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ABSTRACT

A time-domain simulation of wave
propagation in the vocal tract is out-
lined, using finite-differences to map
a system of partial differential equa-
tions onto a state-space recursion. It is
shown that the eigenvalues and eigen-
vectors of the time-varying system ma-
trix can be used to determine the res-
onant modes of the vocal tract at any
desired time instant. The effect of glot-
tal vibration on formant structure is ex-
amined using this technique.

INTRODUCTION

The correspondance between the for-
mants of the speech signal and the res-
onant modes of the vocal tract is well
known, as is the role of the spatial pres-
sure and volume-velocity distributions
associated with each mode in deter-
mining the response of the vocal tract
to an acoustic source located at any
point within the tract. Previous at-
tempts to determine the spatial and
temporal modes using acoustic models
{1] [2] have relied largely on frequency-
domain methods which are limited to
static tract shapes, and which do not
account for coupling between the glot-
tis and the supra-glottal cavities. In
this paper, a time-domain simulation
method is described which allows the
resonant modes of the modelled vocal
tract to be determined at every sample
point. The method relies on the use of a
finite-difference approximation to con-
vert a system of acoustic partial differ-
ential equations into state-space form.
The eigenstructure of the resulting ma-
trix recursion determines the spatial
and temporal modes of the vocal tract,
and can be calculated at each time in-
stant. Since the model is valid for time-
varying glottal and supra-glottal area

functions, it can be used to examine
the effect of fast variations in glottal
shape on the formants. This is diffi-
cult to investigate using spectral anal-
ysis techniques due to the short time
scales involved, as reported in [3]{4].

THE ACOUSTIC MODEL

The acoustic model adopted here
is based on a previous model due to
Maeda [5]. Define a bounded region
2 C R? to represent all points (z,t) in
the vocal tract at distance z from the
trachea entrance at time ¢.  is divided
into three sub-domains €, Q;, Q5 rep-
resenting the trachea, glottis, and oral
cavity respectively, which are separated
and enclosed by boundaries 8Q, 08r,
0Q.0, 0Qer, 003, 0.

Q={(z,t):0<z < L(t),0<t < T}
Ql={0<z<XT},

Qz = {XT <z<L XG},

U ={X¢ <z < L(t)},

0o = {t =0}, 00 = {t =T},
801'0 = {13 = 0}; aQ:L = {2 = L(t)}!
0z = {2: = XT}, O3 = {:C = XG},

L(t) is the time-varying tract length;
Xr and X¢ are the distances from the
trachea entrance to the entrance and
exit of the glottis, assumed constant.
Suppose that the vocal tract may be
approximated by a non-uniform time-
varying elastic tube of equivalent cir-
cular cross-section A(z,t) and circum-
ference S(z,t). Under the usual as-
sumptions that the processes governing
fluid flow are laminar and isentropic,
the state of the air in the vocal tract can
adequately be described by the pres-
sure p(z,t) and volume velocity u(z,t)
at all points along the mid-line, and the
system of linearized acoustic equations
governing one-dimensional planar wave
propagation can then be derived from
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conservation of mass and momentum.
Additional losses must be included to
account for viscous friction and wall vi-
bration. Assuming that the wall sur-
faces are locally-reacting, the displace-
ment y(z,t) from an equilibrium radius
can be conveniently modelled as the re-
sponse of a second-order linear mechan-
ical system to local pressure variations.
The equation for Poiseuille flow in a
cylindrical duct can be used to provide
the viscous loss term. The system of
partial differential equations for p,u,y
in , and Q3 is then given by:

p 0 pu) 8rp
LI () TR 0
ot e =
Ju 0 (Ap 8
R Rl —(A = 0,
Oz + ot (pcz) + 3t( +59)
9% .0y
— —= - = 0.
Mo Ty Ry Sp

Flow within the glottis is assumed in-
compressible, and wall vibration may
be neglected, leading to the following
modified system of equations for Q,,

dp 8 (pu 12pl2 _

5 ta ()t = O
du
b
Oz !

where I, is the glottal length and p, p
the density and viscosity of air.

The boundary condition at the tra-
chea entrance 8, is provided by the
lung pressure Pi,ny(t).

The boundary condition for 89,1, at
the lips is supplied by the radiation
impedance, which can be modelled us-
ing Flanagan’s approximation,

QE_‘ 9x2 Q-(A )_BxVa'A
8t~ 128pcat ' F 8 T

Continuity is assumed across the in-
ternal boundaries 8,5 and 8,3, and
all quantities assume their equilibrium
values initially along 0.

The mixed initial/boundary-value
problem must now be solved on £ us-
ing numerical methods. Applying the
finite-difference technique, the contin-
uous domain Q is sampled on a grid
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of points {(z;,tx) : 7 = 1... M,k =
1...N}, which need not be uniform.
The partial derivatives in the origi-
nal continuous-domain equations are
replaced by difference operators, yield-
ing simultaneous linear algebraic equa-
tions linking the quantities p, u, y sam-
pled at neighbouring grid points over
several time steps. In this way, the
continuous-domain equations are trans-
lated into a system of linear differ-
ence equations defining a recursion on
a finite-dimensional state-space, which
can be solved to yield an approxima-
tion to the true solution. The solution
of the discretized system will converge
to a solution of the original continuous-
domain system if it can be shown that
the discretization is consistent and the
recursion is stable. A two-level im-
plicit difference scheme has been care-
fully constructed from the above equa-
tions to guarantee convergence for a
slowly time-varying grid defined on (.
The details are omitted here due to lack
of space.

Denoting by Z, the vector of val-
ues for p(zj,ta), u(zj i), y(lj,th)v
y'(z;,tx) on all grid points at time Ly,
and taking Z, = 0, the resulting im-
plicit recursion may be written as

P),Z)Hq = QbZk+Fk

where P, Qi are sparse banded ma-
trices whose coefficients are functions
of A(z,t) determined by the difference
scheme, and F}, is a vector driving func-
tion derived from the boundary condi-
tion on 8€.0.

This is a standard generalized eigen-
value problem, and the properties of
the recursion are clearly entirely de-
termined by the eigenstructure of the
matrices P, 'Qs. In particular, at any
time tg, the solution Z; of the recur-
sion can be expressed as a modal sum
involving the eigenvalues X} and eigen-
vectors ¢} of Py Q.

Although the original equations
do not possess a well-defined sys-
tem of eigenfunctions due to the
time-varying tract length, the finite-
difference scheme can be shown to ap-
proximate the original PDEs in the
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limit as the grid dimensions tend to
zero, and the changing eigenstructure
of the corresponding matrix recursion
can be taken to represent a “local” ap-
proximation to the evolution of the vo-
cal tract resonant modes. The eigen-
values of the system matrix represent
the time-varying poles of the vocal
tract, and can be used to calculate the
formants and their bandwidths, while
the eigenvectors represent the chang-
ing spatial distributions of pressure and
volume velocity associated with each
formant.

By examining the modal structure
of matrices P, 'Qu, calculated for any
particular time-varying area function
A(z,t) on , it is therefore possible
to arrive at a complete characterization
of the behaviour of the modelled vocal
tract for every discrete time sample.

EXPERIMENTAL RESULTS

As a useful application of this tech-
nique, consider the dynamic changes
in glottal shape which occur during
phonation. It is well known that for-
mant motion occurs during the glottal
cycle, but previous investigations [3]{4]
have found difficulties in determining
the exact nature of this effect using con-
ventional spectral analysis techniques.

The modal analysis method circum-
vents some of these problems. Figure
1 shows the variation in frequency and
bandwidth for the first three formants,
calculated every 0.2ms during two glot-
tal cycles over a period of 20ms for the
vowel /a/, together with the associated
normalized modal pressure and volume
velocity distributions. The area func-
tion was generated from an articulatory
model; 6 grid points were used for the
trachea, 7 in the glottis, and 79 for the
oral tract, and the glottal section ar-
eas were assumed to execute co-phasic
sinusoidal oscillations about a slightly-
abducted rest position.

During each glottal period, the vo-
cal tract poles were found to execute
“teardrop-shaped” movements in the
complex plane, with the path shape
depending on the area function. The
formant frequencies appear to increase
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monotonically with glottal area, as
found in [3][4], but the effect on the
bandwidths is more complicated, with
positive and negative excursions. The
modal distributions when the glottis is
closed are similar to those calculated
in [1][2], and the distortion that oc-
curs due to glottal opening is most pro-
nounced in the lower formants.

CONCLUSIONS

A time-domain technique for simu-
lating the time-varying resonant modes
of the vocal tract has been described,
and used to examine the effect of rapid
changes in glottal shape on modelled
formant positions. Results derived by
previous authors [3][4] using spectral
analysis have been largely confirmed,
but the calculation method applied
here is somewhat more reliable, and
clarifies the precise movement of the
tract modes during simulation. It re-
mains to be verified, however, whether
the linear acoustic model is indeed a
valid approximation to real speech pro-
duction.
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Figure 1 : Formant frequencies, bandwidths, and pressure/volume-velocity distributions for /a/.



