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PREDICTING AUDITORY-VISUAL SPEECH RECOGNITION
IN HEARING-IMPAIRED LISTENERS

Ken W. Grant and Brian E. Walden (Army Audiology and Speech Center, Walter
Reed Army Medical Center, Washington, DC 20307-5001)

ABSTRACT

Individuals typically derive substantial
benefit to speech recognition from
combining auditory (A) and visual (V)
cues. However, there is considerable
variability in AV speech recognition,
even when individual differences in A
and V performance are taken into
account. In this paper, several possible
sources of subject variability are
examined, including segment perception,
AV integration skill, and context usage.
When these sources of variability are
accounted for, predictions of AV speech
recognition of nonsense syllables for
normally-hearing and hearing-impaired
listeners are excellent (Rz=0.96).
Predictions for AV sentence recognition,
however, are much poorer (R1=0.44).
These data will be discussed as part of a
generalized model of AV speech
recognition which includes the use of A
and V unimodal cues, the integration of
A and V cues, and the use of phonemic
and semantic context. [Work supported
by NIH Grant DC 00792 and the
Department of Clinical Investigation,
Walter Reed Army Medical Center].

INTRODUCTION
In most communication settings,

speech perception involves the
integration of both auditory (A) and
visual (V) information “-41. Further,
auditory-visual (AV) speech perception is
almost always better than either hearing
or speechreading alone. This is especiallytrue when the auditory signal has beendegraded due to hearing
environmental noise.

Figure 1 shows fairly typical resultsobtained from intelligibility tests using
low-context sentences [5] presented in a

loss or

background of speech-shaped noise
(S/N=0 dB) to hearing-impaired subjects.
The hearing-impaired subjects tested had
a variety of hearing-loss configurations
ranging from mild to severe. For
convenience, subjects are arranged along
the abscissa in order of ascending A
scores. As shown in the figure, all
subjects demonstrated benefit from the
addition of visual cues, but some subjects
derived substantially more benefit than
others, independent of their A score. For
comparison, normally-hearing subjects
tested under the same conditions
achieved scores of 90%, 10%, and 98%
for A, V, and AV conditions.
respectively.
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Figure I. A, V, and AV sentence
recognition by individual hearing-
impaired subjects.

The exact amount of observed benefit
depends on a number of variables.
Among these are the individual's ability
to recognize phonetic (e.g., consonflnts
and vowels) and prosodic (8-3.»
intonation, duration, and stress) cues. the
ability to integrate A and V cues. the
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difficulty of the speech materials, the

physical conditions under which the

speech is presented (e.g., noise,

reverberation, lighting, viewing angle,

etc.), and the individual's knowledge of

the language and ability to make use of

contextual constraints. Although much is

known about the benefits of combining

speechreading with audition, the relative

effects of each of these factors on AV

benefit is largely unknown. In this paper,

we discuss some of the primary factors

that are important to understanding how

hearing and vision are combined in

speech recognition.

SEGMENT RECOGNITION

Models of auditory~visual speech

perception typically include auditory

analyses. visual analyses, and more

central processes common to both A and

V modalities [6]. Since the classic study

by Miller and Nicely [7], the recognition

of speech segments (i.e., consonants and

vowels) has typically been analyzed in

terms of acoustic, phonetic, and

articulatory features. Application of these

analyses to AV recognition has shown

that vision and hearing are often

complementary in speech recognition

under conditions of auditory signal

degradation.

Figure 2 shows mean data for

consonant feature recognition by

normally-hearing subjects as a function

of SIN for A, V, and AV conditions [8].

The top panel shows the data for voicing,

whereas the middle and bottom panels

show the data for manner of articulation

and place of articulation, respectively. A

and AV feature scores are shown by the

dashed and solid lines. V feature scores

are shown by the AV values displayed at

-15 dB S/N. Notice that voicing cues

obtained under AV conditions are

determined by audition; that~is, there IS

virtually no difference between AV and

A conditions. In contrast. place-of-

aniculation cues are detennined by

speechreading. For this feature. AV

scores remain virtually constant despite
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changes in A performance.

Although it may appear that both

modalities contribute significantly to the

recognition of manner-of-articulation

cues, our analyses suggest that this

feature is also determined by audition. It

is important to remember that voicing,

manner and place cues are not

independent. Performance on one feature

alters the expected chance performance

on another. For example, if we assume

that place-of—articulation cues are

transmitted visually and that responses

within place categories are distributed

uniformly, then we would predict a

visual manner score of 66% by chance

alone. This is very close to the score for

speechreading alone shown in the middle

panel of the figure (depicted by the AV

score at SIN = -15 dB). Thus, for these

conditions, manner-of—articulation cues

were derived primarily from the A

condition.
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Figure 2. A. V, and AVfeature scores

as a function of S/N.

The complementary relation between

auditory manner and voicmg cues with

visual place cues in speech recognition
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has often been cited as a primary reason
for the large advantages observed in AV
consonant recognition relative to either A
or V alone. In previous work, Walden,
Prosek, & Worthington [9] developed a
measure of AV redundancy that was
able to account for a substantial amount
of variability observed in AV consonant
recognition by hearing-impaired listeners.

In a recent study, Grant and Walden
[8] evaluated A, V, and AV consonant
recognition by normally-hearing listeners
under 12 different filtered-speech
conditions. The filters were designed to
create a range of A intelligibility scores
with different patterns of perceptual
confusions across A conditions.
Confusion data obtained from each of the
A filter conditions were subjected to a
Sequential Information Feature Analysis
[10], and the proportion of manner-plus-
voicing information relative to the total
amount of information received was
calculated. This proportion represents, to
a first approximation, the degree to
which A and V information are
complementary and shows the proportion
of auditory information not obtainable by
speechreading alone.
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Figure 3. Absolute AI benefit as a
function ofAV complementation.

'Figures 3 and 4 show the results of
this analysis after converting percent
correct scores to articulation index (AI)
units. Figure 3 shows the results for
absolute benefit (AV-A), while Figure 4
shows the results for relative benefit
[(AV-A)/(l-A)]. In both figures, the
abscissa shows the amount of
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information received in the A condition
for the combined voicing-plus-manner
feature expressed as a percent of the total
amount of information received. There is
a strong relation evident for both benefit
measures, indicating that the degree to
which A and V conditions complement
each other is highly predictive of AV
benefit. It should be noted that relating
AV benefit to overall A intelligibility
resulted in substantially weaker
correlations.

so «i» 1b uh oh mo
Voicing + Manner re: Total Infonnauon

Figure 4. Relative A] benefit as a
function of A V complementation.
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Models of AV integration which
make use of the entire A-alone and V-
alone confusion matrices, such as the

fuzzy logical model of perception

(Fl-MP) proposed by Massaro [l] or the
pre- and post-labelling models (PRE.
POS) proposed by Braida [2], have been
shown to predict AV consot
recognition more accurately than feature-
based models when applied to data
averaged across subjects.
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Figure 5. FLMP and PRE-model
predictions for normal-hearing ”bl-“’5-
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Figure 5, for example, shows FLMP

and PRE model predictions for the 8 SIN

and 12 filtered-speech conditions shown

in the previous figures. As can be seen,

both models account for a large

percentage of the variability in the

obtained data (R2 = 0.98 and 0.93 for the

FLMP and PRE, respectively).

AUDIOVISUAL INTEGRATION

Whereas the ability to recognize

segmental information from A and V

speech signals is undoubtedly

fundamental to predicting AV

recognition, the ability to integrate A

and V speech cues is another essential

determinant of AV performance [11,1].

With the development of recent

quantitative models of multisensory

integration [1-2], it is now possible to

estimate a listener's integration ability,

independent from their ability to

recognize A and V speech cues. These

models predict AV recognition based on

the pattern of segmental confusions

obtained for each separate modality. It

should be noted, however, that some AV

cues, such as the relative timing of lip

movements to voicing onset, are

multimodal, in that they exist only as

inter-modality timing cues. McGrath and

Summerfield [12] have suggested that

better lipreaders may be sensitive to

these cues. Given the accuracy of the

FLMP and PRE models. intermodal-

timing cues may play only a small role

in AV speech perception.

Unlike feature-based models, the

FLMP and PRE integration models

attempt to make use of all available data

obtained in separate A and V

identification tasks. and are potentially

optimum-processor models. Ideally, a

subject's AV performance should never

exceed predicted performance. Subjects

who perform as predicted are able to

make use of all of the available

information derived from the unimodal

conditions. On the other hand, subjects

Who perform more poorly than predicted

fail to make optimal use of A and V
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cues.

Our initial effons to apply the FLMP

and PRE models as a gauge of subject

integration ability suggests that the PRE

model may be more suitable. With the

FLMP, stimuli identified correctly in one

modality but incorrectly in the other, are

predicted to be incorrect in the combined

AV condition. As Braida [2] noted, the

FLMP does not properly account for

structured errors and relies too heavily on

unimodal accuracy. In contrast. the PRE

model focuses more on the consistency

of unimodal responses and not

necessarily on accuracy.
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Figure 6. A, V, and AV consonant

recognition by individual hearing-

impaired subjects.
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Figure 7. FLMP and PRE model

predictions for hearing-impaired

subjects.

Figures 6 and 7 show the results of a

recent experiment examining consonant

and sentence recognition in noise by 26

hearing-impaired subjects. Figure 6
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shows A, V, and AV scores for each
subject. As with Figure 1, subjects have
been ordered along the abscissa
according to A performance. Note first
the large variability in AV recognition
scores across subjects and the moderate
correspondence between A and AV
scores. This is additional evidence that
the overall A score (or V score) does not
allow accurate predictions of AV
performance.

Predictions made by the FLMP and
PRE models for the data shown in Figure
6 are displayed in Figure 7. The
modeling results for individual subjectsshow that predictions of overall accuracyfor are far less than perfect. FLMPpredictions (R2=0.71) consistentlyunderpredicted performance when theinput unimodal scores were low.Predictions by the PRE model on theother hand (R2=0.77), were either equalto or greater than obtained performance.Thus, the PRE model, unlike the FLMPbehaves more like an optimal integrator:Some subjects are able to achieve thislevel of performance, whereas others fallshort.
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Figure 8. A V consonant predictionsusing a 4-factor feature-basedmodel.
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difference between obtained andpredicted AV performance was used as
an index of AV integration skill. Thecombination of auditory voicing (VA),auditory manner (MA). Visual place (Pv),and derived AV integration estimates
(INTPRE or lNTFLm) was used in a 4-
factor model to predict AV consonant
recognition forhearing-impaired subjects.
A and V feature scores were obtained
from a SINFA analyses of the unimodal
conditions and expressed as the percent
of conditional information received for
that feature relative to the total amount
of all information received. For
comparison. integration estimates were
derived from AV predictions made by
both PRE and FLMP models.

Figure 8 shows the results using the
PRE model integration estimates. The
excellent correlation obtained is
impressive considering the simplicity of
the model; that is, a linear addition of
three unimodal feature scores and a
measure of subject integration. Similar
attempts to predict AV recognition
without integration estimates, or with
estimates derived from the FLMP model,
led to significantly smaller correlations
(R2=0.822 and R2=0.823, respectively).

WORD AND SENTENCE PROSODY
‘ Even if AV segment recognition for
individual subjects could be predicted
perfectly, there would still be the
problem of relating segment scores to
word and connected-speech scores. One
obvious difference between segmental
recognition tasks and word and sentence
recognition tasks is that the latter two
contain important prosodic information
related to stress, intonation, and rhythmic
structure. The basic function of prosody
In speech is to provide information about
lextcal, grammatical, and emotional
aSPCCt-s of the spoken message [I344]-
Further, individual differences in the
ability to extract prosodic information
aWears to be an important factor in
determining AV performance for words
and sentences.
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Acoustic analyses of prosody have
shown that the cues for syllabification,
stress, intonation, and phrasing include
variations in fundamental frequency,
segment and syllable duration, and
amplitude envelope [IS-20]. In general,

speechreaders are not very good at
extracting these cues. F0 variations are
largely undetectable, and acoustic
durational cues signifying segment
lengths and intervocalic closure durations
are often visually blurred or incompletely
specified due to articulator movements
that are either too rapid to follow
visually or that occur behind the teeth
[2l-23]. Thus, as with voicing and
manner-of—articulation cues, prosodic
contrasts detected through audition are
highly complementary to speechreading.

An important question related to the
use of prosody in speech perception is
whether subjects demonstrate variability
in their judgements of prosodic contrasts.
In a recent study, Grant and Walden [24]

measured the ability of normally-hearing
listeners to identify syllable number,
syllabic stress, intonation, and rhythmic
phrase structure in filtered words,
phrases, and sentences. The filters used
were approximately equal in
intelligibility (AI=0.1), and spanned the
frequency range from 300-5000 Hz. For
some subjects, prosodic features were
reliably extracted throughout the
frequency spectrum. Other subjects,
however, had considerable difficulty
identifying sentence intonation and
phrase structure from high-frequency
speech regions.

Although Grant and Walden did not
measure AV performance, the variability
which they observed in subjects' abilities
to extract suprasegmental cues from
various parts of the frequency spectrum
may be related to the variability observed

in AV speech recognition. It is well
known, for example, that there are
substantial differences in AV
performance among hearing—impaired
observers who have the same average

auditory recognition scores [25-26].
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Given the highly complementary nature
of acoustic prosody and speechreading
cues, it is possible that some of the
variability observed in AV word and
sentence recognition tasks may be related
to individual differences in the auditory
recognition of prosodic and rhythmic
cues.

WORD AND SENTENCE CONTEXT
Words and sentences provide listener's

with many additional cues besides the
usual segmental and suprasegmental
cues. For example, identifying nonsense
syllables requires that each separate
consonant and vowel segment be
received accurately. However. with
meaningful words, lexical constraints
make it possible to identify words
correctly without having to resolve all of
the individual segments. Similarly,
words presented in isolation typically
require more information than if the
words were presented in sentences. In
order to achieve the desired relationship
between segment scores and word and
sentence scores, these contextual

variables need to be taken into account.
Following Boothroyd and Nittrouer

[27], phonemic and semantic constraints

can be represented quantitatively by
using simple power-law equations. In
Equation 1, the recognition of a CVC
word is assumed to be equal to the

recognition of its component parts. If

each of these parts is statistically

independent then.

Pw = P"p, (l)

where PW is the probability of

recognition of the whole word, P is the

probability of recognition ofp each

independent segment, and n is the

number of segments in the word.

However, in real words. the segments are

not independent and it is not required

that all segments be received for the

word to be recognized. Therefore. for

real words,

Pw = PJp, (2)

where 15] S n. For monosyllabic words,

j is approximately 2.5 [4,27].
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Equation 3 relates words in isolation
to words in sentences,

p8 = 1
- (1 - Pw)", (3)where PS is the probability correct for

words in sentences, Pw is the probability
correct for words in isolation, and k is a
free parameter (greater than one)
reflecting the degree of predictability or
context of the sentence materials. For
low-context sentence materials such as
the [BEE/Harvard set [5], k is
approximately 1.14. For sentence sets
with a higher degree of predictability
(e.g., CUNY sentences), k is
approximately 4.5 [4].

Combining equations 2 and 3 withappropriate estimates ofj (= 2.5) and k(z 1.14), and substituting PC for FF givesP5 = I _ (1_PC2.5)I.I4, (4)

where Pc is the proportion correct forconsonants and PS is the proportion ofwords correct for IEEE/Harvardsentences.
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Figure 9. Relation between AV
consonant recognition and sentencerecognition.

Figure 9 shows the relation betweenAV consonant and AV sentencerecognition for hearing-impaired subjects.Application of k- and j—factorsappropriate for IEEE sentences (asdescribed above) would adjust the rangeof consonant recognition scorematch the range of observed
scores, but does nothing to revariability across subjects. To ac
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usage must be taken into account.
Studies to estimate k- and j—factors for
individual subjects, as opposed to sets ofspeech materials, are currently underway.
Additionally, other measures of word and
sentence context effects are being
explored.

SUMMARY
Predictions of AV speech recognition

ultimately depend on an understanding of
how lexical access is affected by
information provided by auditory and
visual sources, the processes by which
information is integrated, and the impact
of top-down contextual constraints. Our
efforts thus far to evaluate these factors
in individual subjects have been limited
mainly to consonant recognition, the
recognition of certain prosodic contrasts,
and segmental integration skills. Ongoing
efforts to expand this work to include
vowel recognition, sentence integration,
and semantic context usage will no doubt
improve our overall understanding of
AV speech perception.
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