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A COMPUTATIONAL APPROACH TO
RECOGNITION OF SPEECH FEATURES

USING MODELS OF AUDITORY SIGNAL PROCESSING

Thomas Holton
School ofEngineering, San Francisco State University, San Francisco. CA 94132 USA

ABSTRACT
We present a computational approach

to the detection of important speech
features, such as fonnants and pitch, based
on a model of auditory signal processing.
Algorithms have been designed to be
computationally simple, physiologically
reasonable and to emulate human
psychophysical performance.

INTRODUCTION
Most current approaches to computer

speech recognition are based on a
spectrographic approach to feature
extraction[1]. In this approach, the energy
of speech is measured as a function of
frequency, and parameters derived from
the resulting spectrum are compared to a
template or rule. Spectrographic
techniques include computation of HTS.
extraction of LPC and cepstral coefficients
and processing by filter banks. »

Spectrographic approaches suffer from
well—known problems. Because
spectrograms are sensitive to anything that
changes the relative magnitude of in-band
energies, their performance is often
severely degraded in situations of practical
interest; for example, in conditions of
reduced spectral bandwidth (over the
phone) or in the presence of background or
line noise.

In our approach, we have sought to
understand the fundamental strategy usedby the auditory system to process speech
Signals and apply this understanding to thedesrgn of improved algorithms fordetection of speech features. We have:. 0 developed a comprehensive model ofSignal processing by the peripheral andeariy central auditory system,

- studied the response of this model to

speech and other stimuli, and
o distilled what we believe are

important signal processing techniques of
the auditory system into practical
algorithms for feature extraction that
provide noise-immune, speech-specific
detection of forrnants and pitch pulses in
sonorant parts of speech.

RESULTS
A model of auditory signal processing

The model of auditory signal
processing[2] includes components
describing the external and middle car. a
detailed three-dimensional hydro-
mechanical model of the cochlea, a
biophysical model of mechano-electric
transduction by the cochlear hair cells, a
description of the time—dependent synaptic
chemistry of hair cells and auditory-nervefibers including models of the hair cell‘s
calcium channel and synapse and a ‘micro-
neural-net' description of signal processing
in the cochlear nucleus. A comparison of
the predictions of this model with
experimental physiological data in
response to both simple stimuli (i.e. tones)
and complex stimuli (i.e. speech) suggests
that the model adequately describes
essential features of auditory signal
processrng.

The response of the model to In!
Figure 1 shows the response of the

auditory model to a voiced utterance. /8/.
spoken by a male speaker. The model
response to this utterance comprises two
distinct spatio-temporal patterns occurring
in alternation. We term these patterns the
impulsive epoch and the synchrm
epoch. The impulsive epoch occurs in
response to the glottal pulse. In this epoch.
rnostfibersrtespondatar’atelhat
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Figure I. A. The response of 120 model fibers with characteristic frequencies (CFs)
spanning the range from 250 Hz (bottom trace) to 3.4 kHz (top trace). _Each waveform
represents the probability density function ofneural discharge for an audrtory nerve fiber
innervating one location along the cochlea which is maximally sensitive to a particular CF.
The responses offibers have been time aligned to remove the delay that results from the
transit time of sound along the basilar membrane and the delay of neural response. The
impulsive (I). and synchronous (S) epochs are marked B. The times at which the nerve
fiber ensemble in A is most likely tofire. This plot resultsfrom processing the wavefonns o]
A with a threshold—crossing algorithm that places a tick mark at the times at which‘eoch
fiber is most likely to fire. The plot gives a stylized description of the pattern of trmrng
information that this ensemble offibers delivers to the brain in response to /a[

conesponds with their best or
characteristic frequency (CF), giving the

pattern of response of the ensemble of
fibers a splayed appearance. In the
synchronous epoch which follows, several
groups of fibers respond distinctly at a rate
that comesponds to the frequency of a
proximal fomtant. We pcetically term each
group of fibers entrained to one formant an
“island of synchrony". There appear to be
at least three sharply delineated islands of
synchrony: fibers with CFs between
approximately 500 and 800 Hz are
synchronized to F1; fibers with CFs
between 1000 and 1400 Hz are
synchronized to F2; fibers with CFs above
2000 Hz are synchronized to F3.

The alternation of an impulse-like

pattern with a synchronous pattern is
highly characteristic of the response to
voiced speech. These observations suggest
that the alternately impulsive and
synchronous nature of the model‘s
response could be used to locate and track
linguistically interesting quantities such as

the times of occurrence of pitch pulses and
the frequencies of the fomiants. Our
approach has been to build separate
physiologically motivated “detectors" for
the impulse-like first epoch and the
synchronous second epoch and then use
these detectors to identify fonnants and
pitch pulses.

The response of the auditory model to

animpulse
Figure 2 shows the response of the
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Figure 2. A. The response of the audito '. ry model to an rrnpulse. B. The result ‘
the waveforms in A through a threshold—crossing algorithm that puts a tickOIfriirlrrfkcfz-tts‘t’l'rf
times eachfiber is most likely tofire.

auditory model to an impulse. Examined
individually, every fiber tends to respond
at a rate equivalent to its own CF. An
engineering approach to desi '
detector of this impulsive epoch 3:13 b:
to assert that an impulse is detected if, at
any moment, enough fibers respond at a
rate equivalent to their own CF.
Algonthmically, one might implement this
by computing an interval histogram of the
time between firings for each fiber, taking
the inverse to get a distribution of firing
rate and extracting the dominant frequency
component by a transform methodIS]
However, there is no evidence that the
brain has any processes analogous to those
ofrffornung or inverting histograms, or
pe orrmng transfomrst
components. 0 exam fiequcncy

Whatthebrain mostlikelycandoisto
detect patterns occurring in the response of
a large number of simultaneously active
parallel. channels. We suggest that what is
interesting about this picture is not an
rndrvr'dual fiber’s response, but the pattern
of response of the ensemble of fibers
$pecrfically, the cochlea’s response to an
impulse rs characterized by a “splayed”
pattern of firing: before the peak of the

impulse, fibers of lower CF respond before
those of higher CF; after the peak of the
impulse, fibers of lower CF respond after
those of higher CF. In order to detect this
pattern, we propose an array of cells, each
of which correlates the response from a
small number of adjacent channels and
produces an output when this sequential.
tonotopically organized pattern of firing is
seen m the input for a period of time. The
Signal processing operations involved here
are sunple, physiologically reasonable
time-correlation pattern detections; this
approach does not require the computation
of non-physical quantities like histogram
and transforms.

While it is possible to build a detector
that finds impulsive features in tin
stimulus using the approach just outlined.
there are two practical problem with this
idea: .1) Computational COMPW')’:
generating waveform plots such as those

in Figure 1 requires the solution of a
system of nonlinear, firm-varying

d‘ffmnfial equations um specify the
mw'miml. hair-cell and neural

00mponents of the model. The solution of

3"“ Mons is highbr computationally
"‘tenSlVe; 2) Temporal granularity:
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Figure 3. A. The spatial derivative of the phase ofbasilar-membrane velocity as a function

of time in response to an impqe. The ordinate corresponds to the 120 locations along the

basilar membrane with CFs logarithmically distributed between 250 Hz (bottom) and 3.4

kHz (top). Negative phase-velocity is plotted dark and positive phase velocity is light.

Before the peak of the impulse the phase velocity is uniformly negative, and becomes

uniformly positive after the peak of the impulse. B. The response of 119 local impulse

detectors to an impulse. Each local impulse detector continuously examines the spatial

phase velocity computedfrom the response ofa pair of adjacent channels. An impulse is

said to be detected when the spatial phase velocity becomes greater than zero after

increasing monotonicallyfor a period ofat least one millisecond. This event corresponds

to detecting the splayedpattern ofnerve-fiberfirings seen in Figure 2.

because model neural firings occur at

discrete times, the estimate of the time of

occun'ence of the impulse has considerable

temporal uncertainty or granularity.

To solve these problems we have used

an important result derived from the study

of the response of the cochlear model:

patterns of neural firings correlate with

patterns of basilar membrane motion;

specifically, information about the

sequential or simultaneous firings of

groups of adjacent fibers reflects simple

patterns in the spatial and temporal

derivatives of the instantaneous phase of

the basilar membrane’s motion.

The low] impulse detector

Figure 3A shows a plot of the spatial

derivative of the phase of basilar-

membrane velocity as a function of time in

response to an impulse. At all points on the

model cochlea, the spatial phase velocity is

initially less than zero and increases

monotonically over a period of time. This

pattern of phase velocity is easy to detect.

Figure 3B shows the response of an array

of local impulse detectors. Each detector

produces a response upon detecting the

negative-topositive pattern of spatial

phase velocity.

Figure 4 shows the response of an array

of local impulse detectors to /a/. Each

mark on the plot is derived by examining

local spatial and temporal patterns of phase

velocity over a small window of time

(about 1.5 msec) and a small range of

frequency (two adjacent channels,

corresponding to about 0.3 critical bands).

The wavy lines correspond to the times of

occurrence of the pitch pulses.

The local formant detector

it is possible to use the same auditory

model concepts to make phase-based local

/2
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Figure 4. A. The response of the 119 local impulse detectors to /a/. B. The response of the

impulse detectors to /a/ in the presence ofwhite noise with S/N = 8 dB.

synchrony detectors which find the

“islands of synchrony" discussed earlier.

Specifically, it can be shown that the

islands of synchrony correspond to spatio-

temporal regions in which the spatial

phase velocity of basilar—membrane

motion is constant.

Voiced speech comprises impulsive

epochs and synchronous epochs occurring

in altemation. We have built a candidate

formant detector that detects this pattern

based on the detectors for the impulsive

and synchronous epochs described above.

The formant detector is an array of cells,

each of which responds to an impulsive

epoch in a given channel followed by a
synchronous epoch.

Figure 5 shows the output of the local
formant detector to /a/. Three fonnants (F1,

F2. and F3) plus a bit of F4 are clearly
represented. The representation of
rnforrnation in this plot is quite sparse;
there is only information at frequencies
corresponding to the fomrants and little
elsewhere. None of the operations
involved in generating this representation
are either computationally complex or
non-physiological, and none of the
operations use: any of the conventional

spectral techniques.
In natural speech, the frequencies of

fornrants are not static, but change rapidly

as a function of time depending on the

consonantal context in which the vowel is

embedded. Because all the stages of

detection that generate this representation

act on patterns which are temporally

localized. the speech signal need not be

periodic or quasi-periodic to detemrine the

times of occurrence and frequencies of the

formants. In this approach. formants are

detected on a pitch-pulse-by-pitch-pulse

basis with simultaneously high time and

frequency resolution.

Human speech intelligibility, at least of

vowels, is not very sensitive to additive

background noise. Whereas spectrographic

representations of speech are inherently

sensitive to noise. the response of the local

formant detector is relatively insensitive.

Also. unlike spectrographic measures. it
can be shown that the response of the

formant detector is insensitive to pure

tones and other non-speechlike stimuli.

A model ofpitch
We have developed a theory for the

detection and identification of pitch and
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Figure 5. A. The output of an array of localformant detectors to /a/. B. The output of the

formant detector to /a/ in the presence ofadditive noise. S/N=+8dB.

voicing based on the physiological model

of auditory signal processing coupled with

the idea of detecting spatially and

temporally local patterns of response phase

from a number of parallel channels[3].

Figure 6 shows the architecture of a

physiologically motivated pitch detector.

For each point on the cochlea. we

postulate the existence of an array of local

pitch detector cells. Each cell in the array

detects in the time domain a different fixed

time periodicity in the output of the

underlying local impulse detector cell.

These pitch-detector cells could be

implemented physiologically by a series of

neural delay conelators, as originally

proposed by Licklider[4]. For each point

on the cochlea. cells in the pitch detector

array respond when a pair of impulses is

received in the same channel with a given

fixed time delay. Cells in the cunent

model are selective for time delays

spanning the range of l to 15 msec with a

resolution of .25 msec. The sum of the

response of local pitch detectors serving

the whole cochlea gives a global measure

of the periodicity of the entire ensemble of

channels, which we term the global pitch

detector.

Using this pitch detector method, it is

possible to track rapidly varying pitch of

natural speech. Figure 7 shows the output

of the global pitch detector, a

representation of the instantaneous average

pitch frequency as a function of time, for

an utterance that has relatively constant

formant structure but rapidly varying pitch.

The response of this pitch detector can be

shown to be robust in noise. While the

pitch detector is particularly sensitive to

impulsive stimuli, such as voiced speech. it

is highly insensitive to pure tones and

other non-speech-like input. The pitch

detector also reproduces effects seen in the

psychophysics of pitch perception, such as

the recovery of the missing fundamental of

resolved and unresolved harmonics.

The auditory-model pitch detector is

computationally straightforward and

physiologically plausible. Calculations

correspond to the correlation of simple

neural events. No continuous-time

autocorrelation functions are explicitly

computed, nor does the input stimulus

need to be periodic for pitch to be detected

and tracked.
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Figure 6. Architecture ofthe pitch detector

CONCLUSION
We have designed algorithms for the

detection of important speech features
bailed on an understanding of how the
au tory system processes s h.
Algorithms are computationally sirhifle,
physrologically reasonable and demon-
strate performance that emulates that of
humans.

Comparison with spectrographic
approaches to feature extraction

Almost all cunent approaches to speech
recognition are based on a spectrographic
approach to feature extraction. These
techniques include filter bank. fast Fourier
transform (FFI'), oepstral, power spectral
densrty (PSD) and linear predictive coding
(LPC) analysis. These spectrographic
approaches are sensitive to anything that
changes the magnitude of the input in a
frequency band, for example by spectral
shaping the input signal. Spectral

Ill

low frequency

approaches are sensitive to the frame size
of analysis; a larger frame size may be
used to average over pitch periods at the
cost of coarser temporal and spectral
resolution. Spectrographic approaches are
also inherently noise sensitive, since they
measure the energy in a frequency band.
regardless of the source of that energy.

The auditory-model approach to
detecting speech features differs in key
respects from spectrographic methods-
Tlus approach, based on building detectors
of spatially and temporally local pattems
of response phase from a number of
parallel channels. can be characterized as a

local time-domain phase—correlation
approach. in contrast with conventional
spectrographic techniques, which can be
characterized as examples of a global
frequency-down energy approach.
Auditory-model algorithms for feature
detection show noise insensitivity and
arnplrtude independence, as well as
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Figure 7. The response of the global pitch

detector (lower plot) to an utterance /a/

spoken with rapidly increasing and then

decreasing pitch (upper trace). The pitch

plot shows bands at thefundamental pitch

frequency. F0, and at the first sub-

hannonic. Fifi.

selectivity for speech—like sounds. There

are no inherent periodicity requirements

for the stimulus, nor need the data be

“framed“ into arbitrary time segments as,

for example, it must be prior to performing

spectral analysis by Fourier transform or

LPC coefficient extraction.

Comparison with other auditory model

approaches

Several studies have used concepts of

auditory physiology to motivate the design

of algorithms for speech recognition.

These approaches included the ensemble-

interval histogram (ElH) method of

GhitzalS], the generalized synchrony

detector (GSD) approach of Senetfl6] and

the correlogram approach of Lyon[7]. All

these methods are based on detemiination

of the times of neural firings of a number

of channels of a nonlinear auditory model.

The response of each model fiber is then

analyzed individually, for example by
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computing a period histogram of a fiber’s

response and then perfomting spectral or

autocon'elation analysis of response.

Global operations are then performed on

the summed data from a number of

individual channels to detect important

features such forrnants. In addition to the

drawbacks of temporal granularity and

computational intractability discussed

previously, the operations of accumulating

histograms and performing spectral

analysis are not likely to be physiological.
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