control. There are 3 main control pa-
rameters (two for the principal
constriction, and one for the lips).

EXPERIMENTS

In order to study the effectiveness of
these different representations for the
classification of vowels, a set of vowel-
consonant-vowel (VlCVZ) was recorded
(Where C is one of the six plosives [p, t, k,
b, d, g], and V1 or V2 one of the five vowels
la, 03,1, ll, y]). The resulting 150 VCV were
recorded by 11 male speakers, giving a
total of 1650 tokens and 3300 vowels. The
10 representations are computed in the
stable part of the vowel V1 and V2.

In a first experiment, vowel recogni-
hon results were obtained based on linear
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discriminant analysis [15] with cross-val-
idation on the speakers: the tokens from
each individual speaker are successively
removed from the training set, and used
as a test set. The results can therefore be
considered as speaker-independent. Each
training set consists in 3000 vowels, and
each test set in 300 vowels. The results are
presented in figure 1.

§
C

o
rr

e
ct

id
e
n
ti
fic

a
ti
o
n

[%
]

8
s

L8
.3

LP
CA
[
:
1
2
]

cr
sr

—
i

m Mp} < <LL

8 gas sis“p-l u‘m EOE

Figure 1: Results of discriminant analysis for the
ten representations showing percent of correct
classification: resultsfor each test speaker (cross-
es) and averaged performance (in grey).

The formant based representations
obtain the best performances on average.
Their scores are, however, comparable
with those of other acoustic representa-
tions — like LCPS — which have higher dis-
persions. We can observe that LPCA
obtains lower performances.

The performances of LAREA -less
than 80% and a very high variability
among the different speakers — are signif-
icantly lower than the other representa-
tions. On the contrary, the three other

articulatory representations present per-
formances comparable to the formant
cues. Their dispersions are larger than for
FORM but remain lower than for LCPS.
On average, LP is less performant than
DRM and MAEDA.

We observed that the vowel giving the
largest amount of errors is [a], often con-

fused with [as]. This result is illustrated in
figure 2 showing the scatter plot of the
3300 vowels on the two first discriminant
axes for 4 representations.

In a second experiment, we used a deci-

sion trees algorithm named C45 [16].This
technique allows to build a tree that clas-
sify the data with a succession of tests
involving just one attribute. The tree is
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Figure 2: Scatter plot of the 3300 vowels on the
two first discriminant axes for LCPS, FORM,
DRM and MAEDA.

then pruned so that it becomes both sim-
pler and more accurate on unseen cases.
Finally, the algorithm generates a produc-
tion rule classifier that is usually as accu-
rate as the pruned tree, and more easily
understood by people. This algorithm has
been applied to four representations:
LCPS, FORM, DRM and MAEDA. As for
the discriminant analysis, the perfor-
mances were obtained with cross-valida-
tion on the speakers. The results are
presented on figure 3.

LCPS obtains bad performances in
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Figure 3: Results of decision trees and rules for
four representations showing percent of correct
classification: results for each test speaker
(crosses) and averagedperformance (in grey)

comparison with the other three represen-
tations. The performances of LCPS are
even worse when using the rules. This
result can be explained by the size of the
trees generated by the algorithm (see
table 1). The trees for LCPS are on average
three times larger than for the other rep-
resentations and their interpretation is
quite intricate. Therefore, the algorithm
does not succeed in generating a set of
rules able to classify efficiently the five
vowels. This indicates that the boundaries
are complex and that thevowels cannot be
separated with simple production rules.

Table 1: Comparison of results obtained with the
decision trees (mean size of the trees ~ lt- and
correct classification scores) and with the rules
after pruning the tree (mean number of rules
— # - and correct classification scores).

Decision trees Rules

Method it Classified # Classified

LCPS 121.5 91.28 % 8.8 67.83 96

FORM 39 97.43 % 9 97.66 %

DRM 25.7 98.25 '36 6 98.31 %

MAEDA 34.3 97.67 % 7.3 97.67 %

On the contrary, the performances of
the three other representations are similar
to those obtained by discriminant analy-
sis. Moreover, the rules generated by the
algorithm are quite intuitive :
0 The rules deduced from FORM make ef-

ficient use of the formant frequencies In

ICPhS 95 Stockholm

order to discriminate the vowels.
0 The rules deduced from the two articu-

latory representations DRM and MAE-
DA are very intuitive and consistent
with our knowledge on the production
of vowels. They use the main constric-
tion and the lips opening to distinguish
among the vowels.
Finally, it is interesting tonote thesmall

sizeof the tree for DRM, able toclassify thefive vowels with, on average, only six
rules.

CONCLUSIONS

We compared 10 representations of the
speech signal on a vowel identification
task with two different classification pro—
cedures: the linear discriminant analysis
and the decision trees algorithm. The cep-
strum, the formants and the articulatory
representations achieve similar perfor-
mances with linear discriminant analysis.
When using the decision tree algorithm,
similar performances are only obtained
for formant and articulatory representa-
tions. Indeed, for the cepstrum, the per-
formances of the rule-based classifier are
found to be significantly worse. This can
be explained by an overfitting of the train-
ing setwhich results in very complex trees
that are unable to abstract the data.

ACKNOWLEDGMENTS
This work was partially supported bythe ”Communauté Francaise de Bel—gique” and the ”European Communities”in the framework of theARC 93/98 — 1 68,ARC 92/97 — 160, and FALCON (6017)Basic research ESPRIT projects.

REFERENCES
[I] A. Soquet, and M. Saerens, ”Acomparison of different acoustic andarticulatory representations for thedetermination of place of articulation ofplosives,” Proc. of ICSLI’, a es 1643-1646,1994.

P g
£2] G. E. Peterson and H. L. Barney,Control methods used in a study of thevowels,” J. Acoust. Soc. Am., vol. 24,pages 175-184, 1952.
[3] B. Lindblom, ”On vowel reduction,”Speech Transmission Laboratory-Quarterly Progress and Status Report,Stokholm, vol. 29, 1963.
[4] W. Strange, ”Dynamic specificationof coarticulated vowels spoken in

Session 53. I4 Vol. 3 Page 325

sentence context,” J. Acoust. Soc. Am.,vol. 85, pages 2135-2153, 1989.
[5] I. D. Miller, ”Auditory-perceptualinterpretation of the vowel”, J. Acoust.33céAm., vol. 85, n°5, pages 2114-2134,1 8 .

[6] I. Hillenbrand, and R. T. Gayvert,"Vowel classification based onfundamental frequency and formantfrequencies," Journal of Speech andHearing Research, vol. 36, pages 694-700,1993.

[7] P. Iospa, A. Soquet, and M. Saerens,
"Varia tional formulation of the acoustico—
articulatory link and the inverse mapping
by means ofa neural network," In ”Levels
in Speech Communication Relations and
Interactions,” Amsterdam: Elsevier,
pages 103-113 ,1994.

[8] B. S. Atal, ”Effectiveness of linear
prediction characteristics of the speech
wave for automatic speaker identification
and verification,” J. Acoust. Soc. Am.,
vol. 55, n°6, pages 1304-1312, 1974.
[9] E. Zwicker, and E. Terhardt,
”Analytical expresions for critical-band
rate and critical bandwith as a function of
frequency,” J. Acoust. Soc. Am., vol. 68, n°
5, pages 1523-1525,1980.
[10] G. Fant, "Speech sounds and
features,” MIT Press, Cambridge MA,
1973.

[11] J. Makhoul, ”Linear prediction: a
tutorial review,” Proc. IEEE, vol. 63,
pages 561-580, 1975.
[12] M. Mrayati, R. Carré, and B. Guérin,
Distinctive regions and modes: a new
theory of speech production," Speech
Communication, vol. 7, pages 257-286,
1988.

[13] S. Maeda, ”Une modéle articulatoire
de la langue avec des composantes
linéaires,” Actes des 10““es Journées
d'études sur la parole, pages 154-162,
1979.

[14] Q. Lin, and G. Fant, ”Vocal-tract
area-function parameters from formant
frequencies,” Eurospeech, pages 673—676,
1989.

[15] ”SPSS Reference guide,” SPSS Inc.,
1990.

[16] I. R. Quinlan, "C45: Programs for
machine learning," Morgan Kaufmann
Publishers, San Mateo, California, 1993.


