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ABSTRACT

We present some extensions to the results
found by Lucero (1993) concerning the anal-
ysis of the large-amplitude oscillation of the
vocal folds using the tw0>mass model. We fo-
cus on two points which were not considered
in that work: the introduction of a more real-
istic model of the fluid mechanics aspects of
the glottal flow, and the effects of the acous-
tical loading of the vocal tract. A numerical
technique is presented for finding the equilib-
rium points and analysing their stability for
generic aerodynamic and mechanical models
of the vocal folds, including as well a repre-
sentation of the acoustical impedance of the
vocal tract. Our results confirm the interest of
an analysis of stability of equilibrium points
to obtain the oscillation regions of the vocal-
folds, but also indicates to the need of better
aerodynamic and acoustical models.

INTRODUCTION

Over the years, several researchers have been
trying to quantify vocal fold vibration. One
of the main question one is interested in an-
swering is: Given a mechanical, aerodynam-
ical, and acoustical model of the vocal folds
and the vocal tract, under which conditions
of the control parameters (e.g. lung pressure
and stiffness of the laryngeal muscles) will the
vocal folds oscillate? As even the simplest
models of the vocal tract (e.g. Ishizaka and
Flanagan 1972) are described by non—linear

differential equations for both the mechanical

and the aerodynamical parts, direct analytical

analysis are difficult to be carried out. The

difficulties are expected to increase as more

realistic models of the larynx will be devel-

oped. This are the main reasons according

to which previous works have been focused

on small-amplitude analysis of vocal fold vi-

bration (Title 1988). The drawback of this

kind of technique is the linearization of the

equations of motion, making the conclusions

hardly extensible to the large-amplitude oscil-

lation behaviour.

More recently, some non-linear techniques

have been applied to the study of vocal fold

vibration. They range over a wide variety of

mathematical tools. Awrejcewicz (1990) uses

characteristic multipliers to change ‘bifurca-
tion' parameters in order to discover new pe-

riodic solutions via Hopf bifurcation. Weakly

nonlinear analyses are done by Jensen (1990)

to investigate the instability of the flow in a

collapsed tube. Empirical orthogonal eigen-
functions are extracted from biomechanical

simulations of the vocal folds by Berry et al.
(1993); those authors show that chaotic oscil-

lation can arise as a result of desynchroniza-

tion of the low-order modes. Although those

works represent a real progress with respect to

the the former small—amplitude analysis, they
lack the cleverness of fully analytical tech-

niques.

In this respect, Lucero (1993) presented
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an analytically-based analysis of the large-

amplitude oscillation of the vocal folds us-

ing the two—mass model. This technique con-

sists, at first, in finding the equilibrium points

of the dynamical equations of motion. As a

second step, an analysis of stability is car-

ried out, essentially by linearizing the system

about those equilibrium points and by exam-

ining the sign of the real part of its character-

istic equation. Although the results obtained

were quite promising, the referred work was

based on an oversimplified model of both the

fluid mechanics aspects of the glottal flow and

the geometry of the vocal folds. Furthermore,

the coupling between the vocal fold oscilla-

tion and the acoustical loading of the vocal

tract, as well as the effects of viscous resis—

tances, were neglected.

The goal of the present study is twofold:

first, we will redo the analysis of Lucero

(1993) showing that some of his conclusions

are due to the introduction of a ‘spurious’ ele-

ment of the fluid mechanics. Second, we will

apply a numerical version of the analysis of

stability of the equilibrium point using a more

realistic model of the glottal flow and includ-

ing the effect of vocal tract loading.

ANALYSIS OF EQUILIBRIUM POSI-

TIONS FOR THE TWO-MASS MODEL

We will proceed to a verification of the re-

sults of Lucero (1993) by eliminating the loss

due to sharp edges (flow separation in vena-

contracta effect; for more details see Pelorson

et a1. 1994). We will use the same notations

as in Lucero (1993) and we ask the reader to

refer to that paper for the meaning of the math

ematical symbols. In the case of an open glot-

lis (11 > —1'10 and 12 > —120, where 1.- and

1'50 are the position and the rest positions for

the masses 1 and 2), the driving force on the

mass 1 is given by F1 = 19d, Psfp, where IE is

the width of the glottis, d1 the length of mass 1

and [’3 the sub—glottal pressure. The term f,

depends on the position of the masses and on a

factor I: (see Ishizaka and Flanagan 1972) for

Sharp edges (1: = 0.37):

_ (LEW
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As the contraction at the entrance of the vo-

cal folds is smooth, we believe that there is no

reason for the vena-contracta effect, re having

to be set to zero. In this case, equation (8) of

Lucero (1993), obtained by setting the deriva~

tives of the equations of motion to zero, be-

60m68(y1e-1) = H(1-y§./(52y?.)),where
fl = I’m/1‘20, and H is a constant that de-

pends on several parameters of the model, in-

cluding the mass stiffnesses (k1 and k2). gm 2

1 + z,- /1,0 are the normalized mass displace—

ments. The final solutions for B 2 1 (rectan-

gular prephonatory glottis) are (i) y]. = yh =

1 (rest positions), and (ii) the solutions of the

following equation

ylze + (1 —— a)(l + a)Hyle — (1 — (1)2}! : 0.

As H and a = kc/(kg + kc) are always pos—

itive, it is straightforward to prove that the

roots of the above equations are always real

and one of them is always negative. This in-

validates the result of Lucero (1993), where

there was possibility for the existence of three

simultaneous equilibria. The main conclusion

is that there will be always two equilibrium

positions for any value of the command pa-

rameters of the model (the stiffnesses of the

masses, related to a and the subglottal pres-

sure).

NUMERICAL ANALYSIS OF STABIL-

ITY OF EQUILIBRIA

Lucero (1993) did an analysis of stability of

the equilibrium points and found an analyti-

cal formulation for obtaining the bifurcation

points and the regions of stability for the

command parameters space. We extend the

technique to a more realistic two—mass model

(Pelorson et a1. 1994) including the effects

of moving flow separation point and viscos-

ity losses, thanks to a more elaborated model

of the changing geometry of the vocal folds.

The acoustical loading at the outlet of the two-

mass model is taken into account by mod-

elling the input acoustical impedance of the

vocal tract as a linear filter (plane wave prop-

agation in the vocal tract is assumed). Hence

the dynamical equations of motion for the

two—mass model together with the dynamical
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Figure 1: Area functions (top panel) and input impedances (bottom panel) for three French vow-
els: [a] (left), /u/ (middle), and /i/ (right).

equation describing the input impedance filter
compose the global equations of motion of the
system.

More specifically, we approximated the ef—
fect of vocabtract input impedance by a fil—
ter which takes into account only the first for-
mant. Fig. 1 shows the area functions for three
French vowels (Ial, /i/, and lul) and the asso-
ciated input impedances as a function of fre-
quency Z.,.(f) computed from the area func-
tions using the plane wave propagation hy-
pothesis (dashed lines in Fig. 1). The poles
and zeros of the vocal-tract impedance were
computed from the impedance spectrum by a
LPC approximation (solid lines in Fig. 1). We
plan to include formants of higher order in a
future work. By now, we are interested just in
the effect of the first formant on vocal fold vi-
bration and we believe that they will be more
marked than the effect of the other formants.

The acoustical loading is modelled then by
the pressure at the input of the vocal tract Pcv.
which is the result of filtering the glottal flow
Ug through the linear filter Z,-,,(f). PCV varies
thus with time, perturbing the pressure differ-
ence-across the glottis P5 — Pcv (as a first ap—
proximation, P5 is considered independent of
the glottal flow Ug in the present study). The
whole model can be described by a set of aug-
mented differential equations. The technique

we used for finding equilibrium points and for
analysing their stability consists essentially in

linearizing the model about the equilibrium

points using a perturbation analysis.

The system of non-linear differential equa-

tions can be compactly described using the

notation:

it: F(u),

where u are the state variables of both the me-

chanical and acoustical parts. About any equi-
librium point a. it is possible to linearize the

system (see Guckenheimer and Holmes 1986

for details):

E = DE

Where u = U + £ and D is the lacobian 0f
the function F about U. Stability of the lin-

earized system on state variables é depends on

the eigenvalues of D. Specifically, in order to

have a stable the system about the equilibrium
point U, the real part of all eigenvalues of D

have to be negative.

We carried out this analysis varying {W0 pa-
rameters of the model: P5 and h (the 595'
ness of mass 1). The other free parameters

were kept constant to typical values given in

the literature (see Pelorson et a1. 1994). Start-
ing from the rest position for the masses. we

found the equilibrium positions, which corre-

SPonded always to a convergent configuration
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Figure 2: Minimum subglottal pressure for

vocal fold oscillation as a function of the stiff-

ness of mass 1.

for the vocal folds. For different values of

k], we searched by a bisection algorithm the

value of P5 in the boundary between the oscil-

lating and non-oscillating regions. The results

are shown in Fig. 2. It is possible to see that

the region of stability is increased due to the

acoustical loading of the vocal tract. The ef-

fect is more accentuated for the vowel /a/ and

almost the same for vowels /i/ and /u/.

CONCLUSIONS

We extended the technique presented by

Lucero (1993) for analysing the stability of

equilibria of the vocal folds using a more real-

istic model of the flow through the glottis and

including the effects of acoustical loading.

We considered the analysis of the equilibrium

points done by Lucero (1993) and we studied

influence of some aerodynamical effects. We

Proposed a numerical technique for obtaining

the stability of equilibria, being able to

determine regions of larynx/lungs command

Space for which the vocal folds will oscillate.

The main virtue of the proposed technique
is the ability to determine the bifurcation

boundaries in the control space (including

V0031 tract configuration) without having

‘0 run temporal simulations. Our results

shows the importance of the aeroacoustics
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in such an analysis. We agree with Lucero

(1993) that the next logical step would be the

study of more realistic models. However we

emphasize that in parallel to improvements

on the mechanics, much has to be done

concerning the aerodynamical and acoustical

descriptions.
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