PROSODIC BOUNDARY STRENGTH IN SWEDISH: FINAL LENGTHENING AND SILENT INTERVAL DURATION

Merle Horne*, Eva Strangert**, and Mattias Heldner**

*Dept. of Linguistics & Phonetics, Lund Univ. **Dept. of Phonetics, Umed Univ.

ABSTRACT

Production data are presented that support the assumption of Final Lengthening and Silent Interval duration as parameters of prosodic boundary strength in Swedish.

INTRODUCTION

Within the hierarchical model of prosodic constituents assumed for Swedish [1], four boundary strengths (0-3) have been assumed: the 0-boundary is thus associated with the end of a phrase within a Prosodic Word (PW), boundary strength 1 with the end of a PW, boundary strength 2 with the end of a Prosodic Phrase (PPh), and boundary strength 3 with the end of a Prosodic Utterance (PU). Although we have a good idea as to how tonal parameters are associated with the various prosodic categories, it is not clear how other parameters, in particular Final Lengthening (FL) and Silent Interval (SI) duration are associated with the various prosodic constituents.

Prosodic constituents have often been assumed to be associated with specific degrees of FL. The domain of lengthening is generally believed to be the rhyme of the final syllable [2-3]. Recent studies have also shown that the lengthening is progressive, i.e. the final consonant is lengthened to a greater extent than the preceding vowel [4]. It is also known that FL is influenced by the presence of prominent accents/boundary tones [3]. Researchers on Swedish [5-6] have provided evidence from production experiments that shows that segment lengthening in final position is indeed influenced by the presence of a focal accent on the last word in an utterance. Lyberg & Ekholm, basing themselves on measurements made on the stressed vowel rather than the final rhyme consonant in their test words [7], do not find any consistent evidence for the appearance of FL as an independent marker of the end of a phrase. Fant and colleagues [8-9], in studies on read prose, show that there is a negative correlation between SI duration and FL in their analysis of stress foot structure in Swedish. These results prompted us to make an investigation in order to tease out the relation between accented, FL and SI duration in order to relate the findings mentioned above to boundaries assumed in the prosodic constituent hierarchy.

DATABASE STUDY

We made a preliminary database study in order to determine 1) whether boundary strengths between the four types of prosodic constituents we have assumed for Swedish are associated with different degrees of perceived boundary strength and if so, to determine 2) if and how these boundary strengths correlate with segment lengthening and silent intervals for the radio commentator style we are modelling.

17 broadcasts from Radio Sweden on Stock-Market rates were studied. The boundary strength after the Accent 1 word *procent* 'percent' ([pro'sent]) was chosen for analysis since this word was uttered on the average of 5 times during the broadcasts comprising the database. Also the 5 different occurrences of *procent* always had the same respective syntactic position in each text. The material was presented to 2 native listeners, who scored the strength of the perceived boundary after *procent* on a 4 point scale, where 0 corresponds to no boundary (0-boundary), and 3 corresponds to the strongest boundary (PU-boundary). An example of one of the tests follows (subscripts after tilde? represent the scored boundary strength):

<table>
<thead>
<tr>
<th>Boundary Type</th>
<th>Strength</th>
<th>SI Duration (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1 procent</td>
<td>150 mese</td>
</tr>
<tr>
<td>1</td>
<td>1.0 procent</td>
<td>300 mese</td>
</tr>
<tr>
<td>2</td>
<td>2.0 procent</td>
<td>450 mese</td>
</tr>
<tr>
<td>3</td>
<td>3.0 procent</td>
<td>600 mese</td>
</tr>
<tr>
<td>4</td>
<td>4.0 procent</td>
<td>750 mese</td>
</tr>
</tbody>
</table>

LAB STUDY

The study was thus undertaken in order to include all boundaries after both [+focus] and [-focus] words to determine to what extent 1) the boundary-type and 2) the focal/non-focal status of a word interacts with FL and SI duration.

One text from the database study was modified so that in new versions *procent* was followed by all 4 types of boundary, 0-boundary, PW, PPh and PU-bounds, respectively. Moreover, 2 subcategories of boundary within the PPh and PU were distinguished: clause-final/sentence-final position for PPh and paragraph-final/text-final position for PU. Thus there were 6 boundary categories: 0, PW, PPh/C, PPh/S, PU/P and PU/T. All 6 categories occurred after both [+focus] and [-focus] *procent*. In this way we had 12 texts created which were read 10 times each by the same speaker as in the database study. Altogether the material contained 120 occurrences of the testword (10 readings x 6 boundaries x [+/- focus]).

![Figure 1. Silent interval duration following the test word with +/- focus accent.](image1)

![Figure 2. Duration of the test word with +/- focus accent before each boundary.](image2)
Figure 3. Stressed final syllable segment durations in [+/- focus] accented test word before each boundary.

First, whether the test word is focussed or not has significant effects on all segments except the final [t] (p<.001). (The first syllable of the test word is affected similarly.) Secondly, the final [t] as well as the preceding [e] and [n], are significantly (p<.001) affected by boundary type (as is also the initial [pr]-segment). However, the three segments are affected in very different ways. For [e] there seems to be a negative correlation between segment duration and the rank of the boundary. For [n] there is also a negative correlation, but only for the boundaries ranked lowest, 0, PW and PPh/C. The higher ranked boundaries appear to be unaffected. For both [e] and [n] these adjustments primarily affect [+focus] words. For [t] on the other hand, there is a positive correlation between SI duration and the boundaries with higher ranking, PPh/C, PPhS, PUP/P and PUT/T. The interaction between boundary type and [+/-focus] makes it difficult to state the effects of boundary type for 0, PW and PPh/C. Thus, the segment duration data demonstrate where the effects found in Figure 2 come from. The increase in duration in the higher rank end of the curve stems primarily from the [t], while the decrease in the lower rank end is a combined effect of adjustments made in [e], [n] and, to some extent, [t].

CONCLUSIONS

We may first conclude that the database study indicates that the boundaries associated with the four environments we have analysed can be perceptually distinguished. The subcategorizations of the PPh and PU categories in the present study have not been tested perceptually yet. Thus, we cannot be certain as to how many distinguishable categories there are.

A major adjustment affecting the rhyme segment durations is associated with the focus accent, with [+focus] associated with significantly longer durations than [-focus]. This is to be expected, as focus accent has temporal correlates in addition to the primary F0-correlates [6]. However, [t] as well as the SI following the test word do not conform to the general trend, both being unaffected by the +/-focus distinction.

Concerning the temporal adjustments associated with the boundary types investigated we found a more or less gradual increase in the duration of the SI upon an increase in the rank of the boundary observed (see also [8,10] for Swedish). Concerning segment durations, the increase in [t] duration associated with the higher rank end of the boundary scale and the decrease in [e], [n] and [t] duration in the lower end, together, as we have seen, sum up to a v-shaped curve with PPh/C forming the lowest point.

The increase in [t] duration between the higher ranks in the boundary hierarchy (starting with the PPh/C) is evidence for FL existing independent of focus accent in Swedish (cf. also results by Edwards & Beckman [11] who claim that FL does not exist below the PPh). In contrast, Lyberg and Ekholm [7] measuring only the stressed rhyme vowel, could not find any evidence of FL as an independent marker of the end of a phrase. (Neither could we find any independent lengthening when measuring the stressed [e] in the present study (see also [4]). However, the observations on Swedish made by Lyberg and Ekholm may be given an alternative interpretation in the light of the present study. The claim they made that FL is a consequence of focus position on the last content word - they, like us, observed lengthening of the [+focus] stressed vowel - may therefore be a consequence of the segment they chose for analysis.

We also have reported a decrease of duration in the rhyme segments at the lower ranks in the boundary hierarchy. In our test word with a stressed syllable containing a short vowel [e] followed by two consonants [n] and [t], it is particularly the consonants which are affected, though only in the [+foc] condition. Duration is greatest at the 0 boundary, least at the end of a PW and least at the end of the PPh/C word. Combined with the silent interval data we present, these results corroborate previous observations of a trading relation between FL and SI duration [8-9]. In contrast to the findings of the other researchers, however, negative correlations are not obtained for our data above the PPh/C level.

The trading effect may be looked upon as a means to optimize boundary signalling, maximizing segment duration cues when SI duration is at its minimum. However, why is this pattern more or less restricted to the [+focus] conditions? And how does one explain the fact that the significant +/- focus differences we have reported are much more pronounced, especially in the [n], at the lower ranked boundaries; the difference is greatest at the lowest ranked boundary 0, and least at the PPh/C boundary. These questions need to be answered in future research.

In summary, what one can conclude from this study is that the phenomenon of Final Lengthening does exist in Swedish. Its domain would appear to be PPh and PU. It affects the final segment of the rhyme. Silent Intervals, moreover, are intimately tied to the higher-ranked boundaries, PPh and PU. Further, there appears to be a trading relation such that at the lower-ranked boundaries, segment and Silent Interval duration are negatively correlated.

ACKNOWLEDGEMENTS

We would like to thank Suzanne Haage-Palm for reading the material, Antonio de Serpa-Leitao for assistance with the recordings and Björn Granström for generously placing the sound studio at KTH at our disposal. This research was supported by grants from the Swedish HSFR/ NUTEK Language Technology Programme.

REFERENCES