Vol. 2 Page 546

Session 31.14

ICPhS 95 Stockholm

THE TEMPORARY ENERGY DISTRIBUTION MODEL (TED)
OF PITCH PERCEPTION

Henning Reetz (henning.reet; @uni-konstanz.de)
Dept. of Linguistics, University of Konstanz, Germany

ABSTRACT

Pitch perception models assume that
either the place along the basilar mem-
brane or the firing rate of neurons encodes
the perceived pitch. Place coding is widely
accepted, because random sine phase
components show no periodic peak
pattern in the complex waveform [1], and
two sine tones presented at different ears
can cause a pitch percept [2], neither of
which a peripheral peak-picking model
can explain. Contrary to this argues this
paper for a rate coding of the energy of the
acoustic signal in the temporal domain as
the source for pitch perception, resolving
the two aforementioned problems. The
model is implemented in a pitch extraction
algorithm.

THEORY

Sound waves reaching the outer ear are
converted by the middle ear mechanics
into travelling waves on the basilar
membrane in the inner ear, eventually
leading to neural firing of the haircells in
the membrane. The place of maximal
elongation of the membrane, and
correspondingly, the maximal firing of
neurons, is a frequency-dependent
gradient along the membrane. This
encodes different frequencies in different
neuron Jocations along the membrane. In
some way, the basilar membrane acts as a
mechanical power-spectrum analyzer and
the brain is supposedly able to derive the
pitch of the signal from the spectral
representation of it.

At the same time, individual cells fire in
synchrony with the maxima of the
acoustic signal, and the firing rate, or
more precise, the distances between neural
peaks encode the periodicity of the signal
in the time domain. Furthermore, not only
the neurons fire at the place of maximal
elongation of the membrane, but all other
neurons as well, although with reduced

rate. And because temporal information is
available in higher regions of the brain
with a precision of a few microseconds,
the brain could derive the pitch from the
temporal representation of the signal.

In Goldstein’s optimum processor
theory [3], either the place or rate of the
neural representation can be the input of
the central pitch-processor, removing the
ground for the spectral representation
claimed by [2] as the only possibility to
explain their experimental findings. Thus,
the strongest argument for a place
representation of the pitch in the auditory
nerve is based on the experiments by [1].
He used complex signals differing only in
the phase relations of their sine wave
components. These signals have the same
power-spectrum but differ considerably in
their waveforms. The signals were
perceived with the same pitch, hence he
argues that only the phase insensitive
spectral representation can explain the
pitch perception, because a temporal
representation of pitch would change with
the differing waveforms. The argument is
based on a waveform representation of the
signal at the inner ear.

Unfortunately, the middle and inner ear
are not linear systems and the basilar
membrane performs a complicated three-
dimensional movement with different
travelling times along its length for
different frequency components. The
system uses active feedback components
and cannot be described in linear terms.
The movement of the hair-cells is a sine-
wave movement for a sine-wave signal,
but for complex signals, especially for
time-varying signals like the speech
waveform, this analogy breaks down.
The ear has to be considered as an energy
transformer and is not an amplitude
encoder [4]. This essential point is missed
by the argument that pitch perception is
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phase-insensitive and therefore cannot be
explained in the time domain [1]. In fact,
the loss of phase information in the
spectral domain is not a consequence of
the Fourier Transformation, but the
outcome of computing the power-
spectrum from it.

While the movement of the basilar
membrane has not been mathematically
modelled yet, we know that the membrane
and its hair-cells convert signal energy
into neural firing synchronized with signal
maxima (for sine waves). More generally,
the firing is in synchrony with maxima of
the signal’s energy, with firing rates of the
neurons differing in intensity along the
basilar membrane. Therefore, a rate
coding of energy in the temporal domain
is likely to exist in the auditory nerve.

THE TED MODEL

In contrast to the ‘neural firing in
synchrony to signal amplitude’ model, I
propose a ‘neural firing in synchrony to
signal energy and frequency’ model,
where the distribution of energy in the
temporal domain (Temporal Energy
Distribution) encodes the pitch informa-
tion. I describe now this model in the
subsequent text in more detail. Numbers
in the text refer to Figure 1.

The central idea of the model is the
parallel representation of the acoustic
signal in energy bands with different
frequency responses. Taking a small
window from a signal and computing its
energy represents high-frequency energy,
while wide windows represent low
frequency energy (1). A range of
windows with increasing sizes represents
the energy in bands with decreasing
frequencies (2). These energy bands can
be understood as an instantaneous energy
spectrum which is different from the
classical power-spectrum. In the classical
power-spectrum, the frequency
distribution in a window is given under
the assumption that the signal part in the
window is a stationary signal. The
classical power-spectrum is also usually
used as data-reduction step, namely for
locating harmonics in it. In opposition to
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this, the computation of the energy bands
is made without an assumption of the type
of signal, and it yields an increase in the
data rate.

Next, the energy bands are converted
into a representation about the maxima in
it (3). In each energy band, the signal
maximum leads to a ‘firing’ of a neuron
according to the “all-or-nothing’ principe,
i.e., information about the absolute value
of the maximum is lost and only the
information that the signal has reached a
maximum at a certain time is encoded in
the neural firing. The ‘ignition’ of the cell
is linked to adaptation and refraction
processes, preventing the neurons from
firing at every local maximum,
independent of their size and duration in
relation to the neighboring signal.

This parallel concerto of firings is
gathered into a temporal histogram of all
neurons (4). This histogram is the energy
distribution in all energy bands over time.
The distances between the maxima in it
reflect the periodicity in the signal.

SOME CONSEQUENCES

The TED histogram can be interpreted
in terms of speech production and
perception. In speech production, energy
is emitted either permanently (e.g., in
voiceless fricatives) or impulsively, where
the impulse can be a singularity (e.g., in a
plosion burst) or impulses can occur
repetitively (e.g., in a voiced sound). The
TED histogram shows the impulsive
energy emission, which can be a
singularity, or a repetitive but irregular
emission (e.g., in a creaky voice), or it
can be a quasi-periodic sound. The
difference between these three groups of
sounds is reflected in the distribution of
energy as being either singular, not
periodic, or quasi-periodic. Especially the
capability to identify any voiced sound,
may it be periodic or not, gives the TED
representation more power than most
other pitch detection methods.

In perceptive terms, the TED model
locates any energy distribution in t‘he
signal, independent of its origin.
Furthermore, the TED representation has
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some unusual feature for a temporal
representation: random noise leads to a
more or less random firing of all neurons,
resulting in a nearly flat TED histogram.
Periodic signals yield periodic firing in
several energy bands, resulting in
periodicity in the TED histogram. Spectral
phase relations, number of involved
harmonics, and random noise only
decrease the ‘peak-to-noise’ ratio in the
TED histogram, but does not hinder the
pitch detection. As illustration, Figure 1
displays the behaviour of the model with a
sine signal covered by random noise with
an S/N ratio of -12 dB.

ALGORITHM

The TED model was implemented in an
algorithm whose general operation is
described now with regard to Figure 1.
(1) The speech signal is windowed with
Hamming window sizes between 1 and
15 ms, converting the signal into parallel
bands; the windows move sample-by-
sample over the signal. (2) The windowed
samples are squared and added up in the
individual bands. (3) The local maxima
within *1 ms are selected and are
represented as peaks with unitary height
within each band. (4) The peaks of all
bands are combined into a TED
histogram. (5) Peaks with irregular
distances to neighboring peaks and peaks
with low amplitude are eliminated from
the histogram. (6) The distances between
peaks are represented as a pitch value if
(i) they form a sequence of at least four
peaks, and (ii) this sequence is longer than
30 ms.

The algorithm has a very simple
structure but is slow on a digital general-
purpose computer. Its on-line behaviour
and its regular structure with simple
computations and decisions makes it
suited for realization in silicon where it
could operate in real-time.
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CONCLUSION

An algorithm has been presented
whose design is based on principles
derived from the auditory processing in
the inner ear. (These principles have been
further tested with perception experiments
presented elsewhere [5]). The speech
signal is represented by a temporal
structure in parallel energy bands which
are computed in the temporal domain.
This representation reflects speech
production and perception issues equally
well. In ongoing research I investigate the
possibility to eliminate the periodicity test
(step 5 of the algorithm) by incorporating
more details of the intensity adaption of
the inner ear into the model. Tentatively,
the temporal energy distribution might
also be suitable for the segmental
representation of speech.
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Figure 1: The samples of the acoustic signal (0) are windowed with increasing window sizes (1) and their squares are summed, leading to parallel

energy bands (2). The maxima in these bands are represented by unitary peaks (3). The peaks are gathered in a histogram (4) and irregular and

small peaks are removed (5). Sequences of peaks which are too short are removed (not shown here) and finally the data is converted to a pitch

contour (6). The signal used in this example is taken from the CD [6], Track 42, it is high frequency noise that partly covers a sine tone. Power

spectra of noise (a) and noise with sine tone (b) are added for illustration.




