UNSUPERVISED DECOMPOSITION OF PHONEME STRINGS into variable-LengTh sequences, by multigrams

Frédéric BIMBOT, Sabine DELIGNE, Francois YYON.

ENST / Télécom Paris, CNRS - URA 820, 46 rue Barrault, 75634 PARIS cedex 13, FRANCE, European U'nion.

ABSTRACT

The multigram model allows the automatic ex traction of variable-length regularities in string of symbolic units. In this paper, we assess the multigram model as a phonotactic model. In our experiments on the malecot corpus, the multigram model outperforms the classical n-gram model for the description and the prediction of phoneme strings, measured in terms of test set perplexity. We also show that the model can be used to automatically derive segmental speech synthesis units

1. INTRODUCTION

A string of graphemes or phonemes can be viewed as the result of a complex encoding process which maps a message into a stream of symbols. This string of symbolic units is far from being random, as the encoding process is subject to various phonotactical, lexical and syntactical constraints. In particular, combinations of letters form lexical items, which themselves are arranged according to grammar rules.
These constraints are responsible for a signif cant degree of redundancy in natural language symbolic representations such as phoneme strings or word strings. For instance, in the phonemic transcription of a conversation, all phonemes are not equally likely, nor are their two-by-two combinations (bigrams), their three-by-three combinations (trigrams), and so on..

This redundancy is partly exploited by probabilistic language models, among which the n-gram model [1] is very popular in language engineering. However, the underlying hypothesis of this model is that the probability of a given linguistic symbol (phoneme or word) depends on its n predecessors, n being fixed a priori and supposed constant over he whole text

In opposition, the n-multigram model, recently developed [2] and extended [3], is based on the hypothesis that the dependencies between symbols are of variable-length (from 0, i.e independency, up to length n).

The multigram approach was previously tested with success as a language model, i.e a model of
word dependencies within a sentence [2][3]. In this paper, we report its performance as a phono tactic model, and we assess its application for the automatic extraction of formal speech synthesis units.

2. THEORETICAL ASPECTS

2.1. Formulation

In this section, we denote as $A=\alpha_{1} \cdots \alpha_{4} \cdots \alpha_{N}$ a string of N linguistic symbols.

The conventional n-gram model assumes that the statistical dependencies between symbols are of fixed-length n along the whole sentence. The likelihood of A is then computed as

$$
\begin{equation*}
\mathcal{L}_{g r}(A)=\prod_{t=1}^{t=N} p\left(\alpha_{t} \mid \alpha_{t-n} \ldots \alpha_{t-1}\right) \tag{1}
\end{equation*}
$$

where $p\left(\alpha_{t} \mid \alpha_{t-n} \ldots \alpha_{t-1}\right)$ is the conditional probability of observing symbol α_{i} given that the history of $n-1$ symbols $\alpha_{t-n} \ldots \alpha_{t-1}$ has occured ${ }^{1}$.

The n-multigram model makes a different as sumption : under this approach, a stream of lin guistic symbols is considered as the concatenation of independent variable-length sequences, and the likelihood of the whole string is computed as the sum (or the maximum) of the individual likelihoods associated to each possible segmentation.

Let Δ denote a possible segmentation of A into q sequences $s_{1} \cdots s_{k} \cdots s_{q}$. For instance :
$s_{1}=\left[\alpha_{1} \alpha_{2}\right]$,
$s_{2}=\left[\alpha_{3} \alpha_{4} \alpha_{5}\right]$
${ }^{s_{3}}=\left[\alpha_{6}\right]$,
$s_{q}=\left[\alpha_{N-2} \alpha_{N-1} \alpha_{N}\right]$
The n-multigram model computes the likelihood $\mathcal{L}_{\Delta}(A)$ of string A for segmentation Δ as the product of the probabilities of the successive sequences composing Δ.

$$
\begin{equation*}
\mathcal{L}_{\Delta}(A)=\prod_{k=1}^{k=q} p\left(s_{k}\right) \tag{2}
\end{equation*}
$$

${ }^{1}$ Further in this paper, we recall the link that exists
between the likelihood of a model and the explanatory capabilities of the model in terms of prediction.

Input character strings

1 blessedisthemanthatwalkethnotinthecounseloftheungodly
2 buthisdelightisinthelawofthelordandinhislawdothhemeditatedayandnight
3 andheshallbelikeatreeplantedbytheriversofwaterthatbringethforthhisfruit..
4 theungodlyarenotsobutarelikethechaffwhichthewinddrivethaway
Output 5-multigram decompositions
bless ed isthe man that walk eth not inthe couns el ofthe un godly
but his de lighi is inthe law ofthe lord and inhis law do th he medit at e day and night
3 and he shall be likea t re e plant ed bythe river sof water that bring eth forth his fruit .
4 the un godly are not so but are like the ch a ff which thew in d drive th away
Figure 1: Old Testament - King James Version (Psalms - first 5 verses). Character string decomposition using a 5 -multigram model. Variable-length regularities are extracted without any supervision.

Denoting as $\{\Delta\}$ the set of all possible segmentations of A into sequences of maximum length n, the total likelihood of A is

$$
\begin{equation*}
\mathcal{L}_{\mu g r}(A)=\sum_{\Delta \in\{\Delta\}} \mathcal{L}_{\Delta}(A) \tag{3}
\end{equation*}
$$

A decision-oriented version of the model can provide a maximum-likelihood decomposition of A as the segmentation Δ^{*} with highest individual likelihood:

$$
\begin{equation*}
\Delta^{*}=\operatorname{Argmax}_{\Delta \in\{\Delta\}} \mathcal{L}_{\Delta}(A) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{\mu g r}^{*}(A)=\mathcal{L}_{\Delta \cdot}(A)=\max _{\Delta \in\{\Delta\}} \mathcal{L}_{\Delta}(A) \tag{5}
\end{equation*}
$$

For instance, with $A=a b c d(N=4)$ and a conventional tri-gram model :
$\mathcal{L}_{3-g r}(a b c d)=p(a \mid \phi \phi) p(b \mid \phi a) p(c \mid a b) p(d \mid b c)$
with ϕ denoting the null symbol, whereas for a 3 -multigram model
$\mathcal{L}_{3-\mu g r}^{*}(a b c d)=\max \left\{\begin{array}{l}p([a]) p([b c d]) \\ p([a b c]) p([d]) \\ p([a b]) p([c d]) \\ p([a b]) p([c]) p([d]) \\ p([a]) p([b c]) p([d]) \\ p([a]) p([b]) p([c d]) \\ p([a]) p([b]) p([c]) p([d\end{array}\right.$
The maximum term indicates the maximum likelihood segmentation Δ^{*}, for instance : $[a b][c][d]$.

2.2. Algorithm

The algorithm for estimating the multigram probabilities from a training corpus proceeds iteratively. After the sequence probabilities have been initialised by counting all co-occurences of symbols up to length n, a forward-backward procedure is implemented to refine these estimates. Once convergence is reached, a Viterbi procedure
provides the maximum likelihood segmentation, either on the training set, or on a test set, as in Equation (4). A full formulation of the algorithm and additional details ${ }^{2}$ can be found in [2] [3].

2.3. Illustration

Figure 1 shows the result of the multigram decomposition of an english text ${ }^{3}$, from which all spaces between words were removed. The set of linguistic units, in this case, is composed of the 26 lower case letters of the alphabet, and the corpus on which the probabilities are estimated contains approximately 200000 characters. After 10 training iterations of a 5 -multigram model, convergence is obtained, and the dictionary of typical sequences contains approximately 1100 entries.

In Figure 1, we indicate sequence borders by a space. Some typical english words or morphemes are autonatically extracted. Some frequent combinations of small words are often merged (n the. ofthe, inhis,...), while rare words tend to be broken into smaller units (t re e, ch a ff....). Occasionally, an unappropriate segmentation occurs (river sof, thew in d, \ldots). Nevertheless, it is quite clear that the multigram model, though using no prior knowledge, extracts variable-lengt h regularities which are strongly correlated with the morpheme structure of the input text.

3. EXPERIMENTAL PROTOCOL

3.1. Motivation

The experiments reported in the rest of this paper are carried out on phoneme strings. Our experimental protocol is designed to assess objectively the multigram model as a description of syntag matic aspects in phoneme strimgs, and to investigate its potential application as a tool for deriving variable-length segmental units for speech symthesis. In a first series of experiments, the muhigram model is used to predict phoneme strims

[^0]and evaluated in terms of perplexity. In a second experiment, it is used to build variable-length speech synthesis units, by merging diphones which frequently co-occur together. In this last case, the evaluation criterion is the reduction in the number of concatenations per sentence.

3.2. Database

Our corpus is the malecot corpus. It consists of approximately 200000 phonemes (13000 sentences) which were obtained by a manual phone mic transcription of informal conversations in the French language [4] [5]. We split our corpus into a training set (first 150000 phonemes) and a test set (last 50000 phonemes). The phonemic alphabet is composed of 35 symbols, namely : a i, e $\varepsilon, u, o, \supset, y, \emptyset, \propto, ə, \tilde{a}, \tilde{\varepsilon}, \tilde{\jmath}, \propto \dot{e}, p, t, k, b, d, g, f$, $s, \int, v, z, 3, m, n, n, l, R, j, w, y$. Spaces are removed from the corpus, so that the word borders are unknown.

3.3. Perplexity

As an objective measure of the multigram model ability in representing sequences of phonemes, we use the perplexity measure [1]. The perplexity of a model \mathcal{M} on a string A is defined as

$$
\begin{equation*}
X=2^{H} \quad \text { where } \quad H=-\frac{1}{N} \log _{2} \mathcal{L}_{\mathcal{M}}(A) \tag{6}
\end{equation*}
$$

Where N is the length of string A and $\mathcal{L}_{\mathcal{M}}$ the likelihood provided by the model, as in Equations (1), (3) or (5), for instance.

Consider now a string B of length N generated by a memoryless source ${ }^{4}$, from an alphabet of X equiprobable symbols. As the probability of each symbol is $\frac{1}{X}$, the perplexity of B is $X^{\prime}=2^{H^{\prime}}$ where :

$$
\begin{align*}
H^{\prime} & =-\frac{1}{N} \log _{2} \mathcal{L}(B) \tag{7}\\
& =-\frac{1}{N} \log _{2}\left[\frac{1}{X}\right]^{N}=\log _{2}(X)=H
\end{align*}
$$

e than 8000 entries versus less than 3000, the trigram (and 4-gram) model provides a lower prediction capability than the 5 -multigram model (perplexity of 10.1 (or 10.0) versus 9.4). The n -multigram model also shows good generalisation properties from the training set to the test set.

Figure 2 depicts an example of n-multigram decompositions of a french sentence in its phonemic form, from our test set in the malecot corpus. Here again, the phoneme multigrams show a striking correlation with morpho-lexical elements, especially for $n=5$. They could prove efficient as word- or subword-like units for speech recogas wor
nition.
${ }^{6}$ An acoustic diphone can be understood as a domino composed of the transition between the "center" of a phone and the "center" of the next phone.
On the basis of 50 ms for a border phoneme and 100 ${ }^{\text {and }}$ A pruning factoreme
A pruning factor of 1.0 was used for the n-multigram n-grams, whereas a fixed penalty was used for unseen nmultigram of length 1 . See detaile in [2][3].

| | n-gram model | | | | n-multigram model | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| model order | $n=1$ | $n=2$ | $n=3$ | $n=4$ | $n=5$ | $n=1$ | $n=2$ | $n=3$ | $n=4$ | $n=5$ |
| training set perplexity | 25.8 | 13.7 | 8.9 | 5.3 | 3.3 | 25.8 | 16.8 | 12.4 | 9.9 | 8.3 |
| test set perplexity | 25.8 | 13.9 | 10.1 | 10.0 | 15.7 | 25.8 | 16.8 | 12.7 | 10.7 | 9.4 |
| number of entries | 35 | 937 | 8455 | 28786 | 51197 | 35 | 352 | 1119 | 1891 | 2683 |

Table 1: malecot corpus : training set perplexity, test set perplexity, and number of entries for the n-gram and the n-multigram models ($1 \leq n \leq 5$), for phoneme string modeling and prediction.

$\begin{aligned} & \mathrm{i} \\ & \text { il } \\ & \text { il } \end{aligned}$	1 e ilet ilet			$\begin{aligned} & \text { i } \quad \mathrm{d} \\ & \mathrm{i} \\ & \text { vid } \\ & \text { id } \\ & \text { vidã } \end{aligned}$	$\begin{gathered} \tilde{\mathfrak{a}} \\ \mathrm{d} \tilde{\mathfrak{a}} \\ \tilde{\mathfrak{a}} \\ \tilde{\mathbf{a}} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ \mathrm{~d} \\ \mathrm{~d} \\ \mathrm{~d} \end{gathered}$	a aj a da	j aj ајœ				il kil	$\begin{aligned} & \text { ilfo } \\ & \text { ifo } \end{aligned}$		d d d d d					iv				
	$\begin{aligned} & \text { le } \\ & \text { ile } \\ & \text { ile } \\ & \text { ile } \end{aligned}$	t te ete ete ete	$\begin{gathered} \mathrm{evvi} \\ \mathrm{evi} \\ \text { evi } \\ \text { evi } \end{gathered}$	$\begin{gathered} \text { id d } \\ \text { idà } \\ \text { id } \end{gathered}$		$\begin{aligned} & \mathrm{d} \mathrm{~d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{laj} \\ & \text { daj } \\ & \text { la } \\ & \text { da } \end{aligned}$		$\begin{aligned} & \infty \alpha \\ & \text { joer } \\ & \text { or } \\ & \text { er } \end{aligned}$			il	ilf	fod	od		Ra Ra Ra			$\begin{aligned} & \text { iv } \\ & \text { iv } \\ & \hline \end{aligned}$	va	$\begin{array}{ll} \hline \text { an } & \text { ni } \\ \text { n } & \text { n } \\ \text { } \\ \text { vani } \\ \text { vənir } \end{array}$		

Figure 2: French sentence : "il est évident d'ailleurs qu'il faudra y venir" (Malecot corpus - test set). 1-2-3-4- and 5-multigram phoneme segmentations and 2-3-4- and 5-multiphone decompositions.

4.2. Multiphone units

Figure 2 illustrates the result of multiphone decompositions on a test sentence. Here, the elementary symbol is a diphone, and a sequence of diphones is represented as a tri-, quadri- or quintiphone. Table 2 reports detailed results concerning the number, size and repartition of multiphone units obtained by the multigram model, for different orders ${ }^{9}$

multiph. order	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
nb diph.	759	567	582	583
nb triph.	0	1828	938	859
nb quadriph.	0	0	1365	612
nb quintiph.	0	0	0	879
total	759	2395	2885	2933
missing diph.	466	658	643	642
grand total	1225	3053	3528	3575
\approx vol. in mn	2	8	12	$\mathbf{1 4}$
nb conc tr. set	13.6	$\mathbf{7 . 5}$	6.2	5.8
nb conc test set	13.5	$\mathbf{7 . 7}$	6.6	6.3

Table 2: See text.

Table 2 shows, for instance, that the set of 5 -multiphones (last column) is composed of 583 diphones, 859 triphones, 612 quadriphones and 879 quintiphones, i.e a total of 2933 units. As 35 $\times 35=1225$ diphones are necessary to guarantee a 100% coverage of any text, 642 other diphones must be added to the dictionary, which leads to a grand total of 3575 units, i.e less than 3 times
${ }^{8}$ A pruning factor of 2.0 was used for this experiment.
the number of diphones. The 5 -multiphone set would require approximately 7 times more space than the diphone set, to be stored in its acoustic form. In counterpart, it can be expected that a sentence could be synthesized with twice less concatenations, as the average number of concatenations per sentence on the malecot test corpus falls from 13.5 to 6.3 . This should have a signifi cant impact on synthetic speech quality.

5. CONCLUSION

The multigram model provides a powerful framework for the unsupervised description, decompo sition and prediction of phoneme sequences, and an interesting tool for the automatic design of segmental speech synthesis units. More generally, it appears as a relevant approach for the modeling of natural language syntagmatic aspects, which are usually based on variable-length schemes.

References

1] F. JELINEK: Self-organized language modeling for speech recognition. Readings in Speech Recognition. Ed A. Waibel, K.F. Lee, Morgan Kaufmann Publ. Inc., 1990 [2] F. BIMBOT, R. PIERACCINI, E. LEVIN, B. ATAL: Modeles de 1994 To appear in IEEE-SP Letters, as: Variable-length sequence modeling: multigrams.
[3] S. DELIGNE, F. BIMBOT: Language modeling by variable length sequences: theoretical formulation and evalaation of multigrams. IEEE-ICASSP, 1995
[4] A. MALECOT: New procedures for descriptive phonet ics. Papers in Linguistics and Phonetics to the Memory of Pierre Delatitre. Mouton, 1972.
[5] J.P. TUBACH, L.J. BOE: Un corpus de transcriptions honetiques: constitution et exploitation statistique. He port ENST-85D001, 1985.

[^0]: ${ }^{2}$ In particular, in what concerns the pruning factor [2]
 An excerpt from the Bible

