MICROWAVE SPEECH SYNTHESIS FROM TEXT
B. LOBANOV AND E. KARNEVSKAYA

Institute of Engineering Cybernetics
Institute of Foreign Languages, Minsk, BSSR

ABSTRACT
The present work suggests a microwave method as a way to synthetic speech quality perfection. The paper deals with the basic principles of the adopted method and some problems arising in the course of its applicati on in a multilanguage pro gramme: choice of an invariant framework and specific types of microwaves; the mechanism of microwave concomitation and their modifi cations in accordance with linguistically significant prosodic changes.

INTRODUCTION
Systems of speech synthesis from text today are general ly based on a formant signal method, as it permits a wide range of combinatorial and positional modifications of the acoustic invariants representing the phonemes of the language. It thus meets the requirements of the given type of speech synthesis, namely those of unpretentious vocabulary and sentence structure. Although modern formant synthesizers are capable of producing speech of a fairly high intelligibility and quality [1, 2], such is left to be desired that often there is hardly any possibility of a radical improvement at the present time. The reasons for it lie in the inherent deficiencies of the speech formation model being used and in particular, the latter's inability to reflect voice individuality. This is largely because formant synthesizers neglect the inter action of the excitation source and the vocal tract (coupling effect). Nor do they take account of the dependence of the excitation pulse shape on the properties of the vocal tract modifica tions. As a result there still exist problems with the synthesis of a female voice as well as imitation of any definite voice. A way towards the solution of these difficulties, as it seems, is the use of speech segment as the basic elements of synthesis. The minimal units of synthesis in the present work are microwaves (henceforth, MW). They are elements of a natural speech signal coex tensive with a FO period. Actually, the use of microwaves for synthesis programme was first proposed in [3]. In [4] this idea was successful approbated in the system of diphone synthesis from text for male and female voices. Yet, there are quite a number of problems in MW synthesis that have not been solved so far (see Abstract). The present work being a multilanguage programme lays special emphasis on finding language-invariant strategies and compiling language-specific MW sets. The number of microwaves in a set is ultimate ly determined by the phone me inventory of the given language, phonetic distances between phones belonging to the same class and the difference in the degree of coarticulation between various types of sounds both within one language and across languages. The exact number and types of MW in each set however, can only be defined experimentally.

2. GENERAL PRESENTATION
2.1. Microwave Phoneme Representation
Like in the formant synthesis, the basic principle of MW method is allophonic representation of the phone mes of the language, but unlike the former, there's further disintegration of allophones into linear seg ments. Thus MW synthesis consists essentially in obtaining adequate linear models of phoneme combinatorial and positional realisations. Clearly there can be various degrees of discretisa tion both as regards the relevant list of allophones and their internal structure. The main argument for the validity of the MW sets selected for the present work is that they provide all significant variations of sounds in connected speech. For the Russian vowels, e.g., it is necessary first of all to distinguish between the soft and hard vowels: (A, O, E, U, I), on the one hand, and ('A, 'O, 'E, 'I), on the other. It means that the target units are not phones but allophones viewed as sound types grouped on the grounds of non-functional identity. Each allophone of this kind, a higher-rank allophone, so to say, is represented horizontally by three successive segments: initial, mid and final. The segments, like boxes, are to be filled with appropriate microwaves, according to the modifications the given allophone (soundtype) undergoes under the influence of various adjacent sounds. In view of the accepted two-level allophonic representation the mic segment, i.e. the vowel stationary, was regarded in this paper as constant for all possible CV and VC combinations of a concrete higher-rank allophone. The choice of the MW type for the initial and final seg ments, as could be predicted from the results of an analysis and synthesis, does not follow this principle: transitional microwaves vary in accordance with the alacent consonant articulation place. The number of MW types then should correspond to the number of consonant classes opposed by this feature. For Russian consonants, e.g., it may lead to noticeable qualitative changes. For consonants presented here, labial, dental, alveolar, velar and lateral places of articulation. Allophonic variation of consonant phonemes in Russian and in English (as in other languages) is caused both by the impact of the neighboring consonants and vowels. The former, for example, may lead to noticeable qualitative changes, e.g., the emergence of higherrank allophones, such as the voiceless(r) in English. The latter is mainly confined to variations on the transitional segments. Thus, e.g., the types of microwaves for initial segments of hard consonant phonemes. But the consonant phonemes in the final position are treated differently. Therefore, the consonants of the liquid class were selected as they are relatively easy to represent in reduction of their own allophones. In the present work the microwaves of the three types of vowels, i.e., soft, hard, and stationary, were determined in accordance with the natural co-
nents: before [i, e], before [a] and before [u, o]. Clearly the three linear segments are to be determined for each consonant allophone.

2.2. MW concatenation in the Speech Flow
MW concatenation at the stationary segment comes simply to their successive reading-out. This procedure could be suitable for the transitional segments, too. If a concatenation of several MWs for every type of transition had been preliminarily made. This can hardly be put into practice because of the amount of work needed for the preparation of the speech material and an excessive increase of the required memory volumes as well as the number of rules for the synthesis of transitional segments. There is an interesting possibility of avoiding these difficulties which is based on the use of the inertial properties of auditory perception. Let us recall in this connection that the visual impression of a smooth replacement of slides can be achieved through a smooth decrease of the brightness (down to zero) of one image and a simultaneous increase of the brightness (from zero up to the required degree) of the other image, projected onto the same screen. Our research has shown that a similar effect of replacement is observed in sound perception. The auditory effect of smooth replacement is achieved by making an overlap interval between the contacting sounds during which a gradual amplitude decrease of sound 1 and a simultaneous amplitude increase of sound 2 takes place. The amplitude summing up in the field of the overlap leads to the appearance of a complex sound, perceived as a smooth transition from sound 1 to sound 2.

2.3. F0-Parameter Control.
The simplest method of controlling the fundamental frequency in the synthetic speech system is the following. Let the initial MW have the duration TO which is chosen from the range of variations determined by prosodic rules: T0min ≤ TO ≤ T0max. As for a concrete TO value it can be defined as a statistic mean value of the speaker's F0 period used for the formation of the MW set. If the current TO = TO', the speech signal is formed by a simple repetition of the given microwave. When TO > TO', the MW repeated reading-out begins after the time interval TO - TO', if the interval itself is filled by zeroes. If TO < TO', the reading-out process stops at the moment TO = TO and a repeated MW read-out resumes. Experimental investigations of this control method have shown that it provides a sufficiently high quality of the synthesized sound, in particular, when TO=TO', with the interval TO - TO' not exceeding 30% of a period duration TO. When TO<TO there are no perceptible distortions only if the end of the read-out falls at a MW value close to zero (10-20% of MW amplitude). Otherwise, there's a clear sound distortion resembling nasalization. This unwanted effect can be removed by smoothing away the abrupt reading-out cessation process. It can be achieved by switching on an order 2 filter with the time constant eq. 0.25*TO at the moment the repeated read-out begins or before this moment (0.25TO) by multiplying the MW by a smooth single function of the type y=exp(-t). The use of either of the methods for the case TO < TO' yields fairly good results. If TO > TO', the method of period zeroing can be applied provided TO' = 0.74T0max.

3. IMPLEMENTATION
The algorithm implementing the above model consists of 10 blocks. The written text intended for synthesis is produced by the FC main program. This text, sentence by sentence, gets into block 1, in which sentences are segmented into intonation-groups and marked for stresses and melody. These procedures are performed in accordance with definite rules varying from language to language. For every phoneme there in blocks 4-8 are calculated: the rhythm (sound duration), the dynamic (sound intensity) and the melodic (pitch) characteristics according to the rules specified for the languages. Further on, in block 5, allophonic identification of the phonemes is carried out followed by the division of the allophones into linear segments. To each elementary segment corresponds a definite MW which is selected by block 6 out of the HW set defined for each language and type of voice. In block 7 modifications of the HW duration take place (i.e. of the F0 period) in accordance with the information coming from block 4, and in this way the tonal pattern of the synthetic speech is produced. Control led by block 3, the duration of phoneme segments is defined in block 9 by means of a step-by-step reading of the required number of MWs. Finally in block 9 MW amplitude (intensity) is set out, while block 10 serves for smoothing the abrupt changes at the transitions from one MW type to another in the process of generating a continuous speech signal. Changing the voice type in MW synthesis is achieved by replacing or modifying the HW set. Passing over to another language implies the replacement of the phonetic base rules and HW set.

REFERENCES: