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ABSTRACT

We present a part of our efforts towards an ar-

ticulatory speech synthesizer capable of learn

to produce articulatory gestures from acousti-

cal description of the tasks. We concentrated

on the problem of characterizing stop conso-

nants in the formant space. We model the

stop consonants targets as probabilistic mod-

els, which has advantages for both a quantita-

tive assessment of the principle and for appli—

cation to a model of speech motor control.

INTRODUCTION

A model was developed for obtaining the

commands of an articulatory model of the
vocal tract from acoustical targets (Labois-
siére 1993). Using this model, acceptable
vowelwvowel transitions are obtained and typ-
ical phenomena related to coarticulation and
compensation for perturbation can be repli-
cated. These satisfactory results rely on the
fact that acoustical targets (in our case the
three or four lowest formants) are well defined
for vowels. Problems arise when trying to use
the system to infer articulatory commands for
stop/vowel transitions.

Attempts to find invariant acoustical cues
for stop consonants are abundant in the liter—
ature (Stevens and Blumstein 1978; Kewley—
Port 1983; Sussman et a1. 199i). Al-
though the invariance at the acoustical level
is still a matter of debate, we are pursuing this
paradigm in order to test its validity in the con-
text of a model of motor control for speech
production.

In this paper we will describe the prelimi-

nary efforts towards our approach to vowel-

consonant-vowel articulatory synthesis, and

is organized as follows: we present first the

principles of our inversion model; second, the

technique for obtaining targets for consonants

in the acoustical space will be presented as

well as an preliminary assessment of the prin-

ciple.

THE INVERSION MODEL

The schematic of the model we are using

to invert from acoustical (distal) desired out-

comes into articulatory (proximal) commands

is shown in Fig. 1. This scheme is reminis-

cent of classical techniques in Control The-

ory, namely feedback control with learning of

a feedforward controller.

This control model drives an articulatory

model of the human vocal tract (Maeda 1988.

F(u) in Fig. l), implemented as a computer

program. The articulatory model was gen-

erated from cineradiographic data from a

speaker uttering ten phonetically—equilibrated

French sentences. From a sort principal com-

ponent analysis of the mid-sagittal tongue

contour it was possible to derive seven anio-

ulatory commands like jaw/tongue position.

lips aperture/protrusion and larynx height

(these commands compose the vector it). At
the output, after computing the area function

of the resulting configuration of the vocal
tract, we extract the first four formants (y in
Fig. 1).

As the number of inputs is greater than
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Figure 1: Architecture of articulatory controller. The system to be controlled (the plant) is indi-

cated by F(u), the articulatory inputs are u and the perceptual outputs (formants) y. The inverse

model, capable of inferring the articulatory inputs from the desired outputs y‘ contains a forward

model F‘(u) that gives estimations 3} of the plant outputs from the articulatory inputs, obtained

either by proprioceptive feedback or through “backprojection.”

the number of outputs—-—i.e. the system has

degrees of freedom in excessu—there is no

unique inverse transformation from the de-

sired formants into articulatory commands.

The proposed architecture solves this problem

in two steps. First, aforward model of the ar-

ticulatory model is learned (F(u)) in order to
mimic the articulatory model [see Jordan and
Rumelhart (1992) for a thorough discussion

on forward modelling]. More precisely, F(u)

is an analytical approximation of the map-

ping F(u). To find this regression model, we

are using a mixture of linear experts trained

by the Expectation-Maximisation (EM) algo-
rithm, a technique introduce by (Jordan and
Jacobs 1994). Essentially, the forward model

implements a piecewise linear function.

The main interest of having the piecewise
linear approximation (or any simple regres—
sion) resides in obtaining a simple expression
for the controller G(u). Indeed, C(u) imple-
ments a piecewise constant matrix of trans—

formation between the vector of error in the
acoustical space (derived from both y‘ and 3’)

or y) and the changes in the articulatory com-
mands. As we use the pseudo inverse of the
lAcobian, we ensure that minimal changes
in the articulatory variables will be produced
for a given acoustical error vector (Klein and

Huang 1983). This means that our model

can produce smooth commands without any

need for planning. Another interesting feature

of this architecture is that once the forward

model has been learned, the combination of

F(u) and C(u) can act as a feedforward in-

verse model.

ACOUSTICAL TARGETS FOR STOP

CONSONANTS

Let us turn now on how the controller shown

in Fig. 1 actually works. In order to obtain ar-

ticulatory movements, we have to present tar-

gets y“ at the input. For vowel production,

this targets could be simply formant values

(F1 to F4) and the error would be some dis-

tance between y“ and either y or 3}. For the

stop consonants there is no target in the for—

mant space due to the occlusion of the vocal

tract. The cues that convey information on the

stop consonant identity are numerous, ranging

from formant transitions to burst spectra [see

Kewley-Port (1983) for a review].

In the present work, instead of concentrat-

ing on a dynamical description of stop—vowel

production, we are asking a more fundamen—

tal question: is it possible to identify place of

constriction from a kind of “intended formant

configuration" that would be produced by the

vocal tract just at the moment of occlusion re—

lease? Of course, this “formants” would not
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exist physically in the speech signal, but could

be considered as intentional target for stops.

This should relate to the locus equations

(Sussman et a1. 1991), but we are interested

in a more general result, in which stop con-

sonants targets could be associated with large

regions in the formant space. We did a thor-

ough exploration of the articulatory model,

and were able to obtain several articulatory

configurations that give the same place of con—

striction for the tongue. By computing the for-

mant values for those configurations assum—

ing a small aperture at the place of constric-

tion, it is possible to obtain sets of points in

the formant space like those shown in Fig. 2

(only F2, F3, and F4 are shown, because F1 is

systematically close to 200 Hz for all config-

urations). The big variability observed is due

to the free articulators, like lips and larynx,

as well as to compensations between jaw and

tongue positions.

The case shown in Fig. 2 is quite instruc-

tive. The clouds correspond to the same place

of constriction (about 1.5 cm behind the up-

per incisors) but produced with different parts

of the tongue: either the tongue dorsum or the

tongue tip in a retroflex articulation. We see

that the clouds are quite separable, but a more

quantitative and systematic assessment of this

assertion is called for. In order to do that, we

model the cloud of points in the 132—134 space

as a probabilistic model, namely as a mixture

of Gaussians. Given a vector y in that space

and a model M 3' related to a given position of
constriction and mode of articulation (tongue
tip or tongue dorsum), the probability of hav-

ing 3; associated to M,- is given by

P(91M3-) 2 (1)

29a l. |-1/2e~(y-—y,.)rc;r(,._,fl)

where 9,, are the a-priori probabilities, y” the
mean vectors and 0,5 the covariance matrices.
For each of the possible locations of constric—
tion of the articulatory model (from the alve-
olar to velar regions) Spaced by 0.5 cm we
found the best mixture of Gaussians using the
EM algorithm. We observed that 4 Gaussians
were in general sufficient for describing each
cloud.
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Figure 2: “Forrnant” values for retroflex con-

stricitons with the tongue tip (+) and ad-

vanced tongue dorsum (0).

Modelling targets as probabilistic models

offers two advantages. First, it is possible to

estimated the likelihood of each clouds being

produced by the each model M3‘. This gives

some measure of confusion between acoustie

cal results of different place of constriction.

Let us call y,- the points the in cloud related to

the model Mi- The log likelihood of having

yr: eeing produced by Mi, is

Min-Wk) :Elogwwmn. (2)

The greater C(yj IMk), the more will have

confusion at the acoustical space between the

related places of constriction. We compute

those values for 11 clouds, three for the tongue

tip articulation and 8 for the tongue dorsum.

The tongue dorsum can constrict as far as 5 cm

back from the incisors, which means the 50fI

palate region. The results are summarized

ICPhS 95 Stockholm

in Fig. 3, in which the values for the likeli-

hoods are shown as gray levels. We interpo-

lated the data in order to improve the presenta—

tion. Darker regions correspond to high like-

lihoods. It is possible to see that some regions

of confusions emerge from our data: between

positions d, and d7 (which corresponds to the

hard palate), regions t1 and t2 (dental and alve-

olar) and (12 and d3 (advanced tongue dor-

sum). Velar regions and tongue tip retroflex

configurations are quite separable from the

others.
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Figure 3: Log likelihhod of production of

each cloud by each probabilistic model related

t0 a place of constriction d, stands for tongue

dorsum and t, for tongue dorsum. Darker re-

gions mean high likelihood. Spacing of con-

Strictions is 0.5 cm.

The second benefit of the probabilistic

modelling is related to the way we can com—

pute the error vector for the controller (Fig. 1).

Indeed, for a given point in formant space y.

the error vector is given simply by the gradi-

ent of the log likelihood with respect to y:

1
...___..._ t' Cr" -1” (3)

e_(,,_y,,)7'0,‘;‘(u-vulICG’w —" yell-

E:

The error vectors generate a force field in

the formant space which is transformed into

1Changes in articulatory positions by the con-

troller.
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CONCLUSIONS

In this paper we showed how to obtain targets

in the acoustical space for the stop compo—

nents in the context of a model of motor con-

trol. We concentrated on describing the model

and on how a probabilistic approach to the de-

scription of vowel-stop—vowel sequences can

be useful. We showed that the description of

clouds by mixtures of Gaussians yields inter-

esting results, mainly related to the separabil-

ity of the target regions for the different stop

consonants produced by contact of the tongue

to the hard- and soft«palate. Extensive sim«

ulations are planned for assessing the whole

model.
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