MULTIPLE EFFECTS ON SYLLABLE-INTERNAL TIMING IN NORWEsIAN

Dawn M. Behne and Bente H. Moxness
University of Trondheim, N-7055 Dragvoll, Norway

ABSTRACT
This study examines the concurrent effects of rate, stress, postvocalic voicing and distinctive length on timing in Norwegian C1VC2. Findings suggest that the similar timing patterns associated with postvocalic phonological length may be distinguished by the timing of C1. A consistent pattern of results was observed for focal and non-focal conditions across speaking rates.

INTRODUCTION
The duration of phonetic segments is known to be affected by a variety of factors. When this occurs, the duration and relative timing of other components within a syllable can also be affected. Four factors which are known to affect segment durations in languages are speaking rate, focal stress, postvocalic voicing, and distinctive length. These factors all occur in Norwegian and constitute the basis for this investigation.

Background
Speaking Rate. For many languages, research has shown that segment durations within a syllable are affected by both vowels and consonants within syllables produced at a slow rate tend to be longer in duration than those produced at a fast speaking rate (e.g., [1]). Effects of speaking rate on segment durations specific to Norwegian have not been reported, but the general pattern of results observed for other languages is expected.

Stress. The duration of a segment within a syllable can also be affected by stress. Research on the effects of stress on segment duration in Norwegian and other languages has shown that vowels in stressed syllables are typically longer than those in unstressed syllables, whereas postvocalic consonants may be similarly affected (e.g., [2]).

Postvocalic Voicing. Vowel duration can also be affected by the voicing of a following consonant. Vowels preceding a voiced consonant are typically longer than those preceding a voiceless consonant (e.g., [4]). This pattern has been observed in Norwegian words such as takk [tak:] “thanks” versus tagg [tag:] “thorn” [21]. Cooccurring with the effect on vowel duration, for many languages, including Norwegian, a postvocalic voiceless consonant has generally been found to be longer than a postvocalic voiced consonant (e.g., [2]).

Distinctive length. Phonological distinctions can also be realized by means of segment durations within the syllable rhyme. Norwegian has traditionally been described as having a phonological distinction between short and long vowels. Accompanying this vowel length distinction is a difference in postvocalic consonant length. The phonotactics of Norwegian are such that, in a closed syllable, a distinctively long vowel tends to be followed by a short consonant, and a distinctively short vowel is followed by a long consonant. For example, the word “takk” [tak:] has a distinctively short vowel followed by a long consonant which has a distinctively long vowel followed by a short consonant. This quantity distinction of Norwegian vowels [2][6] and consonants[2] is also realized acoustically.

Current Investigation
Previous research suggests that speaking rate and stress have a relatively global affect on the duration of segments within a syllable, whereas postvocalic voicing and distinctive length principally affect segment durations within the rhyme. An inverse relationship between the duration of a vowel and postvocalic consonant.

Recent findings suggest that in Norwegian [6] effects of postvocalic voicing and distinctive length might not be limited to the rhyme, and that prevoocalic consonant duration may also be affected. In Norwegian, the effect of a prevoocalic consonant duration was found to decrease with increased vowel duration due to postvocalic voicing, whereas the duration of a prevoocalic consonant increased immediately preceding a phonologically long vowel. These timing patterns have been observed in both focal and nonfocal conditions in Norwegian [2] and suggest that the duration of a prevoocalic consonant may assist in distinguishing the similar timing patterns within the rhyme associated with postvocalic voicing and distinctive length.

In fluent speech segment durations reflect the concurrent influence of speaking rate, focal stress, postvocalic voicing and distinctive length. The present study extends previous research and investigates whether the timing patterns observed for postvocalic voicing and distinctive length in non-focal and focal conditions are affected by the relatively robust affects of speaking rate.

METHOD
Stimuli
Twelve target words were used in the investigation. All target words were real Norwegian words such as takk [tak:] and postvocalic voicing and distinctive length, such as “tak” [tak:]

Subjects
The subjects were nine native speakers of Norwegian between 20 and 30 years old with no history of speech or hearing impairment.

Procedure
Recordings were made of each subject producing the full set of conversations with an experimenter in a sound attenuated room. For each conversation the experimenter asked the question and the subject read the response. The full set of conversations were produced by each subject at a self-selected slow, medium and fast speaking rate. Subjects were encouraged to speak as if participating in a natural conversation.

Measurements
Three measurements were made within target C1VC2 from subjects’ responses in each conversation: (1) frication/closure duration of C1; (2) vowel duration, and (3) closure duration of C2. Frication was measured from the beginning to the end of the aperiodic energy. Closure durations were measured from the start of the closure to the beginning of the first formant. Vowel duration was measured from the onset to the end of periodic energy.

RESULTS
For each of the three measures, a four way analysis of variance was calculated with speaking rate (fast, medium, slow), focus (focal, nonfocal), voicing (voiceless C1/C2, voiced C1/C2), and distinctive length (short vowel, long vowel) as independent variables. Main effects were observed for all three measures.

Speaking Rate
Effects of speaking rate on segment durations are illustrated across panel columns in Figures 1 and 2. Speaking rate was found to affect the durations of C1: F[1]=109.30. p<.0001, F[2]=241.73. p<.0001, and C2: F[2]=214.24. p<.0001. For all three segment durations were reliably shorter at the fast rate than at the medium rate for C1: F[1]=77.30. p<.0001; F=V=597.82. p<.0001; F[C]=195.74. p<.0001; in which both were shorter than the at the slow rate [F[1]=34.79. p<.0001; F=V=145.79. p<.0001; F[C]=38.64. p<.0001] These findings are consistent with previous research showing that speaking rate has a relatively global affect on segment durations within a syllable, affecting both vowel and consonant durations.

Focal Stress
Main effects of focal stress was also observed for all three segment durations. As a comparison of the panel rows in Figures 1 and 2 illustrates, C1: F[1]=121.79. p<.0001, F[2]=118.63. p<.0001, and C2: F[2]=92.82. p<.0001 durations were longer in the focal condition than the nonfocal condition.

Data were further analyzed to determine whether focus affected segment durations at each of the speaking rates. Reliable differences due to focus were observed for all three segment measures at the fast [F(C)=9.18. p<.0001; F=V=21.28. p<.0001, medium [F(C)=21.42. p<.0001; F=V=83.66. p<.0001; F(C)=21.78. p<.0001].
and slow F of C = 29.27, p < 0.001; F of C = 53.99, p < 0.001; F of C = 22.81, p < 0.001) speaking rates. These results support previous findings showing that focal stress tends to have a general effect on segment durations within a syllable [2].

Postvocalic Voicing. Main effects show that postvocalic voicing affected the duration of C1, V, and C2. As is demonstrated in Figure 1, the duration of C1 is shorter when the postvocalic consonant is voiced than when it is voiceless [F(1, 64) = 38.44, p < 0.001]. Vowel duration is longer before a voiced consonant than before a voiceless consonant [F(1, 64) = 5.47, p < 0.05]. In addition, C2 is shorter when it is voiced than when it is voiceless [F(1, 64) = 22.90, p < 0.001]. As the results summarized in Table 1 and the means in Figure 1 show, this same pattern of results was observed for nonfocal and focal conditions at all three speaking rates. However, in some cases differences were not statistically reliable. Most notably, vowel duration was not affected by postvocalic voicing in either the nonfocal or focal condition at the slow speaking rate. Comparable results have been reported for English in conditions where multiple linguistic factors lead to increased segment duration [7].

Differences were not statistically reliable. Most notably, vowel duration was not affected by postvocalic voicing in either the nonfocal or focal condition at the slow speaking rate. Comparable results have been reported for English in conditions where multiple linguistic factors lead to increased segment duration [7].

Figure 2. Mean segment durations with postvocalic voiced and voiceless consonants in nonfocal (top row) and focal conditions (bottom row) at fast (left column), medium (center column), and slow (right column) speaking rates.

CONCLUSIONS

The results indicate that speaking rate and focal stress has a global effect on syllable-internal timing. The effects of distinctive vowel length and postvocalic voicing have an inverse effect on the duration of a vowel and postvocalic consonant within the rhyme. However, despite their similar effects on rhyme-internal timing, postvocalic voicing and distinctive vowel length have different effects on the duration of the prevocalic consonant. This pattern was observed in nonfocal and focal conditions across speaking rates. The robust nature of the timing patterns for the prevocalic consonant suggest that it may assist in distinguishing the similar timing patterns of the rhyme associated with postvocalic voicing and distinctive length.

REFERENCES

Table 1. F-values and probabilities for C1, V, and C2 for postvocalic voicing and distinctive length within the nonfocal and focal conditions at fast, medium and slow speaking rates.

<table>
<thead>
<tr>
<th>Timing Factors</th>
<th>Postvocalic Voicing</th>
<th>Distinctive Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
<td>F2</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>F2</td>
</tr>
<tr>
<td>FAST RATE</td>
<td>Nonfocal</td>
<td>F(1, 64) = 6.57, p < 0.001</td>
</tr>
<tr>
<td></td>
<td>Focal</td>
<td>F(1, 64) = 15.06, p < 0.001</td>
</tr>
<tr>
<td>MEDIUM RATE</td>
<td>Nonfocal</td>
<td>F(1, 64) = 24.53, p < 0.001</td>
</tr>
<tr>
<td></td>
<td>Focal</td>
<td>F(1, 64) = 16.50, p < 0.001</td>
</tr>
<tr>
<td>SLOW RATE</td>
<td>Nonfocal</td>
<td>F(1, 64) = 5.04, p < 0.01</td>
</tr>
<tr>
<td></td>
<td>Focal</td>
<td>F(1, 64) = 9.41, p < 0.01</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

This research was supported by a grant from the Norwegian Marshall Fund to the first author.