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ABSTRACT

A stochastic target model for articu-
latory synthesis is described, where ar-
ticulator motion is modelled by a lin-
ear system driven by random target
functions and modulated by a finite-
state Markov model. States in the
model represent overlapping phonolog-
ical units, while probability distribu-
tions for the associated target regions
represent systematic articulatory vari-
ation. Simple examples of random syn-
thetic speech are given.

INTRODUCTION

Speech recognition and synthesis
have traditionally been approached
through entirely different methodolo-
gies; the former based largely on train-
able models which reflect the statisti-
cal characteristics, but not the mecha-
nisms, of real speech; the latter based
on rule-driven systems which incorpo-
rate a great deal of a-priori knowledge
about speech mechanisms, but which
lack the ability to adapt automatically
to a particular corpus of data. In nei-
ther of these approaches is it usually
possible to model articulatory phenom-
ena directly, due to the lack of an ap-

propriate articulatory representation.
In a previous presentation, a frame-
v:'ork for articulatory speech recogni-
tfon was outlined, based on a stochas-
tic target model of speech production
constructed around explicit articula-
tory and acoustic models of the vocal
tract [1]. It was shown that the param-
eters of the model can, in theory, be
trained automatically from a corpus of
acoustic data using the EM algorithm.
In this paper, it is shown that the
model can also be used for speech
§ynthesis by sampling the underly-
ing probability space. The resulting
output incorporates a degree of non.

deterministic but systematic variatjon
reflecting some of the possibilities for’
compensatory phenomena observed ip
real speech.

Simple examples of (VCV)* utter-
ances are generated to demonstrate
that the model is capable of producing
plausible articulator and formant tra.
jectories automatically.

MODEL STRUCTURE

Assume an underlying probability
space (Q,F,P),andlet S = {S,, :m ¢
N} be a finite-state Markov chain tak.
ing values in & = {s; : i = 1...N},
with transition matrix I = [x(i,5) :
i,j € 8], where x(i,j) = P(Smiy =
J|Sm = 1) and T;x(i,5) = 1. Each
state in the Markov chain represents a
phonological symbol or, more generally,
a combination of overlapping symbols,
while any path through the state struc-
ture generates the symbol sequence for
a particular utterance.

To describe the temporal character-
istics of each phonological sequence,
define a second process T = {T,, :
m € N}. Each T, represents the
number of time frames spent in state
Sm, and is assumed for convenience to
be Poisson-distributed with parameter
#+(Sm) drawn from a set 7 = {pn-(3) €
R :i € S} according to the Markov
state. The T,, are conditionally inde-
pendent given S.

Each phonological symbol is assumed
to possess a number of underlying phys-
ical correlates, which may be articu-
latory, acoustic or perceptual in na-
ture. The fundamental modelling as-
sumption is that the set of correlates
for each symbol can be projected onto
an equivalent farget region in a Fu-
clidean space of articulatory parame-
ters X = RP. The target region asso-
ciated with any individual symbol can
then be modelled as a distribution func-
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tion on X, giving the probability that
any particular vocal tract configuration
in X is capable of realizing the phonetic
correlates associated with that symbol.
Every time a transition occurs in the
Markov chain, a new target configura-
tion is chosen according to the target
distribution for the new state, and held
constant until the next state transition
occurs.

To represent this, define a target pro-
cess U = {Un : m € N} taking
values in X, where the U,, are inde-
pendent conditioned on S, and each
U, is Gaussian-distributed with mean
pu(Sm) and covariance matrix Bu(Sm),
selected from a set of target parame-
ters © = {(pu(3) € R?, Lu(i) € RP*?):
i € 8} according to the Markov state
Sm. The extension to arbitrary con-
tinuous distributions on X is straight-
forward by approximation using Gaus-
sian mixtures, and more complicated
parameterizations are clearly possible
where the target distributions interact
or are made to vary with time.

The processes S,T,U then describe
the generation of a random distribution
of vector-valued target functions in ar-
ticulatory space for a class of phonolog-
ical state sequences.

Now, let X = {X. : n € N} be
a random process on X representing
the articulatory state, and let ¥ =
{Y. : n € N} be a measurement pro-
cess generating observations of X in
an acoustic space Y = RI. Assume
that the initial state X is distributed
as N(p1€RP, T,¢RP*?) and define zero-
mean Gaussian ii.d. processes V =
{(Va:neN}and W = {W,:n € N}
to represent unmodelled perturbations
in X and Y, with covariance matrices
2,.€RP*P and T, eRI*? respectively.

Assume furthermore that X evolves
in time according to the linear dif-
ference equation (1) driven by U (cf.
(2](3]), and that Y is generated from X
through a memoryless non-linear trans-
formation h : X — ) as seen in (2).

Here d is the order of the system,
and the matrices A;(7) € RP*? are se-
lected from a set of system parameters
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A= {A(j) :i=1...d,7 € S} ac-
cording to S,,. Since each control state
Sm influences T,, frames of the articu-
latory process X, a random index func-
tion J : @ x N — N is needed to cross-
reference points in (S, T,U) and X.

d-1

Xoy1 = EAJ'(SJ("))X"H—J' (1)
i=1

+Ad(Syn))sny + Vi,

Yo = h(Xn)+ W (2)

This completes the description of the
overall model structure. The func-
tion h(.) represents the articulatory-
acoustic mapping, and can be approxi-
mated using a codebook of points simu-
lated from an acoustic model of the vo-
cal tract. Provided that the phonetic
correlates chosen for each phonologi-
cal state can be expressed in terms of
quantities which can be measured from
model simulations, the corresponding
target distributions can easily be de-
rived from the codebook by defining
an appropriate normalized cost func-
tion on articulatory space. Initial esti-
mates for the duration parameters and
the time constants of the state recur-
sions can be measured from acoustic or
articulatory data.

SIMULATION RESULTS

The model can now be used for
speech synthesis by randomly generat-
ing sample paths from the probability
space, using a Monte-Carlo technique.
A state path through the Markov chain
is first selected according to the transi-
tion matrix. Once the state path has
been chosen, corresponding durations
and target points are generated as a
sequence of independent random vari-
ables with distributions determined by
S. The articulatory state is Gaussian
conditioned on (S,T,U), with mean
and covariance that can be calculated
recursively from the initial distribution
for X, the target sequence U, and the
sequence of system matrices defined by
the Markov state path. Once the distri-
bution of X is known, synthetic speech
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can be obtained by generating a single
random sample path of X and passing
the result through the acoustic model.

Figure 1 shows a simple state struc-
ture representing (VCV)* utterances
for the vowels /a/,/i/,/u/ and conso-
nants /r/,/d/,/w/. Associated with
each state is a target region represent-
ing the appropriate oral stricture. For
the vowels, the region is characterized
by a set of constraints on the first two
formants, for example /a/ = {600 <
F1 < 1000,1000 < F2 < F1 + 500},
i/ = {F1 < 400, F2 > 2000}, /u/ =
{F1 < 400,F2 < 1000} (in Hz), to-
gether with a requirement that the for-
mant energy be greater than a sono-
rant threshold. For consonants, a mix-
ture of acoustic and articulatory cor-
relates are used. /r/ is defined by
{F3 - F2 < 400, F2 < 1900}, /d/ by
a closure along the alveolar ridge with
{1600 < F2 < 1900}, while [w/ re-
quires protrusion of the lips with {F1<
300, F2 < 500}. The states are in-
tended to represent combinations of ab-
stract units, but these need not neces-
sarily be segmental (cf. [4]).

Six parameters of a version of Mer-
melstein’s model (5], shown in Figure 2,
were chosen to form the dimensions of
the articulatory space. A small code-
book of 25000 entries generated from
a finite-difference solution of the wave
equations was used to provide measure-
ments of the formants, average acoustic
energy, and constriction location for a
uniform distribution of points on X.

The articulatory image of each target
was then constructed by fitting a sin-
gle Gaussian distribution to the class
of all points satisfying the appropriate
definition. Figure 3 shows two different
projections of the sample distribution
for /d/, illustrating some of the correla-
tion patterns which arise automatically
from this technique.

Figures 4 and 5 show spectrograms of
two typical utterances produced from
sample paths of X using an articu-

latory synthesizer, together with the
parameter traces for X (-) and U
(-++)-  Realistic formant trajectories
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have been produced using only the st
tistical properties of target regions de-
rived from relatively abstract and flex.
ible phonetic specifications.

CONCLUSIONS

A stochastic target model for artic.
ulatory synthesis has been outlined,
based on Monte-Carlo simulation of 4
Markov-modulated linear system. The
model permits a compact articulatory
representation of speech in terms of 3
relatively small number of statistical
parameters which, in theory, it should
eventually be possible to train from a
corpus of acoustic data. In conjunction
with existing filtering algorithms, the
same modelling framework may also be
used for speech recognition. Simple
examples of synthetic VCV utterances
have been constructed, and demon-
strate that the model is indeed capable
of reproducing many of the character-
istics of real speech, although the qual-
ity does not at present approach that
of formant synthesis. Future work will
concentrate on improving the underly-
ing model and adapting it to real data.
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Figure 2: Articulatory model.
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Figure 3: /d/-target projections.
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Figure 4: Random synthetic speech
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Figure 5: Random synthetic speech



