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ABSTRACT

The paper reviews two engineering
techniques, the Perceptual linear
predictive (PLP) analysis and the
RelAtive SpecTrAl (RASTA)
processing, used in automatic speech
recognition and describe their
consistencies with some properties of
human speech perception.

INTRODUCTION

Assuming that speech developed so
that its linguistically important
components are heard well, processing of
speech should respect properties of
human hearing. However, a blind copying
of nature without deeper understanding
pf underlying mechanisms in hopes of
obtaining" a successful engineering

solution has frequently proven to be a
failure.

We believe that engineeringdisciplines
can benefit from selective modelling of
relevant. characterist'cs of human
information processing . In this paper we
discuss two techniques, the Perceptual
linear predictive (PLP) analysis, and the
RelAtive SpecTrAl (RASTA)
processmg, which were designed to
improve performance of automatic
speech recognizers. Subsequently, these
techniques were found to be consistent
With speCific properties of human speech
perception. We discuss (in italics)
relevant properties of human speech
perception, and before describing the two
we attempt to put both techniques into
historical perspective with selected
engineering systems.

H

. .
" .Airplanes do not flap wings, and most ofauditory models" do not demonstrate significantadvantage in engineering, and sometimes yieldclearly inferior results.

PERCEPTUAL LINEAR
PREDICTION (PLP)

The PLP analysis technique was
designed to suppress speaker dependent
components in features used for
automatic speech recognition. Several
basic properties of human hearing (as
noted bellow, each previously used in
engineering)were integrated in a speech
analysis technique called PLP [1].

Root Spectral Compression

Perception of intensity appears to be
consistent with a compressive type of
nonlinearity. In particular, perceived
loudness of a steady sound is
approximately proportional to a cube
root ofits power [2].
.Lim [3] investigated the use of

different compressive functions in
homomorphic analysis of speech. He
concluded that the cube root
compressmn was optimal with respect to
resulting speech quality of re-
synthesised speech.

.Hermansky et al. [4] experimented
with varying compressive functions in
linear predictive analysis and found that
when the short-term power spectrum of
speech is compressed through cube root
function, the analysis is the least affected
by the fine spectral structure of voiced
speech. The root spectral compression
also helps in modelling spectral envelope
zeros which occur in nasalized and
fricative speech sounds.

Furthermore, root compressed power
Spectrum (root compression with
exponents 2-4) appears to be optimal for

H

1 .
. Airplanes do not flap their wings, but their

demo! is. based on thorough understanding and
u§¢ Ofpnnciples of aerodynamics which allow
birds to fly.
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processing which alleviates additive noise
in the acoustic signal (see e.g. [5-71)

Nonlinear spectral resolution

Decreasing selectivity of human
hearing with frequency is one of the best
documented and least disputedproperties
ofhuman auditory perception.

Bridle and Brown [8] and later
Mermelstein [9], and Davis and
Mermelstein [10] proposed to use cosine
transform of logarithmic energies
(cepstrum) from non—unifonnly spaced
bandpass filters with bandwidth
increasing with frequency. Davis and
Mermelstein proposed triangular filters
with a shape which is about constant on
the mel scale. Mel cepstrum is currently
the dominant feature extraction technique
in automatic speech recognition.

Nonuniform spectral sensitivity of

hearing

For typical levels of human speech
communication, hearing is most sensitive

in 2—4 kHz range, therefore emphasising
the second and thirdformant region.

A typical preemphasis in speech
analysis approximates this property by
6dB/oct high-pass filtering of the signal.

To obtain more stable formant
estimates, Itahashi and Yokoyama [l 1]
proposed to warp the spectral envelope
of speech (estimated by high—order LPC
analysis) using a mel warping function,
and weight it by an approximation of the
Fletcher-Munson equal loudness curve.
The resulting auditory-like spectrum was
then again approximated by relatively
low (6th order) LPC all—pole model.

Broad spectral integration in speech
perception.

Klatt [12] speculated that for gender
normalization, larger than I Bark
spectral resolution would be required.
This notion is supported by perceptual
studies that suggest that human speech
perception could integrateformant peaks
within 3.5 Bark interval [13], and
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therefore could merge several speech
formants. Thus, frequency resolution for
perception ofspeech signals seems to be
considerably broader that the critical-
band concept would suggest

Pols et al. [14] reported that the first
three (six) principal components of a set
of non—uniformly spaced 1/3 octave filter
bank output power explain 82% (97%)
of variance in his data. Later work
P015 [15] also shows that these first
three principal components can be used
successfully in automatic speech
recognition.

The Technique

Several engineering approximationsto
the properties of human speech
perception are used in PLP analysis of
speech:

1) critical band (Bark) nonlinear
frequency resolution, implemented by
integrating short-term Fourier spectrum
of speech under increasingly wider
trapezoidal curves,

2) asymmetries of auditory filters,
implemented by relatively steep
(25dB/Bark) slope of the trapezoidal
curve towards higher frequencies and
more gradual (10dB/Bark) slope towards
lower ones,

3) unequal sensitivity of human
hearing at different frequencies,
implemented by a fixed approximation of
Fletcher-Munson equal loudness curve,

4) intensity-loudness nonlinear

relation, implemented by a cube root
compression, and

5) broader than critical-band

integration, hypothesised in perception

of speech (see e.g. [12]), implemented by

an autoregressive all—pole model.

The optimal order of the PLP all-pole

model was determined experimentally on

cross—speaker speech recognition

experiments in which training data from

one speaker were used to recognise

speech of another speaker. Results are

shown in Fig. 1. The two-peak (5th

order) model was found to be optimal.
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Fig, I Dependency of recognition

accuracy in cross-speaker experiment on

the maximum number of spectral peaks
(model order) ofPLP model

_ The spectrograms in Fig. 2 show that,
in comparison to the conventional
formant based representations, the
broader spectral integration implied by
low~order PLP analysis is capable of
more consistent speech representations
from adult and child speech.

S‘PECTROGRAMS . ‘ ADULT MALE

Fig. 2 Spectra of adult and child
, obtained by conventional $33;

analysis and by PLP analysis
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The 5th order PLP model was used

successfully in speaker-independent
recognition of digits [1]. For more
complex tasks with a sufficient amount

of training data, higher model order (7th-
8th) appears to be more efficient.

RELATIVE SPECTRAL (RASTA)
PROCESSING

We will next describe our engineering
approach based on certain temporal
properties of human hearing.

Perception of modulatedsignals

Since early experiments of Riesz [16]
it is known that sensitivity of human
hearing to both the amplitude and the
frequency modulation is highest for
frequency ofmodulation atabout 4-6 Hz.
Thus, human hearing in perception of
modulated signals acts as a band-pass
filter.

Drullman et. al [17, 18] support the
band-pass character ofhuman hearing in
speech perception by showing that low-
pass filtering of 1/4 octave-derived
spectral envelopes of speech at
frequencies higher than 16 Hz or high-
pass filtering it at frequencies lower that
2 Hz causes almost no reduction in
speech intelligibility. They proposed that
that the bulk of linguistic information is
contained in modulation frequencies
between 2 and I 6 Hz.

Furui [19] introduced delta features
to enhance dynamic components of
speech Signal. To approximate the
denvative of time trajectories of cepstral
coefficients, Furui computed the delta
features usmg a regression fit to a short
segment of the cepstral trajectories. This
operation rs equivalent to band—pass
filtering of the trajectory by an FIR filter
With a relatively shallow (-6db/oct) low
frequency slope. The optimal length of

‘ the segment for deriving the regressionfit
was about 170 ms, which corresponds to
a FIR bandpass filter with its maximum
at about 4 Hz [20].

Rosenberg et al [21] experimented
With cepstral mean subtraction in
speaker recognition system using mean
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computed over short-term window of

variable lengths. They reported the best

results for the window of 165 ms. As

discussed e.g. in Herrnansky and

Morgan [20], the cepstral mean

subtraction with the 165 ms window

implies high-pass filtering with the filter

cut-off frequency of about 1 Hz

The Technique

RASTA engineering technique uses

the fact that linear distortions and

additive noise in speech signal show as a

bias in the short-term spectral

parameters. Since rate of such extra-

linguistic changes is often outside the

typical rate of change of linguistic

components, Herrnansky et a1 [22] and

Hirsh et a1. [23] have proposed filtering

of temporal trajectories of speech

parameters which would alleviate the

extra-linguistic spectral components from

the speech representation. This

technique is known as RASTA speech

processing. A series of recognition

experiments in which the test data were

linearly distorted by convolution with a

simple first—order high-pass system [20]

was run with different RASTA filters to

determine the optimal filter structure.

Results of experiments are shown in Fig.

3.
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Fig. 3 Dependency of recognition

accuracy in presence oflinear distortions

on time constant of integrator of RASTA

filter.
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The optimal filter for recognition of

noisy speech was found to be a bandpass

filter with the pass—band between about

1 Hz and 12 Hz. The time constant of

the integrator in the filter was about 170

ms. RASTA processing enhances

dynamic events is the signal and

suppresses the slowly varying ones, as

illustrated in Fig. 4.

PLP

lama...“

/a/ II] /u/ /e/ lo/

RASTA-PLP

ole silloalar 1|: ull cl.-

0 TIME [s] 3.5

Fig. 4 Spectra offive sustained Czech

vowels obtained by PLP and RASTA-PLP

analyses. Note enhanced transitions

resultingfrom RASTA processing

The RASTA band-pass filtering is

typically done either on logarithmic

spectrum (or cepstrum, which is a

linearly transformed logarithmic

spectrum) or on the spectrum

compressed by ln(const+x) nonlinearity.

However, Herrnansky et a1. [7] reported

that RASTA filtering on root—

compressed power spectrum (with filters

designed from the training data) rs

effective for perceptual enhancement of

noisy telephone speech. Filters in the

frequency range with most speech energy

have a maximum at about 6-8 Hz.

For speech recognition applications,

we most often use RASTA processing in

combination with the above described

PLP technique. In this combination,

RASTA filtering is performed on

outputs from a critical-band analysis, i.e.,
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prior to the cube root compression and
loudness equalisation, and the all-pole
modelling. We note that RASTA-PLP
technique is rapidly gaining recognition in
engineering community, especially in
applications which can tolerate or even
benefit from the enhanced spectral
dynamics, such as the isolated phrase
recognition. Alternative recognition
paradigms which could capitalise on the
enhanced spectral dynamics are being
studied for applications of RASTA
processing in recognition of continuous
speech [24].

CONSISTENCIES WITH HUMAN
SPEECH PERCEPTION

Although both PLP and RASTA were
desrgned on purely engineering grounds
and with a clear engineeringobjective in
rmnd, they both turned out to be at least
in certain aspects consistent with human
speech perception.

PLP and e ective rce tual second
ormant '

Fant and Risberg [25] observed that
all Swedish vowels can be simulated by
synthetic stimuli with only two spectral
peaks, providing that their second
spectral peak F2’ is in particular
position, which does not necessarily
cozncrde with any of the formants.
Fant [26] proposes that the eflective
secondformant F2' might correspond to
a resonancefiequency of the uncoupledfiont cavity ofthe vocal tract. Hermansky
and . Broad [30] showed on X-ray
tracmgs that thefiont cavity appears to
be less dependend on the age ofthetalkerthan the rest of the vocal tract. They
speculated that speech perception(simulated by the PLP analysis) might beable to integrate detailed formantstructure and extract the resonancegzgrsency of the front part of the vocal

\

’Justasismoreorluswceptedthatme
formant: are W by some form ofmtegrationof afimdamentalfrequmymb.
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The 5th order PLP analysis of 18
synthetic cardinal vowels yields results
which agree well with Bladon and
Fant's[27] perceptual experiments: the
second spectral peak approximates well
the effective second formant F2' [1].
Moreover, the bandwidths of the PLP
model preserve information about spread
of the underlying formant clusters, thus
alleviating a fundamental objection [28,
29] to the F2' concept (see [1] for
evidence and discussion). The two peaks
of the 5th order PLP model start merging
when their distance approaches 3.5 Bark,
thus being consistent with [13]

Hermansky and Broad [30]
demonstrate a high correlation between
positions of the second spectral peak of
the 5th order PLP model and the
resonance frequency of the uncoupled
front cavity of the simulated vocal tract
of _ front and mid vowels, used in
articulatory synthesis of the vowel-like
sounds. Table l. is a summary of their
results. The first row contains
correlations of the tract legnth and the
resonance frequency of the uncoupled
front cavity with the second peak of PLP
model, extracted from the synthesized
speech. The second row shows averaged
correlations with the first four formants.
Note that the formant frequencies, which
are strongly dependent on anatomy of
the particular vocal tract, correlate highly
With the tract length. The weak
correlation of the second peak of the PLP
model with the tract length implies its
relative independence of the talker. Its
strong correlation with the resonance
frequency of the uncoupled front cavity
supports Fant’s proposal of its
correspondence with the effective second
formant F2’ [26].

Table I.

Tract Front cavity
Length resonance

Second Peak -0.18 0.9
of PLP Model

Formants -0.71 0.22
Averaged)
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Later [31] they also show a high
correlation of the PLP-estimated F2' with
the front cavity resonance estimated
from the x-ray microbearn data.
Additional work is needed to get full
support for their hypothesis.

RASTA and forward masking

[fa loud sound is followed closely in
time by weaker sound, the audibility of
the weaker sound is diminished. This
qfect, calledforward masking, reflects a
significant nonlinearity since,
independently of the masker amplitude,
the eflect seems to last for about 200 ms
(see e.g. [32]).

As we noted earlier, the phenomenon
offirrward masking reflects aspects of
temporal properties of the auditory
system. Forward masking eflbct is
typically measured by presenting, on each
trial, a masker (tone or band-passed
noise) for 200 milliseconds or longer.
Human observers are asked to detect a
brief probe presented afler a variable
delay following the ofiset of the masker.
The masking efl'cct is summarised by the
sound level of the probe, above its
threshold required for fixed detection
performance.

Typical data from such experiments
exhibit features that implicate non-linear
aspects of the auditory system. For short
delays. the masking efiiect is determined
by the masker level. However, the
masking eject decays rapidly, and
becomes negligible for delays greater
than 200 milliseconds, independent of the
masker level. The decaying dependence
of the masking eflcct on the logarithmic
delay is well approximated by a set of
straight lines that intersect at a point
corresponding to the delay of
approximately 200 milliseconds. This is
illustrated in Fig. 6 by the shaded triangle
which was derived from extrapolated
mean human data for 1 kHz and 30-60
dB SPL maskers (experiment 1 in [34]).

Prior attempts to account for the data
led researchers to models based on
automatic gain control such as proposed
by [32]. In his model, the effect of the
masker was to reduce temporarily the
system gain. Although this model could
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account for the temporal behaviour of
forward masking data, it did not specify
a plausible process for the temporal
dependency of the gain.

A decade later, a scrutiny of the
RASTA engineering model provided two
interesting insights [33]. First, a
reduction in gain in the AGC model is
equivalent to a subtraction preceded by a
logarithmic transformation. Second,
exponential decay in the logarithmic
domain with appropriate choices of time
constant can produce data that closely
approximate linear decay. Both such
operations are implemented in the
RASTA model.

To investigate the potential of
RASTA processing for modeling the
temporal masking effect, we duplicated a
part of experiment I fiom [34]. Critical-
band spectra were computed by PLP
analysis using 1 kHz stimuli. The
critical-band spectra were processed by
our standard RASTA filter [20]. Probe
detection was mediated by a comparison
ofa specu'al distance measure of RASTA
processed loudness profiles (critical-band
spectra in cube-root power) of a masker
alone and of the masker followed by a
probe. The process is illustrated in
Fig.5.

M+S

RASTA L0“)
Masher 4- Probe ANALYSIS

. W
_-_, RASTA

_ ANALYSIS Ll")
..r

Fig. 5 A model of the experiment for
investigation of temporal properties of
RASTA processing.

Results, shown in Fig.6, are
qualitatively consistent with conclusions
from human forward masking
experiments [34] which implications are
indicated in the figure by the shaded
triangle overlaid over our data. To obtain
the fit, we allowed for a linear
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optimization of the distance measure, i.e.

the actual Euclidean distance between

loudness profiles was multiplied by a

constant. (0.12) and another small

constant (0.9) was added to the result.
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CONCLUSIONS

We have reviewed two successful
engineering approaches, designed to
alleViate sensmvity of speech processing
to. extra-linguistic factors and used
Widely ‘m speech engineering. We noted
the Similarity in their behaviour to that of
the human auditory system. Some of
these consrstencies were obtained
because of an explicit motivation to
model the human auditory system, but
others were strictly the results of
engineering optimisations.

We have also noted that anal '
engineering systems may lead timing:
hinSights into the processes underlying
_uman auditory perception. There are
mstanoes where engineering technique
eventhough deSIgned only as a practical
solution to a particular engineering
problem, turned out to be a good model
of human auditory perception.
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