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ABSTRACT

The separation of speech from two si-
multaneous talkers is a problem of some
practical and theoretical importance. We
describe a prototype separation system
based on harmonic selection using comb
filters. Hermes' subharmonic spectrum
method is used to produce a number
of (weighted) pitch estimates, with pitch
tracks for the two talkers then found by
constrained dynamic programming. The
system has successfully separated com-
posite male/female /t/ tokens but per—
formance is currently rather variable.

INTRODUCTION

The separation of a target speech signal
from contaminating, competing signals is
a problem of some significance, having
applications to improved speech recogni-
tion and signal-processing hearing aids.
An especially interesting instance of the
problem arises when the (single) contam—
inating source is the speech of another
talker. Not only is this a common situ—
ation in practice, but separation is likely
to be maximally difficult since the target
and contaminating signals will share ob-
vious similarities.

Early approaches to this problem [1]
were monaural, estimating the fundamen-
tal frequency (or ‘pitch’) of each talker(f01 and f3 respectively), then selecting
components of the frequency spectrum
and assigning them to a talker accord-
ing to their harmonic relation to the esti-
mated pitch(es). This harmonic selection

method assumes that the speech of at least
one of the two talkers is voiced, and re-
quires f3 and f3 to be well spaced so that
it is obvious which talker is which.

Harmonic selection can be viewed
as implementing one of the perceptual
grouping principles advanced by Breg-
man [2], whereby human listeners are able
to aggregate auditory features arising from
distinct sound sources to effect separa-
tion. Other putative grouping principles
are based on onset and/or offset synchrony
of features, a common rate of amplitude
modulation, and cues suggesting a com-
mon spatial origin.

Clearly, any implementation of har-
monic selection is critically dependent
upon a robust pitch detection algorithm
(PDA) but most PDAs assume a single
voice only [3,4]. More recent work on
talker separation [5,6,7] has, therefore,
focussed on improved PDAs. However,
given that a common spatial origin is
likely to be important to grouping, and
thereby separation, attention has also been
paid to binaural techniques [7,8]. Denbigh
and Zhao [7] state that the major advan-
tage of their binaural technique is the abil—
ity to recover from talker-allocation errors
when f3 and f3 tracks cross.

We describe here the implementation
of a prototype monaural separation system
which has been successfully applied to the
two-talker problem. In the next section,
we detail the speech data employed in this
study. We then describe the use of Her-
mes' subharmonie spectrum (SHS) pitch
detection algorithm [9] to obtain several
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Figure I. Subharmonic spectrum of typical frame of composite token shown here for log; f = 5
to 10. Le. 32 to 1024 Hz. Actualfundamentalfrequenciesfor the two talkers are shown arrowed.

weighted estimates of f0, without consid—

eration of talker identity at this stage. A

dynamic-programming (DP) tracking al-

gorithm is then described. This is used to
correct pitch errors and to allocate optimal

f0 tracks to each of the two talkers. Re-
sults of separation using comb filters are
then detailed.

SPEECH DATA

The speech data used in this study were
a subset of those recorded by Dcterd-
ing [10], consisting of /tl tokens spo-
ken by 3 male and 3 female adults and
sampled at 10 kHz. A small number of
composite tokens was then formed by
adding (arbitrarily selected) pairs of male
and female tokens. Male/female pairs
were chosen to minimise problems of
crossing pitch tracks - since the present,
prototype implementation is monaural.

Processing was based on frames of
512 samples with 50% overlap. Each
frame was multiplied by a Hanning win-
dow, padded with a further 512 zeros, and
a 1024-point FFT taken. The resulting fre-
quency resolution is, therefore, 9.77 Hz.

SHS ALGORITHM

llermcs’ SHS algorithm [9] is an im—
proved version of the harmonic com-
pression PDAs of Schroeder [11] and
Noll [12]. These rely on compressing
the frequency scale of a spectral repre-

sentation by integer (harmonic) factors

and then taking either the product or the

sum of the compressed representations,

cg. Noll’s harmonic sum spectrum is de-
fined as:

K

5U) = ZIP(UNZ
Ic=l

where F( f) is the Fourier spectrum and

there are (K — l) compressions. The fun-
damental f0 then appears as a peak in the

product or sum spectrum, as there is con-

sistent reinforcement of the fundamental

by the compressed harmonics.

The problem with these algorithms is

that there is a loss of data when used

with sampled signals, since certain of the

sample points in the compressed spectra

fall between those in the original (k = l)

spectrum. This severely limits the value

of K which can be employed (to about 5).

The SHS algorithm avoids this problem

by substituting harmonic compression on

a linear frequency scale by harmonic shift

on a logarithmic scale. Also, the am-

plitude spectrum (rather than the power

spectrum) is used, with decreasing weight

given to the more compressed spectra:

a

5(1032 f) = Z w(k)lF(log2 f +1032 kll
h=1

where here w(k) = 0.84"" and K = 9.
Since the linear-to—log frequency con-

version results in logarithmically-spaced
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sample points, the spectrum is resampled
by cubic spline interpolation at 48 points
per octave after conversion. There is
also a broadening of spectral peaks at
lower frequencies; accordingly, peaks are
thinned to a constant width of 3 samples in
the log frequency domain. Figure 1 shows
a typical subharmonic spectrum with the
actual f01 and f02 marked by arrows.

Since even the best PDA will make
frame errors, we do not attempt to iden-
tify f3 and fg uniquely at this stage.
Rather, the SHS algorithm produces six
weighted estimates of possible fundamen-
tal for later DP pitch tracking as follows.
The 3 largest peaks of the SHS are selected
and weighted l, 2 and 3 respectively. The
largest peak (weighted l) is then assumed
to correspond to f0 for the dominant talker.
This estimate of f0 and its harmonics
are then used to subtract corresponding
peaks from the thinned Fourier spectrum,
and the SHS algorithm re-run to produce
3 new f0 estimates, again weighted 1,2,3.
As a consequence of the use of a log fre-
quency scale, the resolution of the fa esti-
mates is non-linear (being 4810g2 f).

No distinction is made between voiced
and unvoiced speech, both being treated
identically.

DP PITCH TRACKING

By maintaining multiple candidate [a val-
ues, improved pitch estimates can be
obtained by dynamic-programming (DP)
tracking. We use the method described
by ‘Ney [13] which performs a DP optimi-
sation constrained by a (weighted) ‘mea-
surement’ cost and a ‘smoothness’ cost.

The input to the DP algorithm is ann x m time-frequency matrix, where n is
the number of possible f0 values and mis the number of frames in the compos-
ite token. Because f0 is assumed to lie
between 32 and 512 Hz, values 5 32 are
considered to be 0 while values 2 512 are
considered to be 512 Hz. Hence, there are
n = 48(log2512 — logz 32) = 192 ‘fre-

Session. 53. 4 ICPhS 95 Stockholm

frequency Index0 a#—

0 2 4 B l 10 ‘2
frame number

- III"! I + violent I it ntght a
D night I X III." I 0 night a

Figure 2. Time-frequency matrix for typical
composite token and the pitch tracks (solid
lines) for the two talkers found by dynamic
programming.

quency indices’, according to the loga-
rithmic resolution of the PDA. The cells
of the matrix contain the measurement
cost, and are initialised to a high value.
W,,,,-. The weights of the 6 f0 estimates
(W 6 {1,2,3}) from the SHS algorithm
are then entered in the appropriate cells.

The smoothness cost, D, was imple-
mented as the absolute difference between
frequency indices for consecutive frames,
so penalising departure from a constant
pitch value. The total cost is then the lin-
ear combination W + aD.

With W,,,,- and a set empirically (at 100
and 0.2 respectively). the DP algorithm
was applied to the matrix to find the opti-
mal pitch track for one of the talkers. The
values in cells on this track were then re-
placed by MM and the algorithm re-run tofind the optimal pitch track for the second
speaker. This is shown in Figure 2 for a
typical composite token.

It is difficult to validate the pitch tracks
found. However, use of a commercially-
available speech analyser (Kay CSL) gave
excellent agreement for one speaker and
reasonable agreement for the other.
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SEPARATION ALGORITHM

First, the Fourier spectrum is differenti-
ated to find all its maxima, which are
listed. The separation algorithm then
takes the larger of f3 and f3, and uses
this to calculate tentative values for the
harmonic frequencies. These are then
matched to the list of maxima; if there
is no peak at the exact harmonic value,
the points either side are checked to see if
they are maxima.

Each harmonic peak thus found be-
comes the centre of one tooth of a comb
filter. Each tooth is 5 FFT points wide,
and has a Hanning window shape. Mul-
tiplication of the Fourier spectrum by the
comb filter response then yields a frame of
separated data corresponding to the higher
f0. Peaks allocated to this speaker are then
deleted from the list of maxima. and the
process repeated for the lower f0.

When this has been done for all frames,
separated tokens are produced by overlap-
add re-synthcsis.

CONCLUSIONS

As judged by informal listening, the pro-
totype separation system works extremely
well for some of the composite tokens
but less well for others. Separation is
better for female than for male talkers —
the male separated tokens being more af-
fected by cross—talk. Given the relatively
small database used, this may simply re-
flect lower pitch variation among the fe-
male talkers which results in more accu-
rate pitch tracking.
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